Fixed point sets of isometries and the intersection of real forms in a Hermitian symmetric space of compact type

Makiko Sumi Tanaka

The 17th International Workshop on Differential Geometry NIMS September 30 – October 2, 2013

Joint with Hiroyuki Tasaki (University of Tsukuba) and Osamu Ikawa (Kyoto Institute of Technology)

Contents

- 1 Introduction and known results
- 2 Basic notions
- 3 Fixed point sets of isometries of a Hermitian symmetric space of compact type
- 4 The intersection of two real forms in a Hermitian symmetric space of compact type

1. Introduction and known results

In *S* ² any two distinct great circles intersect two antipodal points. If at least one of circles is a small circle, the intersection could be empty. S^2 is considered as $\mathbb{C}P^1$, which is a Hermitian symmetric space of compact type, and canonically embedded $\mathbb{R}P^{1}$ is a great circle, which is a real form in $\mathbb{C}P^{1}$, that is, the fixed point set of an involutive anti-holomorphic isometry. In general, we obtained the following.

Theorem 1.1 (T.-Tasaki 2012) Let *M* be a Hermitian symmetric space of compact type and let L_1 and L_2 be real forms in M. If L_1 ∩ L_2 is discrete, L_1 ∩ L_2 is an antipodal set.

Here an antipodal set is a subset on which the geodesic symmetry at each point acts trivially.

We say L_1 is congruent to L_2 if L_1 is transformed to L_2 by an element in $I_0(M)$, the identity component of the isometry group of *M*. If $M = G_k(\mathbb{C}^n)$, any real form is

$$
G_k(\mathbb{R}^n)
$$
, $G_l(\mathbb{H}^m)$ if $k = 2l, n = 2m$, or $U(k)$ if $n = 2k$.

So in general, L_1 and L_2 are not necessarily congruent. But if they are congruent, we obtained the following.

Theorem 1.2 (T.-Tasaki 2012) If L_1 and L_2 are real forms in M which are congruent and $L_1 \cap L_2$ is discrete, then $L_1 \cap L_2$ is a great antipodal set of L_1 and L_2 .

Here a great antipodal set is an antipodal set with maximal cardinality. The maximal cardinality of the antipodal sets in a compact Riemannian symmetric space *M* is called the 2-number of *M* denoted by $\#_2M$.

For a point *o* in a compact Riemannian symmetric space, each connected component of the fixed point set of the geodesic symmetry *so* at *o* is called a polar. By making use of polars, we obtained the following.

Theorem 1.3 (T.-Tasaki 2012) Let *M* be an irreducible Hermitian symmetric space of compact type and let L_1 and L_2 be real forms in *M*. Assume that $\#_2L_1 \leq \#_2L_2$. If $L_1 \cap L_2$ is discrete, then *L*₁ ∩ *L*₂ is a great antipodal set of *L*₁ except for the case where

$$
M = G_{2m}(\mathbb{C}^{4m}) \ (m \ge 2), \ L_1 \cong G_m(\mathbb{H}^{2m}), \ L_2 \cong U(2m).
$$

In this case we have

$$
#(L_1 \cap L_2) = 2^m < {2m \choose m} = #_2L_1 < 2^{2m} = #_2L_2.
$$

On the other hand, we have another approach to investigate the intersection of real forms. Let $L_1 = F(\tau_1, M)$ and $L_2 = F(\tau_2, M)$ be real forms, then

$$
L_1 \cap L_1 = F(\tau_1, M) \cap F(\tau_2, M) \subset F(\tau_2 \tau_1^{-1}, M),
$$

where $\tau_2\tau_1^{-1}$ $\frac{1}{1}^{-1}$ is a holomorphic isometry of M . If $F(\tau_2\tau_1^{-1})$ $\overline{\mathbf{1}}^{\mathbf{-1}},M)$ is discrete, $L_1 \cap L_2$ is discrete. Moreover, if $F(\tau_2 \tau_1^{-1})$ \mathcal{I}_1^{-1}, M) is antipodal, $L_1 \cap L_2$ is antipodal. Conversely, if $L_1 \cap L_2$ is discrete, is $F(\tau_2 \tau_1^{-1})$ $\frac{1}{1}$, *M*) discrete? If $L_1 \cap L_2$ is antipodal, is $F(\tau_2 \tau_1^{-1})$ \mathfrak{m}_1^{-1}, M) antipodal? We will refer to these problems in Section 3.

