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1. Introduction

{Riemannian manifolds}∪
{Riemannian homogeneous spaces}∪

M = G/K, G = I(M)

{(connected) Riemannian symmetric spaces}
∀x ∈ M, ∃sx : geodesic symmetry

⟨sx | x ∈ M⟩ y M transitively (if M connected)

e.g. En, Sn, Hn, KPn, Gk(Kn) (K = R,C,H),

U(n), etc.
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γ(t) : geodesic, γ(0) = x

sx(γ(t)) = γ(−t)

Antipodal sets in Sn
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M : Riem. sym. sp., A ⊂ M

A : antipodal set def⇐⇒ ∀x, y ∈ A, sx(y) = y

e.g. M = RPn

u1, . . . , un+1 : o.n.b. in Rn+1, ⟨ui⟩ := Rui
s⟨ui⟩(v) = v ⇔ v = ⟨ui⟩ or v ⊂ ⟨ui⟩⊥ (v ∈ RPn)

{⟨u1⟩, . . . , ⟨un+1⟩} antipodal set

A : antipodal set ⇒ |A| < ∞
M : noncompact irr. Riem. sym. sp.

⇒ ∀A : antipodal set, |A| = 1
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A : great antipodal set def⇐⇒

|A| = max{|B| | B ⊂ M antipodal}

=: #2M 2-number (Chen-Nagano)

• M : compact Lie gp. ⇒ #2M = 2r2(M)

r2(M) 2-rank (Borel-Serre)

Z2 × · · · × Z2 ⊂ M (r2(M)-times Z2)

• M : symmetric R-space

⇒ #2M = SB(M,Z2) (Takeuchi)
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• M : Hermitian sym. sp. of compact type

L1, L2 : real form, L1 ∩ L2 discrete

⇒ L1 ∩ L2 (great) antipodal set (if L1
∼= L2)

(T. -Tasaki)

• Relations to designs (Okuda-Kurihara)

An antipodal set seems to give a “nice” place-

ment of finite points in a symmetric space.
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2. Preliminaries

M : connected Riem. mfd

M : Riem. sym. sp. def⇐⇒
∀x ∈ M , ∃sx : isometry s.t. (i) sx ◦ sx = id,

(ii) x isolated fixed point of sx

sx geodesic symmetry

A : antipodal set def⇐⇒ ∀x, y ∈ A, sx(y) = y

A : great antipodal set def⇐⇒ |A| = #2M
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P = G/K : Riem. sym. sp. of compact type

G = I(P )0, K = {g ∈ G | g(o) = o}, o := eK

σ : G ∋ g 7→ sogs−1
o ∈ G involutive autom.

dσ involutive autom. of Lie algebra g

g = k⊕ p, dσ = id on k, dσ = −id on p
id
= ToP

K y p linear isotropy action

ξ( ̸= 0) ∈ p, (adξ)3 = −adξ

⇒ Kξ ⊂ p symmetric R-space
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M : Hermitian sym. sp. of compact type

τ : involutive anti-holo. isometry

Fix(τ) real form

 conn. totally geodesic Lagrangian submfd

real form ⇔ sym. R-space (Takeuchi)

• RPn real form of CPn

• Real forms of G2n(C4n) :

G2n(R4n), Gn(H2n), U(2n)

• U(n) sym. R-sp. but not SU(n) if n ≥ 3
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3. Antipodal sets of symmetric R-spaces

Consider the following fundamental properties

of antipodal sets:

(A) Any antipodal set is included in some great

antipodal set.

(B) Any two great antipodal sets are congru-

ent.

Theorem 1 (T.-Tasaki 2013) For a symmet-

ric R-space (A) and (B) hold.
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• A maximal antipodal set is not necessarily a

great antipodal set.

e.g. ∃A ⊂ Ad(SU(4)) ∼= SU(4)/Z4 maximal but

not great.

• ∃ great antipodal sets which are not congru-

ent in the oriented Grassmann manifold (Tasaki).
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g : compact semisimple Lie algebra

G = Int(g) cpt semisimple Lie gp. w/o center

G y g adjoint action

J ( ̸= 0) ∈ g, (adJ)3 = −adJ

M = GJ Herm. sym. sp. of cpt type

adJ  complex structure

−B (B : Killing form)  Hermitian metric

Conversely, every Herm. sym. sp. of cpt type

is obtained in this way.
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Lemma 2 X,Y ∈ M ,

sX(Y ) = Y ⇔ [X,Y ] = 0

Proposition 3 Let A ⊂ M be a great antipo-

dal set. Then there exists a maximal abelian

subalgebra t ⊂ g such that A = M ∩ t. In par-

ticular, A is an orbit of the Weyl group of G.

