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1. Introduction and known results

In S2 any two distinct great circles intersect two antipodal points.
If at least one of circles is a small circle, the intersection could be
empty. S?2 is considered as CP!, which is a Hermitian symmetric
space of compact type, and canonically embedded RPL is a great
circle, which is a real form in (CPl, that is, the fixed point set of an
involutive anti-holomorphic isometry. In general, we obtained the
following.

Theorem 1.1 (T.-Tasaki 2012) Let M be a Hermitian symmetric
space of compact type and let L1 and Lo be real forms in M. If
L1 N Lo is discrete, L1 N Lo is an antipodal set.

Here an antipodal set is a subset on which the geodesic symmetry
at each point acts trivially.



We say L4 is congruent to Lo if Ly is transformed to Lo by an
element in Ig(M), the identity component of the isometry group of
M. If M = G,(C™), any real form is

G, (R™), G,(H™) if k = 2l,n = 2m, or U(k) if n = 2k.

So in general, L1 and Lo, are not necessarily congruent. But if they
are congruent, we obtained the following.

Theorem 1.2 (T.-Tasaki 2012) If L1 and Lo are real forms in M
which are congruent and Lq N Lo is discrete, then L1 N Lo is a great
antipodal set of L1 and L».

Here a great antipodal set is an antipodal set with maximal cardi-
nality. The maximal cardinality of the antipodal sets in a compact
Riemannian symmetric space M is called the 2-number of M de-
noted by #-M.



For a point o in a compact Riemannian symmetric space, each con-
nected component of the fixed point set of the geodesic symmetry
So at o is called a polar. By making use of polars, we obtained the
following.

Theorem 1.3 (T.-Tasaki 2012) Let M be an irreducible Hermi-
tian symmetric space of compact type and let L and L, be real
forms in M. Assume that #-L1 < #oLo. If L1 N Lo is discrete, then
L1 N Lo is a great antipodal set of L1 except for the case where

M = Gppn(C*™) (m > 2), L1 & Gn(H2™), Ly £ U(2m).

In this case we have

2m
#(L1NLy) =2M < (m) = #,Lq < 2% = #5Lo.

On the other hand, we have another approach to investigate the
intersection of real forms. Let L1 = F(m1,M) and Ly, = F (7, M) be
real forms, then



LiN Ly = F(ry, M) N F(m9, M) C F(rory 1, M),

where 7271_1 is a holomorphic isometry of M. If F(TQT]__]',M) is
discrete, L1 N Lo is discrete. Moreover, if F(TQTl_l,M> is antipodal,
L1NL» is antipodal. Conversely, if L1N L5 is discrete, is F(TQT]__l, M)
discrete? If L1 N Lo is antipodal, is F(TQT]__]',M) antipodal? We will
refer to these problems in Section 3.

It is known that a Hermitian symmetric space M of compact type
IS realized as an adjoint orbit of a compact semisimple Lie group G-

M = Ad(G)J C g,

where J satisfies (adJ)3 = —ad.J. By making use of the realization
we obtained a necessary and sufficient condition for the intersection
of two real forms is discrete. When the intersection is discrete, it is
an orbit of a certain Weyl group, which will be mentioned in Section
4.



2. Basic notions

Let M be a compact Riemannian symmetric space. A subset SC M
is called an antipodal set if

sz(y) =y for any z,y € S,
where s, denotes the geodesic symmetry at z.

The 2-number #->M of M is defined by

#HoM = max{#S | S C M : antipodal set}.

An antipodal set S is called great if #5 = #-M. These notions
were introduced by Chen-Nagano.

In general, great antipodal sets are not necessarily congruent to
each other but for symmetric R-spaces we have the following.

Theorem 2.1 (T.-Tasaki 2013) Let M be a symmetric R-space.
(1) Any antipodal set is included in a great antipodal set.

(2) Any two great antipodal sets are congruent.



Here a symmetric R-space is a compact Riemannian symmetric
space which can be realized as a linear isotropy orbit of a Rieman-
niam symmetric space of compact type. A Hermitian symmetric
space of compact type is a symmetric R-space.

Example CP"
e1,...,ept1 @ unitary basis of C*T1
o= (e1)c € CP"

so is induced from the reflection p, ; C*T1 — crtl

. Id on <61>(C
po = —Id on <627"'7€n—|—1>C

{{e1)cs-- -, {en+1)c) IS a great antipodal set and #,CP" =n + 1.
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Let M be a Hermitian symmetric space of compact type. Let 7 be
an involutive anti-holomorphic isometry of M. Then the fixed point
set F'(r, M) is called a real form in M. It is known that a real form
IS connected totally geodesic compact Lagrangian submanifold. A
real form in a Hermitian symmetric space of compact type is a
symmetric R-space, and vice versa (Takeuchi).

