Antipodal sets of compact Riemannian symmetric spaces

Makiko Sumi Tanaka Tokyo Univ. of Science

The 11th OCAMI-RIRCM Joint Differential Geometry Workshop on Submanifolds and Lie Theory March 20-23, 2016

1. Introduction

2. Antipodal sets of symmetric *R***-spaces**

3. Antipodal sets of compact Lie groups

4. Classification of maximal antipodal subgroups of quotient groups of $U(n)$, $SU(n)$, $O(n)$ *, SO* (n) *, Sp* (n)

5. Classification of maximal antipodal subgroups of the automorphism groups of Lie algebras

6. Classification of maximal antipodal subsets of G_2 **and** $G_2/SO(4)$

1. Introduction

- *M* **: a Riemannian symmetric space**
- *sx* **: the geodesic symmetry at** *x*

i.e. s_x is an isometry of M , $s_x^2 =$ id and x is **an isolated fixed point of** *sx*

S ⊂ M **: a subset**

S : an antipodal set \Leftrightarrow $\forall x, y \in S$, $s_x(y) = y$ **the 2-number of** *M*

 $\#_2M := \max\{|S| \mid S \subset M \text{ antipodal set}\}$

 S : a great antipodal set \Leftrightarrow $|S| = \#_2 M$

- *G* **: a compact Lie group**
- *p* **: a prime number**
- the *p*-rank of $G =$ the maximal possible rank of the subgroup $\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ of G (Borel-**Serre)**
- $r_2(G) :=$ the 2-rank of *G*, $\#_2 G = 2^{r_2(G)}$
- $M \subset N$: totally geodesic $\Rightarrow \#_2 M \leq \#_2 N$ **(Chen-Nagano)** *M* **: cpt. conn.** $\#_2 M > \chi(M)$, $\chi(M)$: the Euler number **"**=**" if** *M* **: Herm. sym. sp. of cpt. type**

$$
\begin{array}{ll}\n\textbf{(Takeuchi)} \quad M : \textbf{a sym. } R\text{-sp.} \\
\Rightarrow \#_2 M = \sum_{k=0}^{\text{dim} M} b_k(M; \mathbb{Z}_2)\n\end{array}
$$

A sym. *R***-sp. is a real form** *L* **of some Herm. sym. sp.** *M* **of cpt. type, and vice versa.**

[∃]τ **: invol. anti-holo. isom. of** *M* $L = F(\tau, M) := \{x \in M \mid \tau(x) = x\}$

(T.-Tasaki) *M* **: a Herm. sym. of cpt. type,** L_1, L_2 : real forms of M, $L_1 \pitchfork L_2$ \Rightarrow $L_1 \cap L_2$: an antipodal set of L_i ($i = 1, 2$) **Application : calculation of Lagrangian Floer homology (Iriyeh-Sakai-Tasaki)**

Fundamental problem : classification of maximal antipodal sets

2. Antipodal sets of symmetric *R***-spaces Theorem 1 (T.-Tasaki 2013) In a symmetric** *R***-space** *M* **(i) any antipodal set is included in a great antipodal set, (ii)** any two great antipodal sets are $(I_0(M)-)$ **congruent. (iii) a great antipodal set is an orbit of "the Weyl group".**

 M is a real form of \hat{M}

*M*ˆ : **Herm. sym. sp. of cpt. type**

i.e., τ : **inv.** anti-holo. isometry of \hat{M} $M = F(\tau, \hat{M})$

 $\hat{M} = \mathsf{Ad}(G)\xi \subset \mathfrak{g}, \ \ (\mathsf{ad}\xi)^3 = -\mathsf{ad}\xi$ *∪ ∪* $M = \mathsf{Ad}(K)\xi \subset \mathfrak{p}, \quad \tau \leadsto \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ *G/K* : **Riem. sym. sp. of cpt. type** $X, Y \in M$, $s_X(Y) = Y \Leftrightarrow [X, Y] = 0$ $A \subset M$: MAS $\Leftrightarrow A = M \cap \mathfrak{a}, \mathfrak{a} \subset \mathfrak{p}$: **max. abel.** ⇝ **(i)-(iii)** "the Weyl gr." $=$ the Weyl group of G/K