The conditions (A) and (B) hold.
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τ : involutive anti-holo. isometry of M

L = Fix(τ) real form

Iτ : G ∋ g 7→ τgτ−1 ∈ G inv. autom. of G

dIτ inv. autom. of g

g = k⊕ p, dIτ = id on k, dIτ = −id on p

K : conn. Lie subgroup of G with Lie(K) = k

(G,K) symmetric pair restricted root system

R  Weyl group W (R)

Lemma 4 L = p ∩M
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Theorem 5 (T.-Tasaki 2013) Let A ⊂ L be

a great antipodal set. Then there exists a max-

imal abelian subspace a ⊂ p such that A = M∩a.
In particular, A is an orbit of W (R). The con-

ditions (A) and (B) hold.

Since every symmetic R-sp. is a real form of

some Herm. sym. sp. of cpt type, we obtain

Theorem 1.
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4. Intersection of two real forms

M : H.s.s. of cpt type

Fact L1, L2 : real form ⇒ L1 ∩ L2 ̸= ∅

Theorem 6 (T.-Tasaki 2012)

Let M be a H.s.s. of cpt type and L1, L2 be

real forms of M . If L1 ∩ L2 is discrete, L1 ∩ L2

is an antipodal set of L1 and L2. Moreover,

if L1 and L2 are congruent, L1 ∩ L2 is a great

antipodal set of L1 and L2.
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M = GJ ⊂ g : H.s.s. of cpt type

L : real form of M , J ∈ L

τ : inv. anti-holo. isom. with L = Fix(τ)

Iτ  g = k⊕ p, Lie(K) = k

a ⊂ p : maximal abelian subspace

A = expa ⊂ G torus

Ao ⊂ G/K, o = eK maximal torus

Lemma 7 G = KAK
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g ∈ G, g = k1ak2 (k1, k2 ∈ K, a ∈ A)

L ∩ gL = L ∩ k1ak2L = k1(k
−1
1 L ∩ ak2L)

= k1(L ∩ aL)

Theorem 8 (Ikawa-T.-Tasaki to appear)

Let L be a real form of M and a = expH (H ∈
a). Then L ∩ aL is discrete iff H is a regular

element. In this case L∩ aL = M ∩ a = W (R)J.

H ∈ a regular ⇔ p ∩ ap = a
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L1, L2 : real form of irr. M , not congruent

J ∈ L1 ∩ L2

τ1, τ2 : inv. anti-holo. isom.

Li = Fix(τi) (i = 1,2)

Fact τ1τ2 = τ2τ1

Iτi  g = ki ⊕ pi, Lie(Ki) = ki (i = 1,2)

g = k1 ∩ k2 ⊕ k1 ∩ p2 ⊕ p1 ∩ k2 ⊕ p1 ∩ p2

a ⊂ p1 ∩ p2 : maximal abelian subspace

A = expa ⊂ G torus
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Lemma 9 (Heintze-Palais-Terng

-Thorbergsson)

G = K1AK2

g ∈ G, g = k1ak2 (k1 ∈ K1, a ∈ A, k2 ∈ K2)

L1 ∩ gL2 = L1 ∩ k1ak2L2 = k1(k
−1
1 L1 ∩ ak2L2)

= k1(L1 ∩ aL2)

Theorem 10 (Ikawa-T.-Tasaki to appear)

Let L1, L2 be real forms of an irreducible H.s.s.

M of cpt type and a = expH (H ∈ a). Then
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L1 ∩ aL2 is discrete iff H is a regular element.

In this case L1 ∩ aL2 = W (R1)J = W (R2)J.

H ∈ a regular ⇔ p1 ∩ ap2 = a

To prove Thm 10 we use “symmetric triads” in-

troduced by Ikawa in 2011. Since a symmetric

triad is a notion which generalizes an irreducible

restricted root system, we need the assumption

that M is irreducible in Thm 10.
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Theorem 11 (Iriyeh-Sakai-Tasaki 2013)

Let L1, L2 be real forms of a H.s.s. M of

cpt type which intersect discretely. Assume

that M is monotone as a symplectic manifold

and the minimal Maslov numbers of L1 and L2

are greater than or equal to 3. Then the La-

grangian Floer homology HF (L1, L2 : Z2) is:

HF (L1, L2 : Z2)
∼=

⊕
p∈L1∩L2

Z2[p].

M irreducible ⇒ the assumptions for M,L1, L2

are satisfied
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p ∈ L1 ∩ L2 ⇒
・sp holo. isom.

・sp(Li) = Li (i = 1,2)　

・sp(q) = q (∀q ∈ L1 ∩ L2)

u : J-holo. strip connecting p to q

⇒ sp ◦ u J-holo. strip connecting p to q

 ∂ = 0
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