T he classification of real forms in an irreducible Hermitian symmetric
space of compact type was given by Leung and Takeuchi. As for
the non-irreducible case we have the following.

Theorem 2.2 (T.-Tasaki) A real form in a Hermitian symmetric
space M of compact type is a product of real forms in irreducible
factors of M and diagonal real forms determined from irreducible
factors of M.

Here a diagonal real form is defined as follows.



Let 7 be an anti-holomorphic isometry of M. A map

Mx M> (z,y) = (1), 7(z)) e M x M

IS an involutive anti-holomorphic isometry of M x M. The real form
determined by the map is

D (M) :=A{(z,7(2)) | z € M},

which is called a diagonal real form determined from M.

T he existence of the intersection of two real forms follows the next
proposition.

Proposition (Cheng 2002) Let M be a compact Kahler manifold
with positive holomorphic sectional curvature. If Li and L, are
totally geodesic compact Lagrangian submanifolds in M, then Lq1 N

Lo # 0.
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3. Fixed point sets of isometries of a Hermitian symmetric
space of compact type

It is known that a Hermitian symmetric space M of compact type
IS realized as an adjoint orbit

M = Ad(G)J C g,

where (G is a connected compact semisimple Lie group, g is the Lie
algebra of G and J € g — {0} satisfies (adJ)3 = —adJ. Let K be the
isotropy subgroup at J. Then the Lie algebra ¢ of K is

t={Xeg|[J,X] =0} =Ker adJ.
Let
m={[J,X]| X € g} =Im adJ,
then we have an orthogonal direct sum decomposition

g=tPdPm.

adJ is a complex structure of m which can be identified with the
tangent space of M at J.
11



The action of G on M coincides with the action of Io(M) on M,
where Ig(M) denotes the identity component of the isometry group
I(M) of M.

Let A(M) denote the group of the holomorphic isometries and
Ag(M) denote the identity component of A(M). Then it is known
that Ig(M) = Ag(M). Moreover, if M is irreducible,

I(M)/A(M) = Z
and
A(M) = Ao(M)
except for the cases
M = Q21 (C) (m >2), Gm(C?™) (m >2)
where
A(M)[Ag(M) = Z>

(Murakami, Takeuchi).
12



Theorem 3.1 (Sanchez 1997, T.-Tasaki 2013)
Let M = Ad(G)J be a Hermitian symmetric space of compact type.
Then, a great antipodal set of M is represented as

MNt

for a maximal abelian subalgebra t of g.

If g € G satisfies

dim{X € g | Ad(g)X = X} = rank(G),

g Is called a regular element.

Theorem 3.2 (T.-Tasaki) Let M be a Hermitian symmetric space
of compact type and let g € Ag(M).

(1) The fixed point set F'(g, M) is discrete if and only if g is a regular
element.
13



(2) If F(g, M) is discrete, F (g, M) is a great antipodal set of M.

If we take a maximal abelian subalgebra t of ¢ with J € t, then t is
also a maximal abelian subalgebra of g.

By using root systems we have the following lemma.

Lemma 3.3 g € exptis a regular element if and only if

F(Ad(g),9) =t

Hence if g € expt,
F(g,M) = F(Ad(g),g) "M = tN M,

which is a great antipodal set by Theorem 3.1.
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Next, we consider the case where g €¢ A(M) — Ag(M). The com-
plex hyperquadric M = @Q5,,(C) (m > 2) can be considered as the
oriented Grassmann manifold Go(R2™12). Then

A(M) — Ag(M) = {g € O(2m + 2) | det g = —1}.
If g A(M) — Ao(M),
| R(61)

where R(6;) = €os0; —sino; ] (1 <i<m).

sin@; coso; —
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Theorem 3.4 (T.-Tasaki) Let M = G5(R?"+2) (m > 2) and let
ge A(M) — Ag(M).

(1) F(g,G2(R?™T2)) is discrete if and only if R(6;) #= R(6;) for any
¢ and 5 with 7 # 7.

(2) When F(g,G>(R2™1+2)) is discrete, F(g,G>(R?™t2)) is an an-
tipodal set with

#F(g,G2(R?™T2)) = 2m < 2m + 2 = #,CG2(R?™T2).

Since we do not know A(M) — Ag(M) explicitly when

M = Gm(CQm) (m > 2),

the case of M = G, (C2™) is unsolved.

When M = G, (C"), the complex Grassmann manifold, we obtain a
refinement of Theorem 3.2.
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Theorem 3.5 (T.-Tasaki) Let M = G,(C™) and let g € U(n).

(1) F(g, M) is discrete if and only if the multiplicity of each eigen-
value of g is 1.

(2) F(r,M)N F(grg—1, M) is discrete if and only if F(grg~1+—1, M)
IS discrete.