It is known that a Hermitian symmetric space *M* of compact type is realized as an adjoint orbit of a compact semisimple Lie group *G*:

$$
M=\operatorname{Ad}(G)J\subset\mathfrak{g},
$$

where *J* satisfies $(adJ)^3 = -adJ$. By making use of the realization we obtained a necessary and sufficient condition for the intersection of two real forms is discrete. When the intersection is discrete, it is an orbit of a certain Weyl group, which will be mentioned in Section 4.

2. Basic notions

Let *M* be a compact Riemannian symmetric space. A subset *S ⊂ M* is called an **antipodal** set if

 $s_x(y) = y$ for any $x, y \in S$,

where *sx* denotes the geodesic symmetry at *x*.

The 2-number $\#_2M$ of M is defined by

 $#_2M$ = max $\{\#S \mid S \subset M$: antipodal set $\}.$

An antipodal set *S* is called **great** if $\#S = \#_2M$. These notions were introduced by Chen-Nagano.

In general, great antipodal sets are not necessarily congruent to each other but for symmetric *R*-spaces we have the following.

Theorem 2.1 (T.-Tasaki 2013) Let *M* be a symmetric *R*-space.

(1) Any antipodal set is included in a great antipodal set.

(2) Any two great antipodal sets are congruent.

Here a symmetric *R*-space is a compact Riemannian symmetric space which can be realized as a linear isotropy orbit of a Riemanniam symmetric space of compact type. A Hermitian symmetric space of compact type is a symmetric *R*-space.

Example $\mathbb{C}P^n$

 e_1, \ldots, e_{n+1} : a unitary basis of \mathbb{C}^{n+1}

 $o = \langle e_1 \rangle_{\mathbb{C}} \in \mathbb{C}P^n$

s^{*o*} is induced from the reflection ρ ^{*o*} : $\mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$

$$
\rho_o = \left\{ \begin{array}{ll} \mathrm{Id} & \mathrm{on} \ \langle e_1 \rangle_{\mathbb{C}} \\ -\mathrm{Id} & \mathrm{on} \ \langle e_2, \dots, e_{n+1} \rangle_{\mathbb{C}} \end{array} \right.
$$

 $\{\langle e_1 \rangle_{\mathbb{C}}, \ldots, \langle e_{n+1} \rangle_{\mathbb{C}}\}$ is a great antipodal set and $\#_2 \mathbb{C}P^n = n + 1$.

Let *M* be a Hermitian symmetric space of compact type. Let *τ* be an involutive anti-holomorphic isometry of *M*. Then the fixed point set $F(\tau, M)$ is called a **real form** in M. It is known that a real form is connected totally geodesic compact Lagrangian submanifold. A real form in a Hermitian symmetric space of compact type is a symmetric *R*-space, and vice versa (Takeuchi).

The classification of real forms in an irreducible Hermitian symmetric space of compact type was given by Leung and Takeuchi. As for the non-irreducible case we have the following.

Theorem 2.2 (T.-Tasaki) A real form in a Hermitian symmetric space *M* of compact type is a product of real forms in irreducible factors of *M* and diagonal real forms determined from irreducible factors of *M*.

Here a diagonal real form is defined as follows.

Let *τ* be an anti-holomorphic isometry of *M*. A map

$$
M \times M \ni (x, y) \mapsto (\tau^{-1}(y), \tau(x)) \in M \times M
$$

is an involutive anti-holomorphic isometry of *M ×M*. The real form determined by the map is

$$
D_{\tau}(M) := \{(x, \tau(x)) \mid x \in M\},\
$$

which is called a **diagonal real form** determined from *M*.

The existence of the intersection of two real forms follows the next proposition.

Proposition (Cheng 2002) Let *M* be a compact Kähler manifold with positive holomorphic sectional curvature. If L_1 and L_2 are totally geodesic compact Lagrangian submanifolds in *M*, then *L*1 *∩* $L_2 \neq \emptyset$.

