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1. Introduction

S2 : 2-dim sphere

L1, L2
∼= S1 : great circles

L1 ̸= L2 ⇒ L1 ∩ L2 = {two antipodal points}

S2 = CP1 : Hermitian symmetric space of compact type

(HSSCT)

S1 = RP1 : real form of CP1

Generally, we have the following.

[T.-Tasaki 2012] Let M be a Hermitian symmetric space

of compact type. Let L1 and L2 be real forms of M . If

L1 ∩ L2 is discrete, it is an antipodal set.
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A real form is the fixed point set of an involutive anti-

holomorphic isometry of HSSCT M . It is known that

a real form is a connected totally geodesic Lagrangian

submanifold of M .

e.g. RPn ⊂ CPn

An antipodal set of compact Riemannian symmetric space

M is a subset A ⊂ M which satisfies sx(y) = y for any

x, y ∈ A. Here sx is the geodesic symmetry at x.

e.g. v1, . . . , vn+1 : o.n.b. of Rn+1

 {⟨v1⟩R, . . . , ⟨vn+1⟩R} : antipodal set of RPn

An antipodal set A is great if

#A = max{#B | B ⊂ M : antipodal set}.
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L1, L2 : real forms  L1 ∩ L2 ̸= ∅

L1, L2 are congruent if ∃g ∈ A0(M) s.t. gL1 = L2.

A0(M) : the identity component of A(M), the group of

holomorphic isometries of M

[T.-Tasaki 2012] Let M be a Hermitian symmetric space

of compact type. Let L1 and L2 be real forms of M

which are congruent. If L1 ∩ L2 is discrete, it is a great

antipodal set of L1 and L2.

Problem When L1 ∩ L2 is discrete ?

M : HSSCT

σ1, σ2 : involutive anti-holommorphic isometries
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F (σi,M) := {x ∈ M | σi(x) = x} : real form (i = 1,2)

(∗) F (σ1,M) ∩ F (σ2,M) ⊂ F (σ2σ
−1
1 ,M)

Note that σ2σ
−1
1 = σ2σ1 is holomorphic.

Problem When F (σ2σ
−1
1 ,M) is discrete ? Does the

equality hold in (∗) when F (σ2σ
−1
1 ,M) is discrete ?

In this talk, we will show answers to these questions in

the case where M = Gk(Cn) and L1, L2 are congruent to

Gk(Rn).
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2. The fixed point set of a holomorphic isometry

of the complex Grassmann manifold

K = R,C
Gk(Kn) : the set of the k-dim K-subspaces in Kn

Gk(Rn) ⊂ Gk(Cn) by ⟨v1, . . . , vk⟩R 7→ ⟨v1, . . . , vk⟩C

Gk(Cn) : HSSCT

U(n) y Cn  U(n) y Gk(Cn), coincides with A0(Gk(Cn))

We give a necessary and sufficient condition that F (g,Gk(Cn))

is discrete for g ∈ U(n) in two ways.

(1) By linear algebra

K = R,C
W1, . . . ,Ws : K-subspaces of Kn
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Kn = W1 ⊕ · · · ⊕Ws

k1, . . . , ks : positive integers, k1 + · · ·+ ks = k

Gk1(W1)× · · · ×Gks(Ws)

= {U1⊕ · · · ⊕Us ∈ Gk(Cn) | Ua ∈ Gka(Wa) (1 ≤ a ≤ s)}

Lemma 2.1

g ∈ U(n)

α1, . . . , αs : distinct eigenvalues of g

Va : the eigenspace of g with eigenvalue αa (1 ≤ a ≤ s)

F (g,Gk(Cn)) =
∪

k1 + · · ·+ ks = k
0 ≤ ka ≤ dimVa (1 ≤ a ≤ s)

Gk1(V1)×· · ·×Gks(Vs)
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Theorem 2.2

g ∈ U(n)

F (g,Gk(Cn)) is discrete

⇐⇒

(the multiplicity of αa) = 1 (1 ≤ ∀a ≤ s)

In this case

F (g,Gk(Cn)) = {⟨vi1, . . . , vik⟩C | 1 ≤ i1 ≤ · · · ≤ ik ≤ n}

is a great antipodal set, where vi (1 ≤ i ≤ n) is a unit

vector of each eigenspace of g.