(3) When F(r, M) N F(grg—1, M) is discrete, we have

F(r,M)NF(grg~ 1, M) = F(grg~ 1+~ 1, M)

and it is a great antipodal set of M.
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4. The intersection of two real forms in a Hermitian symmetric
space of compact type

Let M = Ad(G)J C g be the canonical embedding of a Hermitian
symmetric space M of compact type. Let L = F(r, M) be a real form
in M which contains J, where 7 is an involutive anti-holomorphic
isometry of M.

I-: G — G; gl—>7'g7'_1

is an involutive automorphism of G. Then (G, F(I-,G)) is a compact
symmetric pair.
The differential dI- : g — g is an involutive automorphism of g. Let

g=1&p

be the direct sum decomposiiton where [ is (4+1)-eigenspace of dI-
and p is (—1)-engenspace of dI-.
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Let K be the isotoropy subgroup at J. Then the Lie algebra ¢ of K
IS

t = Ker adJ
and set
m =1Im adJ,
then
g=¢tPm

is the canonical decomposition corresponding to M = G/K. Then
J e tnNnp. We choose a maximal abelian subspace a C p so that
J € a. Let R denote the restricted root system of (G, F(Ir,G)) with
respect to a.

Now we investigate LN gL for g € G.
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Since we have a decomposition

G = F(I.,G)(expa)F(I-,G),

there exit by1,bo € F(I-,G) and a € expa such that g = bjaby. Since
L=F;,Q&)J,

LNgL =LNbjaboL = LNbial =bi(LNal).

Hence, it is enough to consider the case where g = a = exp H for
H € a in order to investigate L NglL.

H € a is called a regular element if exp H is a regular element in G.
Theorem 4.1 (Ikawa-T .-Tasaki)

(1) LNnalL for a = exp H is discrete if and only if H is a regular
element.

(2) If LNnal is discrete,

LNnaL=Mna=W(R)J

and it is a great antipodal set of L. Here W(R) denotes the Weyl
group of R.
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Next, we consider the case where two real forms L1 and Lo are not
congruent. Hereafter we assume that M is irreducible. Let

Li=F(rj,M) (i=1,2).

As mentioned before, each 7; defines an involutive automorphism I,
of G and we obtain a compact symmetric pair (G, F(Ir;,G)) and a
direct sum decomposition

g=Ldp; ¢t =1,2).

By the classification of real forms, it is possible to assume that

T1TD = TOT1.

Then we have a direct sum decomposition

g=(I1N)® M1 Np2) ® (1 Np2) ® (loNp1).
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We take a maximal abelian subspace a in p;Npo. Under this situation
we obtain a “symmetric triad” (X, X,W), which is introduced by
Ikawa. X is the restricted root system of (I Nly) & (p1 Npo) with
respect to a. W is a certain subset in a invariant under —Id. >~ =
> UW which is an irreducible root system of a.

Theorem 4.2 (Ikawa-T .-Tasaki)

(1) L1 NnaLo, for a = exp H is discrete if and only if H is a regular
element.

(2) If L1 NnalLo> is discrete,

LiNalo=Mna=W(E)J =W (Ry)JNa=W(Ry)JNa.

By the result, we obtain Theorem 1.3 again.
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Moreover, by using the classification of irreducible root systems, we
can show that an orbit of the Weyl group through J is two-point
homogeneous. Consequently, a great antipodal set of an irreducible
Hermitian symmetric space of compact type and the intersection
of two real forms in an irreducible Hermitian symmetric space of
compact type are two-point homogeneous.
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Example M =CP! [ =RpP1

. . 1T Y+ iz
g—su(Q)—{[_y_l_iz i ]‘x,y,zER}

2 {(2,y,2) | 2,y,z € R} = R3

J:%[é BZ] (adJ)3 = —adJ

M = Ad(SU(2))J = SU(2)/S(U(1) x U(1)) =CPl =2 52 c R3
7:s5u(2) = su(2); X — —X
(J)=J, {((M)=M

F(r,M) = F(r,5su(2)) "M = {(z,0,2) |z, 2 ER}DSQ C R3
= {(cosh,0,sinf) |§ e R} = St
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I : SU(2) — SU(2); grs1gr =3

F(Ir,SU(2)) = SO(2)

g=1Dp

_ 0 vy _

[_{[—y O]‘yER}—ﬁo(Q)

p =< Zij _fo ‘az,zER}

a=% O |xER}=RJ
\_O —uT |

a=4J, R={t+a}= A1, W(R) = {£1}
For H € a, if (o, H) € 7Z, ST = Ad(exp H)S1

if (a, H) ¢ 7Z, SN Ad(exp H)S! = {+J} = W(R)J
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