3. Fixed point sets of isometries of a Hermitian symmetric space of compact type

It is known that a Hermitian symmetric space *M* of compact type is realized as an adjoint orbit

$$
M=\operatorname{Ad}(G)J\subset\mathfrak{g},
$$

where *G* is a connected compact semisimple Lie group, g is the Lie algebra of G and $J \in \mathfrak{g} - \{0\}$ satisfies $(\text{ad }J)^3 = - \text{ad }J$. Let K be the isotropy subgroup at J . Then the Lie algebra $\mathfrak k$ of K is

$$
\mathfrak{k} = \{ X \in \mathfrak{g} \mid [J, X] = 0 \} = \text{Ker } \text{ad } J.
$$

Let

$$
\mathfrak{m} = \{ [J, X] \mid X \in \mathfrak{g} \} = \text{Im } \text{ad } J,
$$

then we have an orthogonal direct sum decomposition

$$
\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}.
$$

ad*J* is a complex structure of m which can be identified with the tangent space of *M* at *J*.

The action of *G* on *M* coincides with the action of $I_0(M)$ on M, where $I_0(M)$ denotes the identity component of the isometry group *I*(*M*) of *M*.

Let *A*(*M*) denote the group of the holomorphic isometries and $A_0(M)$ denote the identity component of $A(M)$. Then it is known that $I_0(M) = A_0(M)$. Moreover, if M is irreducible,

 $I(M)/A(M) \cong \mathbb{Z}_2$

and

$$
A(M) = A_0(M)
$$

except for the cases

$$
M = Q_{2m}(\mathbb{C}) \ (m \ge 2), \quad G_m(\mathbb{C}^{2m}) \ (m \ge 2)
$$

where

$$
A(M)/A_0(M) \cong \mathbb{Z}_2
$$

(Murakami, Takeuchi).

Theorem 3.1 (S´anchez 1997, T.-Tasaki 2013)

Let $M = \text{Ad}(G)J$ be a Hermitian symmetric space of compact type. Then, a great antipodal set of *M* is represented as

M ∩ t

for a maximal abelian subalgebra t of g.

If $g \in G$ satisfies

$$
\dim\{X \in \mathfrak{g} \mid \mathrm{Ad}(g)X = X\} = \mathrm{rank}(G),
$$

g is called a **regular** element.

Theorem 3.2 (T.-Tasaki) Let *M* be a Hermitian symmetric space of compact type and let $g \in A_0(M)$.

(1) The fixed point set *F*(*g, M*) is discrete if and only if *g* is a regular element.

(2) If *F*(*g, M*) is discrete, *F*(*g, M*) is a great antipodal set of *M*.

If we take a maximal abelian subalgebra t of ℓ with $J \in \mathfrak{t}$, then t is also a maximal abelian subalgebra of g.

By using root systems we have the following lemma.

Lemma 3.3 $g \in exp t$ is a regular element if and only if $F(\text{Ad}(q), \mathfrak{g}) = \mathfrak{t}.$

Hence if $g \in \exp t$,

 $F(g, M) = F(\text{Ad}(g), \mathfrak{g}) \cap M = \mathfrak{t} \cap M$,

which is a great antipodal set by Theorem 3.1.

Next, we consider the case where $g \in A(M) - A_0(M)$. The complex hyperquadric $M = Q_{2m}(\mathbb{C})$ ($m \geq 2$) can be considered as the oriented Grassmann manifold $\tilde{G}_2(\mathbb{R}^{2m+2})$. Then

$$
A(M) - A_0(M) = \{ g \in O(2m + 2) \mid \det g = -1 \}.
$$

If $g \in A(M) - A_0(M)$,

$$
g \sim \left[\begin{array}{cccc} R(\theta_1) & & & \\ & \ddots & & \\ & & R(\theta_m) & \\ & & & 1 \\ & & & & -1\end{array}\right],
$$

where
$$
R(\theta_i) = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{bmatrix}
$$
 $(1 \le i \le m)$.

Theorem 3.4 (T.-Tasaki) Let $M = \tilde{G}_2(\mathbb{R}^{2m+2})$ ($m > 2$) and let *g* ∈ *A*(*M*) − *A*₀(*M*).

(1) $F(g, \tilde{G}_2(\mathbb{R}^{2m+2}))$ is discrete if and only if $R(\theta_i) \neq R(\theta_j)$ for any *i* and *j* with $i \neq j$.

(2) When $F(g, \tilde{G}_2(\mathbb{R}^{2m+2}))$ is discrete, $F(g, \tilde{G}_2(\mathbb{R}^{2m+2}))$ is an antipodal set with

$$
#F(g,\tilde{G}_2(\mathbb{R}^{2m+2}))=2m<2m+2=\#_2\tilde{G}_2(\mathbb{R}^{2m+2}).
$$

Since we do not know $A(M) - A_0(M)$ explicitly when

$$
M=G_m(\mathbb{C}^{2m}) \ (m\geq 2),
$$

the case of $M = G_m(\mathbb{C}^{2m})$ is unsolved.