We do not know much about antipodal sets in a cpt. Riem. sym. sp. which is not a sym. *R***-space.**

A quotient group of a compact Lie group is not a symmetric *R***-space in general.**

3. Antipodal sets of compact Lie groups *G* **: a cpt. Lie gr. with bi-invariant metric** *x* ∈ *G*, $s_x(y) = xy^{-1}x$ (*y* ∈ *G*) 1:**the unit element of** *G* $s_1(y) = y \Leftrightarrow y^2 = 1$ **If** $x^2 = 1, y^2 = 1, s_x(y) = y \Leftrightarrow xy = yx$ 1 *∈ S ⊂ G*:**max. antipodal set** *⇒* **subgroup** $S \cong \mathbb{Z}$ $\underline{\mathbb{Z}}_2 \times \cdots \times \underline{\mathbb{Z}}_2$ $|S| = 2^r$ $(r = r_2(G))$ r > rank(*G*) (r > rank(*G*) can occur)

$$
\Delta_n := \left\{ \begin{bmatrix} \pm 1 & & \\ & \cdots & \\ & & \pm 1 \end{bmatrix} \right\} \subset O(n)
$$

$$
\Delta_n^{\pm} := \{ g \in \Delta_n \mid \det g = \pm 1 \}
$$

A maximal antipodal subgr. of $O(n)$, $U(n)$, *Sp*(*n*) **is conjugate to** Δ_n .

A maximal antipodal subgr. of *SO*(*n*)*, SU*(*n*) is conjugate to Δ_n^+ .

$$
#2O(n) = #2U(n) = #2Sp(n) = 2n
$$

$$
#2SO(n) = #2SU(n) = 2n-1
$$

4. Classification of maximal antipodal subgroups of quotient groups of $U(n)$, $SU(n)$, $O(n)$ *, SO* (n) *, Sp* (n)

the center of *U*(*n*) **id** $\mathbb{E} \{ z \in \mathbb{C} \mid |z| = 1 \} = U(1)$ $\mathbb{Z}_u \subset U(1)$: cyclic gr. of order μ $\Rightarrow U(n)/\mathbb{Z}_{\mu}$ is a cpt. Lie gr. locally isomor**phic to** $U(n)$ **the center of** *SU*(*n*) **id** $\frac{\mathsf{id}}{\mathsf{d}} \left\{ z \in \mathbb{C} \mid z^n = 1 \right\} \cong \mathbb{Z}_n$ $\mathbb{Z}_{\mu} \subset \mathbb{Z}_n$: cyclic gr. of order μ , where *n* is divided by μ .

 $\Rightarrow SU(n)/\mathbb{Z}_{\mu}$ is a cpt. Lie gr. locally isomor**phic to** $SU(n)$

$$
D[4] := \left\{ \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix}, \begin{bmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{bmatrix} \right\} \subset O(2)
$$

D[4]:**dihedral group**

$$
D^{\pm}[4] := \{ g \in D[4] \mid \det g = \pm 1 \}
$$

$$
n = 2k \cdot l, \ l : \text{odd}
$$

$$
0 \le s \le k
$$

$$
D(s, n) := D[4] \otimes \cdots \otimes D[4] \otimes \Delta_{n/2^s} \subset O(n)
$$

Theorem 2(**T.-Tasaki**)

- \mathbb{Z}_{μ} : a cyclic subgr. of the center of $U(n)$
- *θ* **: a primitive** 2*µ***-th root of** 1
- $\pi_n: U(n) \to U(n)/\mathbb{Z}_{\mu}$: the natural proj.
- **A** max. antip. subgr. (MAS) of $U(n)/\mathbb{Z}_{\mu}$ is **conjugate to one of the followings.**
- (1) *n* or μ is odd

$$
\pi_n(\{1,\theta\}D(0,n))=\pi_n(\{1,\theta\}\Delta_n)
$$

(2) n and μ are even $\pi_n(\{1,\theta\}D(s,n))$ (0 \leq *s* \leq *k*)

 $\mathbf{where}(s,n) = (k-1,2^k)$ is excluded.

