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1. Introduction

A symmetric R-space is a kind of special compact

symmetric space for which several characterizations are

known. One of the characterizations is that a symmetric

R-space is a symmetric space which is realized as an orbit

under the linear isotropy action of a certain symmetric

space of compact (or noncompact) type. It is based on

a result of Takeuchi-Kobayashi in 1968, to which I will

mention in the former part of this talk.

In the latter part of this talk, I will mention my recent

joint work with Hiroyuki Tasaki dealing with real forms

in a Hermitian symmetric space of compact type, which

is another characterization of symmetric R-spaces.
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2. Symmetric spaces

M : a Riemannian manifold

M : a (Riemannian) symmetric space
def⇐⇒ ∀x ∈ M, ∃sx : M → M an isometry

s.t. (i) sx ◦ sx = id

(ii) x is an isolated fixed point of sx

sx is called the symmetry at x.

・A symmetric space is complete.

・The group I(M) of the isometries is a Lie transforma-

tion group of M which acts transitively on M .

e.g. Rn, Sn, Tn, KPn and more generally Gk(KN) are

symmetric spaces, where K = R,C or H.
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We assume that a symmetric space is connected.

M = G/K : a (connected) symmetric space

G = I0(M) : the identity component of I(M)

K = {g ∈ G | g · o = o} for o ∈ M

σ : G → G, σ(g) := sogs−1
o : an involutive automorphism

g : the Lie algebra of G

σ induces the involutive automorphism of g, denoted by

dσ : g → g.

g = k⊕ m : a direct sum decomposition

k := {X ∈ g | dσ(X) = X} = the Lie algebra of K

m := {X ∈ g | dσ(X) = −X} = ToM

・AdG(K)m ⊂ m, which is called the linear isotropy action

of K on m.
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3. Symmetric R-spaces

Nagano (1965) : He introduced the notion of a sym-

metric R-space as a compact symmetric space M which

admits a transitive action of noncompact Lie group L

containing I0(M) as a subgroup.

e.g. M = Sn admits a transitive action of the conformal

transformation group ⊃ I0(M).

Kobayashi-Nagano (1964, 65, 66) : They gave the struc-

ture theorem on certain filtered Lie algebras and its ap-

plications to transformation groups acting on symmetric

spaces, which includes the classification of symmetric

R-spaces. They also proved that if M is a noncompact
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irreducible symmetric space, then no Lie group acting

effectively on M contains I0(M) as a proper subgroup.

Takeuchi (1965) : He used the terminology “ symmetric

R-space”. He gave a cell decomposition of an R-space,

which is a kind of generalization of a symmetric R-space.

On the other hand, Chern-Lashof introduced the total

curvature of an immersed manifold in 1957.

M : a compact C∞ manifold immersed in Rn with the

immersion φ.
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The total (absolute) curvature τ(φ) is defined by

τ(φ) :=
1

vol(Sn−1)

∫
B
|detAξ|ω

B : the unit normal bundle of M

ω : the volume element of B

Aξ : the shape operator of φ for ξ ∈ B

Chern-Lashof (1957, 58), Kuiper (1958) :

τ(φ) ≥ β(M) ≥ b(M)

b(M) :=
dimM∑
i=0

bi(M)

bi(M) : the i-th Betti number for any fixed coefficient

field
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β(M) := min
f∈F

β(f)

β(f) : the total number of the critical points of f

F : the set of the Morse functions on M

φ : M → Rn is called a minimum (or tight) immersion if

τ(φ) = β(M).

Kobayashi (1967) : He proved that every compact ho-

mogeneous Kähler manifold can be embedded into a Eu-

clidean space with a minimum embedding.

Kobayashi (1968) : He gave an explicit construction of

minimum embeddings of some symmetric R-spaces.
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Takeuchi-Kobayashi (1968) :

M = G/U : an R-space

G : a connected real semisimple Lie group without center

U : a parabolic subgroup of G

g (resp. u) : the Lie algebra of G (resp. U)

∃Z ∈ g s.t. eigenvalues of adZ are all real and u is the

direct sum of all eigenspaces corresponding to the non-

negative eigenvalues of adZ

K : a maximal compact subgroup of G

g = k⊕ p : a Cartan decomposition with Z ∈ p

K0 := {k ∈ K | Ad(k)Z = Z}

Then, we have M = K/K0. (Takeuchi)
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Takeuchi-Kobayashi defined the map

φ : M = K/K0 → p by φ(kK0) := Ad(k)(Z),

which is a K-equivariant embedding of M into p. They

proved that φ is a minimum embedding, which is nowa-

days called the standard embedding of an R-space M .