When $M = G_k(\mathbb{C}^n)$, the complex Grassmann manifold, we obtain a refinement of Theorem 3.2.

Theorem 3.5 (T.-Tasaki) Let $M = G_k(\mathbb{C}^n)$ and let $g \in U(n)$.

(1) $F(g, M)$ is discrete if and only if the multiplicity of each eigenvalue of *g* is 1.

(2) $F(\tau, M) \cap F(g\tau g^{-1}, M)$ is discrete if and only if $F(g\tau g^{-1}\tau^{-1}, M)$ is discrete.

(3) When $F(\tau, M) \cap F(q \tau q^{-1}, M)$ is discrete, we have

$$
F(\tau, M) \cap F(g\tau g^{-1}, M) = F(g\tau g^{-1}\tau^{-1}, M)
$$

and it is a great antipodal set of *M*.

4. The intersection of two real forms in a Hermitian symmetric space of compact type

Let $M = \text{Ad}(G)J \subset \mathfrak{g}$ be the canonical embedding of a Hermitian symmetric space M of compact type. Let $L = F(\tau, M)$ be a real form in *M* which contains *J*, where τ is an involutive anti-holomorphic isometry of *M*.

$$
I_{\tau}: G \to G; g \mapsto \tau g \tau^{-1}
$$

is an involutive automorphism of *G*. Then $(G, F(I_{\tau}, G))$ is a compact symmetric pair.

The differential dI_{τ} : $\mathfrak{g} \to \mathfrak{g}$ is an involutive automorphism of \mathfrak{g} . Let

$$
\mathfrak{g}=\mathfrak{l}\oplus\mathfrak{p}
$$

be the direct sum decomposiiton where l is $(+1)$ -eigenspace of dI_{τ} and p is (-1) -engenspace of dI_{τ} .

Let *K* be the isotoropy subgroup at *J*. Then the Lie algebra ℓ of *K* is

$$
\mathfrak{k}=\mathsf{Ker}\,\,\mathrm{ad}J
$$

and set

$$
\mathfrak{m}=\text{Im}\,\,\text{ad}\,J,
$$

then

$$
\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}
$$

is the canonical decomposition corresponding to $M = G/K$. Then *J ∈* k *∩* p. We choose a maximal abelian subspace a *⊂* p so that $J \in \mathfrak{a}$. Let *R* denote the restricted root system of $(G, F(I_{\tau}, G))$ with respect to a.

Now we investigate $L \cap gL$ for $g \in G$.

Since we have a decomposition

 $G = F(I_\tau, G)(\exp \mathfrak{a})F(I_\tau, G)$

there exit $b_1, b_2 \in F(I_\tau, G)$ and $a \in \exp \mathfrak{a}$ such that $g = b_1 a b_2$. Since $L = F(I_\tau, G)J$,

$$
L \cap gL = L \cap b_1ab_2L = L \cap b_1aL = b_1(L \cap aL).
$$

Hence, it is enough to consider the case where $g = a = \exp H$ for *H ∈* a in order to investigate *L ∩ gL*.

 $H \in \mathfrak{a}$ is called a **regular** element if exp *H* is a regular element in *G*.

Theorem 4.1 (Ikawa-T.-Tasaki)

(1) $L \cap aL$ for $a = \exp H$ is discrete if and only if H is a regular element.

(2) If $L \cap aL$ is discrete,

$$
L \cap aL = M \cap \mathfrak{a} = W(R)J
$$

and it is a great antipodal set of *L*. Here *W*(*R*) denotes the Weyl group of *R*.

Next, we consider the case where two real forms L_1 and L_2 are not congruent. Hereafter we assume that *M* is irreducible. Let

$$
L_i = F(\tau_i, M) \quad (i = 1, 2).
$$

As mentioned before, each τ_i defines an involutive automorphism I_{τ_i} of G and we obtain a compact symmetric pair $(G, F(I_{\tau_i}, G))$ and a direct sum decomposition

$$
\mathfrak{g}=\mathfrak{l}_i\oplus\mathfrak{p}_i\ (i=1,2).
$$

By the classification of real forms, it is possible to assume that

$$
\tau_1\tau_2=\tau_2\tau_1.
$$

Then we have a direct sum decomposition

$$
\mathfrak{g}=(\mathfrak{l}_1\cap\mathfrak{l}_2)\oplus(\mathfrak{p}_1\cap\mathfrak{p}_2)\oplus(\mathfrak{l}_1\cap\mathfrak{p}_2)\oplus(\mathfrak{l}_2\cap\mathfrak{p}_1).
$$