(2) By the use of realization as adjoint orbit

G = SU(n) = {X ∈ M(n,C) | XtX̄ = I, detX = 1}
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g = su(n) = {X ∈ M(n,C) | X = −tX̄, tr(X) = 0}

⟨X,Y ⟩ = −tr(XY ) : Ad(G)-inv inner product on su(n)

J :=
√
−1

 (1− k
n)1k 0

0 −k
n1n−k

 ∈ su(n)

⇒ (adJ)3 = −adJ

M := Ad(SU(n))J ⊂ su(n)

⇒ M = SU(n)/S(U(k)× U(n− k)) = Gk(Cn)

k := Ker(adJ)

=


 X 0
0 Y

 ∣∣∣∣ X = −tX̄, Y = −tȲ , tr(X) + tr(Y ) = 0
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m := Im(adJ)

=


 0 Z
−tZ̄ 0

 ∣∣∣∣ Z ∈ M(k, n− k,C)


g = k⊕ m : canonical decomposition w.r.t. eπadJ

t :=

√−1diag(t1, . . . , tn)
∣∣∣∣ ti ∈ R,

n∑
i=1

ti = 0

 ⊂ k

: maximal abelian

T := exp t =

diag(e
√
−1t1, . . . , e

√
−1tn)

∣∣∣∣ ti ∈ R,
n∑

i=1
ti = 0


⊂ SU(n) : maximal torus
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Theorem 2.3

Gk(Cn) = Ad(SU(n))J ⊂ su(n)

g ∈ SU(n)

F (g,Gk(Cn)) is discrete

⇐⇒
∃g1 ∈ SU(n), ∃a ∈ T s.t. g = g1ag

−1
1 and

a = exp
√
−1diag(t1, . . . , tn), ti − tj /∈ 2πZ (1 ≤ i < j ≤ n)

In this case F (g,Gk(Cn)) = t∩Gk(Cn) is a great antipodal

set.

Remark A(M) = A0(M) when M ̸= Gm(C2m) and

A(M)/A0(M) ∼= Z2 when M = Gm(C2m) (m ≥ 2).
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3. The intersection of two real Grassmann mani-

folds in the complex Grassmann manifold

τ : Cn → Cn, τ(z) = z̄

 τ : Gk(Cn) → Gk(Cn) : involutive anti-holomorphic

isometry

F (τ) := F (τ,Gk(Cn)) = Gk(Rn)

u ∈ U(n)

uF (τ) = uGk(Rn) = Gk(uRn) = F (uτu−1)

Lemma 3.1

(1) ∀u ∈ U(n), ∃zi ∈ U(1) (1 ≤ i ≤ n),
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∃ positively oriented o.n.b. v1, . . . , vn and w1, . . . , wn of

Rn s.t. uwi = zivi (1 ≤ i ≤ n), detu = z1 · · · zn

(2) Under (1),

i, j ∈ {1, . . . , n}, i ∼ j
def⇐⇒ zi = ±zj

{1, . . . , n} = N1 ∪ · · · ∪Ns

: decomposition to the equivalent classes

v, w ∈ Rn, ∥v∥ = ∥w∥ = 1, z ∈ C, uw = zv

=⇒

1 ≤ ∃a ≤ s s.t.

v ∈
⊕

i∈Na

⟨vi⟩R, w ∈
⊕

i∈Na

⟨wi⟩R, z = ±zi (i ∈ Na)
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Theorem 3.2 [Iriyeh-Sakai-Tasaki]

In Gk(Cn) (0 ≤ k ≤ n), for u ∈ U(n)

Gk(Rn) ∩Gk(uRn)

=
∪

k1 + · · ·+ ks = k
0 ≤ ka ≤ #Na (1 ≤ a ≤ s)

Gk1

 ⊕
i1∈N1

⟨vi1⟩R

×· · ·×Gks

 ⊕
is∈Ns

⟨vis⟩R



Gk(Rn) ∩Gk(uRn) is discrete

⇐⇒
#Na = 1 for 1 ≤ ∀a ≤ s

In this case

Gk(Rn)∩Gk(uRn) = {⟨vi1, . . . , vik⟩C | 1 ≤ i1 < · · · < ik ≤ n}
is a great antipodal set of Gk(Cn).
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4. The intersection and the fixed point set

F (τ) ∩ uF (τ) = F (τ) ∩ F (uτu−1) ⊂ F (uτu−1τ−1)

Theorem 4.1

u ∈ U(n)

F (τ) ∩ uF (τ) is discrete

⇐⇒

F (uτu−1τ−1) is discrete.

In this case F (τ) ∩ uF (τ) = F (uτu−1τ−1) and they are

great antipodal sets of Gk(Cn).
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