They also proved that if M is a symmetric R-space with

simple G particularly, then φ(M) is a minimal submani-

fold of a hypersphere in p.

For the standard embedding φ : M → p of an R-space, we

have τ(φ) = β(M) = b(M,Z2), where b(M,Z2) denotes

the sum of the Z2-Betti numbers.
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4. Antipodal sets

M : a compact symmetric space

S ⊂ M is called an antipodal set if sx(y) = y for any

x, y ∈ S.

The 2-number #2M of M is defined by

#2M := sup{#S | S : an antipodal set in M} (< ∞)

An antipodal set S which satisfies #S = #2M is called

a great antipodal set.

e.g. S = {x,−x} ⊂ Sn is a great antipodal set and

#2S
n = 2.
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e1, . . . , en+1 : o.n.b. of Rn+1

S = {⟨e1⟩, . . . , ⟨en+1⟩} ⊂ RPn is a great antipodal set and

#2RPn = n+1.

Takeuchi (1989) : He proved that if M is a symmetric

R-space, then #2M = b(M,Z2), the sum of the Z2-Betti

numbers.

Tanaka-Tasaki (2013) :

If M is a symmetric R-space,

(i) any antipodal set is included in a great antipodal set,

(ii) any two great antipodal sets are congruent.
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S1, S2 ⊂ M are congruent if ∃g ∈ I0(M) such that

g · S1 = S2.

We proved it by making use of the standard embedding

φ : M → p of a symmetric R-space M .

An essential point is :

sx(y) = y ⇐⇒ [x, y] = 0 (x, y ∈ M)

under the identification of M with φ(M).
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5. Intersection of real forms

M : a Hermitian symmetric space of compact type

A Hermitian manifold M is a Hermitian symmetric space

if for each x ∈ M there exists the symmetry sx which is

an holomorphic isometry.

A symmetric space M = G/K is of compact type iff G is

compact and semisimple.

τ : an involutive anti-holomorphic isometry of M

Then, F (τ,M) := {x ∈ M | τ(x) = x} is connected and a

totally geodesic Lagrangian submanifold, which is called

a real form of M .
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e.g. RPn is a real form of CPn.

M : a Hermitian symmetric space of compact type

τ : an anti-holomorphic isometry of M

M ×M ∋ (x, y) 7→ (τ−1(y), τ(x)) ∈ M ×M is an involutive

anti-holomorphic isometry of M ×M

A real form Dτ(M) := {(x, τ(x)) | x ∈ M} of M ×M

is called a diagonal real form.

A real form of a Hermitian symmetric space M of com-

pact type is a product of real forms in irreducible factors

of M and diagonal real forms determined from irreducible

factors of M .
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Takeuchi (1984) : Every real form of a Hermitian sym-

metric space of compact type is a symmetric R-space.

Conversely, every symmetric R-space is realized as a real

form of a Hermitian symmetric space of compact type.

The correspondence is one-to-one.

M = CP1 = S2 : a Herm. sym. space of compact type

L = RP1 = S1 : a real form of M

Every real form of S2 is a great circle.

Any two distinct great circles in S2 intersect at two

points which are antipodal to each other. That is, the

intersection is an antipodal set.
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The following is a generalization of the fact.

Theorem 1 (Tanaka-Tasaki 2012)

Let L1, L2 be real forms of a Hermitian symmetric space

of compact type whose intersection is discrete. Then

L1 ∩ L2 is an antipodal set of L1 and L2.

Furthermore, if L1 and L2 are congruent, then L1∩L2 is a

great antipodal set, that is, #(L1∩L2) = #2L1 = #2L2.
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Theorem 2 (Tanaka-Tasaki 2012)

Let M be an irreducible Hermitian symmetric space of

compact type and let L1, L2 be real forms of M with

#2L1 ≤ #2L2 and we assume that L1 ∩ L2 is discrete.