We take a maximal abelian subspace a in p₁∩p₂. Under this situation we obtain a "symmetric triad" $(\tilde{\Sigma}, \Sigma, W)$, which is introduced by Ikawa. Σ is the restricted root system of $(I_1 \cap I_2) \oplus (p_1 \cap p_2)$ with respect to a. W is a certain subset in a invariant under -Id. $\tilde{\Sigma}$ = Σ *∪ W* which is an irreducible root system of a.

Theorem 4.2 (Ikawa-T.-Tasaki)

(1) $L_1 \cap aL_2$ for $a = \exp H$ is discrete if and only if H is a regular element.

(2) If $L_1 \cap aL_2$ is discrete,

 $L_1 \cap aL_2 = M \cap \mathfrak{a} = W(\tilde{\Sigma})J = W(R_1)J \cap \mathfrak{a} = W(R_2)J \cap \mathfrak{a}.$

By the result, we obtain Theorem 1.3 again.

Moreover, by using the classification of irreducible root systems, we can show that an orbit of the Weyl group through *J* is two-point homogeneous. Consequently, a great antipodal set of an irreducible Hermitian symmetric space of compact type and the intersection of two real forms in an irreducible Hermitian symmetric space of compact type are two-point homogeneous.

Example $M = \mathbb{C}P^1$, $L = \mathbb{R}P^1$

$$
\mathfrak{g} = \mathfrak{su}(2) = \left\{ \begin{bmatrix} ix & y+iz \\ -y+iz & -ix \end{bmatrix} \middle| x, y, z \in \mathbb{R} \right\}
$$

\n
$$
\cong \left\{ (x, y, z) \middle| x, y, z \in \mathbb{R} \right\} = \mathbb{R}^3
$$

\n
$$
J = \frac{1}{2} \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \text{ (ad } J)^3 = -ad J
$$

\n
$$
M = \text{Ad}(SU(2))J = SU(2)/S(U(1) \times U(1)) = \mathbb{C}P^1 \cong S^2 \subset \mathbb{R}^3
$$

\n
$$
\tau : \mathfrak{su}(2) \to \mathfrak{su}(2); X \mapsto -\bar{X}
$$

\n
$$
\tau(J) = J, \ \tau(M) = M
$$

\n
$$
F(\tau, M) = F(\tau, \mathfrak{su}(2)) \cap M \cong \{(x, 0, z) \mid x, z \in \mathbb{R}\} \cap S^2 \subset \mathbb{R}^3
$$

\n
$$
= \{(\cos \theta, 0, \sin \theta) \mid \theta \in \mathbb{R}\} = S^1
$$

24

$$
I_{\tau}: SU(2) \to SU(2); g \mapsto \tau g \tau^{-1} = \bar{g}
$$

\n
$$
F(I_{\tau}, SU(2)) = SO(2)
$$

\n
$$
\mathfrak{g} = \mathfrak{l} \oplus \mathfrak{p}
$$

\n
$$
\mathfrak{l} = \left\{ \begin{bmatrix} 0 & y \\ -y & 0 \end{bmatrix} \middle| y \in \mathbb{R} \right\} = \mathfrak{so}(2)
$$

\n
$$
\mathfrak{p} = \left\{ \begin{bmatrix} ix & iz \\ iz & -ix \end{bmatrix} \middle| x, z \in \mathbb{R} \right\}
$$

\n
$$
\mathfrak{a} = \left\{ \begin{bmatrix} ix & 0 \\ 0 & -ix \end{bmatrix} \middle| x \in \mathbb{R} \right\} = \mathbb{R}J
$$

\n
$$
\alpha = 4J, R = \{\pm \alpha\} = A_1, W(R) = \{\pm 1\}
$$

\nFor $H \in \mathfrak{a}$, if $\langle \alpha, H \rangle \in \pi \mathbb{Z}$, $S^1 = \text{Ad}(\exp H)S^1$
\nif $\langle \alpha, H \rangle \notin \pi \mathbb{Z}$, $S^1 \cap \text{Ad}(\exp H)S^1 = \{\pm J\} = W(R)J$