Remark.
$$
\Delta_2 \subsetneq D[4]
$$
.
\n
$$
D(k-1, 2^k) = D[4] \otimes \cdots \otimes D[4] \otimes \Delta_2
$$
\n
$$
\subsetneq D[4] \otimes \cdots \otimes D[4] \otimes D[4] = D(k, 2^k)
$$

MAS is not unique (up to conjugation) *⇔ n, µ* : **even,** *n ≥* 4 **A great antipodal subgroup (GAS) is unique for** $\forall n, \forall \mu$.

Sketch of Proof : *A ⊂ U*(*n*)*/*Z*µ* : **MAS**

 $B := \pi_n^{-1}(A) \subset U(n)$ **Case 1.** *B* **is abelian.** *A* is conjugate to $\pi_n(\Delta_n \cup \theta \Delta_n)$. **Case 2.** *B* **is not abelian.** $\exists a, b \in B$ **s.t.** $ab ≠ ba$ $n = 2n'$: **even** $\langle a, b \rangle \cong D[4] \otimes 1_{n'}$ *A* is conjugate to $\pi_n(D[4] \otimes B')$, $B' = \pi_n^{-1}(\textbf{MAS in } U(n')/\mathbb{Z}_\mu)$ ⇝ **induction**

 $SU(n)/\mathbb{Z}_{\mu} \subset U(n)/\mathbb{Z}_{\mu}$ (*n* is divided by μ) Theorem 2 \rightsquigarrow classification of MAS of $SU(n)/\mathbb{Z}_\mu$ When $n = 8$, \exists two GAS's: $\pi_8(\{1,\theta\} \Delta_8^+), \qquad \pi_8(\{1,\theta\} D(3,8))$

$$
Q[8] := \{\pm 1, \pm i, \pm j, \pm k\}
$$

\n
$$
i^2 = j^2 = k^2 = -1,
$$

\n
$$
ij = -ji = k, jk = -kj = i, ki = -ik = j
$$

Theorem 3(**T.-Tasaki**) $\tilde{G} = O(n), SO(n), Sp(n), G = O(n)/\{\pm 1_n\},$ $SO(n)/\{\pm 1_n\}$ (*n* : **even**), $Sp(n)/\{\pm 1_n\}$ $\pi_n : \tilde{G} \to G$: the natural proj. $n=2^k\cdot l,~~l:~\mathbf{odd}$ **(I) MAS of** $G = O(n)/\{\pm 1_n\}$ is conjugate to $\pi_n(D(s,n))$ $(0 \leq s \leq k)$, $\mathbf{where}(s,n) = (k-1,2^k)$ is excluded.

(II) MAS of $G = SO(n)/\{\pm 1_n\}$ is conjugate **to**

 $(LI-1)$ $k=1$ $\pi_n(\Delta_n^+), \quad \pi_n(D^+[4] \otimes \Delta_l),$ where $\pi_2(\Delta_2^+)$ is excluded when $n=2$. **(II-2)** *k ≥* 2 $\pi_n(\Delta_n^+), \quad \pi_n(D(s,n)) \quad (1 \leq s \leq k),$ $\mathbf{where}\,\left(s,n\right) =\left(k-1,2^{k}\right)$ is excluded $\boldsymbol{\&}% _{k}\in\mathbb{Z}_{+}$ $\pi_4(\Delta_4^+)$ is excluded when $n=4$.

(III) MAS of $G = Sp(n)/\{\pm 1_n\}$ **is conjugate to** $\pi_n(Q[8] \cdot D(s,n))$ (0 *< s < k*),

 $\mathbf{where}(s,n) = (k-1,2^k)$ is excluded.

Corollary 4

(I) *G* = *O*(*n*)*/{±*1*n}*

- $n = 2$, $\pi_2(D[4])$ is a unique GAS.
- $n = 4$, $\pi_4(D(2, 4))$ is a unique GAS.

 $n \neq 2, 4, \pi_n(\Delta_n)$ is a unique GAS.