(1) If M = G2m(C4m) (m ≥ 2), L1 is congruent to

Gm(H2m) and L2 is congruent to U(2m),

#(L1 ∩ L2) = 2m <

(
2m
m

)
= #2L1 < 22m = #2L2.

(2) Otherwise,

#(L1 ∩ L2) = #2L1 (≤ #2L2).
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M : a compact symmetric space

o ∈ M

F (so,M) =
r∪

j=0
M+

j , M+
j : a connected component

M+
j is called a polar of o. Since {o} is a connected

component of F (so,M), we set M+
0 = {o}.

e.g. For a point o in M = Sn, F (so,M) = {o,−o} and

M+
0 = {o} and M+

1 = {−o}.

For a point o = ⟨e1⟩ in M = RPn,

F (so,M) = {o} ∪ {1− dim subspaces ⊂ ⟨e2, . . . , en+1⟩}
and M+

0 = {o} and M+
1

∼= RPn−1.

If M is a symmetric R-space, #2M =
r∑

j=0
#2M

+
j (Takeuchi).
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Lemma Let M be a Hermitian symmetric space of com-

pact type and o ∈ M .

F (so,M) =
r∪

j=0
M+

j , M+
j : a polar

(1) If dimM+
j > 0, M+

j is a Hermitian symmetric space

of compact type.

(2) Let L be a real form of M containing o. Then,

F (so, L) =
r∪

j=0
L ∩M+

j

and if L ∩M+
j ̸= ∅, L ∩M+

j is a real form of M+
j .

#2L =
r∑

j=0
#2(L ∩M+

j ).
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(3) Let L1, L2 be real forms of M with o ∈ L1 ∩ L2 and

we assume that L1 ∩ L2 is discrete. Then,

L1 ∩ L2 =
r∪

j=0

{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
,

#(L1 ∩ L2) =
r∑

j=0
#

{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
.

Based on this Lemma, in the proof of Theorem 1 and

Theorem 2 we use an induction on polars.
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The classification of real forms in an irreducible Hermi-

tian symmetric space of compact type was given by Le-

ung and Takeuchi. We classified all the possible pairs of

real forms in a Hermitian symmetric space M of compact

type in the case where M is not irreducible. They are

essentially four cases. To investigate the intersection of

two real forms is reduced to an irreducible case for three

of those four cases. The remaining case is reduced to

the case where both real forms are diagonal real forms.

M : a Hermitian symmetric space of compact type (or

noncompact type)

A(M) : the group of the holomorphic isometries of M
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A0(M) : the idenitity component of A(M)

It is known that A0(M) = I0(M).

Theorem 3 (Tanaka-Tasaki 2013)

Let M be an irreducible Hermitian symmetric space of

compact type. Let τ1, τ2 be anti-holomorphic isome-

tries of M , which determine diagonal real forms Dτ1(M),

D
τ−1
2

(M) in M×M respectively. We assume that Dτ1(M)

∩ D
τ−1
2

(M) is discrete. Then,

(1) if M = Q2m(C) (m ≥ 2) and τ2τ1 /∈ A0(M),

#(Dτ1(M)∩D
τ−1
2

(M)) = 2m < 2m+2 = #2M ,
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(2) if M = Gm(C2m) (m ≥ 2) and τ2τ1 /∈ A0(M),

#(Dτ1(M)∩D
τ−1
2

(M)) = 2m <

(
2m
m

)
= #2M ,

(3) otherwise,

#(Dτ1(M) ∩D
τ−1
2

(M)) = #2M .

It is known by Murakami and Takeuchi that if M is

an irreducible Hermitian symmetric space of compact

type except for Q2m(C) and Gm(C2m) with m ≥ 2, then

I(M)/I0(M) ∼= Z2 and A(M) = A0(M). If M is Q2m(C)

or Gm(C2m) with m ≥ 2, then I(M)/I0(M) ∼= Z2×Z2 and

A(M)/A0(M) ∼= Z2.
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