(II)
$$
G = SO(n)/\{\pm 1_n\}
$$

\n $n = 2$, $\pi_2(D^+ [4])$ is a unique GAS.
\n $n = 4$, $\pi_4(D(2, 4))$ is a unique GAS.
\n $n = 8$, $\pi_8(\Delta_8^+)$ and $\pi_8(D(3, 8))$ are the GAS's.
\n $n \neq 2, 4, 8$, $\pi_n(\Delta_n^+)$ is a unique GAS.

(III)
$$
G = Sp(n)/\{\pm 1_n\}
$$

\n $n = 2$, $\pi_2(Q[8] \cdot D[4])$ is a unique GAS.
\n $n = 4$, $\pi_4(Q[8] \cdot D(2, 4))$ is a unique GAS.
\n $n \neq 2, 4$, $\pi_n(Q[8] \cdot \Delta_n)$ is a unique GAS.

5. Classification of MAS's of the automorphism groups of Lie algebras

- *G*:**conn. cpt. semisimple Lie gr.**
- *Z*:**the center of** *G* (**discrete subgr. of** *G*) $G/Z \cong \text{Inn}(\mathfrak{g}) \cong \text{Ad}(G)$
- **How many involutive inner automorphisms of** g **which commute to each other can we take ?** \rightsquigarrow **MAS** of Inn(g)
- **Section 4** ⇝ **classification of MAS of** Inn(g)*,* $\mathfrak{g} = \mathfrak{su}(n), \, \mathfrak{so}(n), \, \mathfrak{sp}(n)$

Aut(g):**the group of automorphisms of** g $Aut(g)_{\Omega} = Inn(g)$ $Ad: G \to G/Z$: the natural proj.

Theorem 5(**T.-Tasaki**) $n=2^k\cdot l, \quad l:$ <code>odd</code> $\mathbf{I}(\mathbf{I})$ τ : $\mathfrak{su}(n) \to \mathfrak{su}(n)$; $X \mapsto \overline{X}$ **MAS of** Aut(su(*n*)) **is conjugate to** ${e, \tau}$ **Ad**(*D*(*s, n*)) (0 < *s* < *k*)*,* $\mathbf{where}(s,n) = (k-1,2^k)$ is excluded. (**II**)**MAS of** Aut(s*o*(*n*)) : **is conjugate to**

Ad($D(s, n)$) (0 < s < k), $\mathbf{where}(s,n) = (k-1,2^k)$ is excluded. (**III**)**MAS of** Aut(sp(*n*)) : **is conjugate to** Ad($Q[8] \cdot D(s, n)$) (0 < s < k), $\mathbf{where}(s,n) = (k-1,2^k)$ is excluded.

- **6. Classification of maximal antipodal subsets of** G_2 **and** $G_2/SO(4)$
- *M* : **a cpt. Rieman. sym. sp.,** *o ∈ M* **Assume** $F(s_0, M) = \{o\} \cup M_1^+$ *o ∈ A ⊂ M* $A: \textbf{MAS} \textbf{ of } M \Leftrightarrow A \cap M_{\bf 1}^+ : \textbf{MAS} \textbf{ of } M_{\bf 1}^+$ *e* : **the unit element** $F(s_e, G_2) = \{e\} \cup M_1^+, M_1^+ \cong G_2/SO(4)$ $o \in M_1^+$ $F(s_0, M_1^+) = \{o\} \cup M_{1,1}^+, M_{1,1}^+ \cong (S^2 \times S^2)/\mathbb{Z}_2$

 $S^2 \times S^2 \ni (p, q) \mapsto [p, q] \in (S^2 \times S^2)/\mathbb{Z}_2$ $(u_i, v_i) \in S^2 \times S^2 \quad (i = 1, 2, 3)$ $u_i \perp u_j$, $v_i \perp v_j$ (*i* $\neq j$) $A := \{ [u_1, \pm v_1], [u_2, \pm v_2], [u_3, \pm v_3] \}$ is a unique **MAS** of $(S^2 \times S^2)/\mathbb{Z}_2$ up to congruence. $A \leftrightarrow A_{1,1} \subset M_{1,1}^+$

Theorem 6 (T.-Tasaki)

MAS of $G_2/SO(4)$ is congruent to $\{o\} \cup A_{1,1}$. **MAS** of G_2 is conjugate to $\{e, o\} \cup A_{1,1}$.