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1. Introduction

M : a Riemannian symmetric space

sx : the geodesic symmetry at x

i.e. sx is an isometry of M, s2x = id and x is

an isolated fixed point of sx

S ⊂ M : a subset

S : an antipodal set ⇔ ∀x, y ∈ S, sx(y) = y　

the 2-number of M

#2M := max{|S| | S ⊂ M antipodal set}
S : a great antipodal set ⇔ |S| = #2M



G : a compact Lie group

p : a prime number

the p-rank of G = the maximal possible rank

of the subgroup Zp × · · · × Zp of G (Borel-

Serre)

r2(G) := the 2-rank of G, #2G = 2r2(G)

M ⊂ N : totally geodesic ⇒ #2M ≤ #2N

(Chen-Nagano) M : cpt. conn.

#2M ≥ χ(M), χ(M) : the Euler number

“=” if M : Herm. sym. sp. of cpt. type



(Takeuchi) M : a sym. R-sp.

⇒ #2M =
dimM∑
k=0

bk(M ;Z2)

A sym. R-sp. is a real form L of some

Herm. sym. sp. M of cpt. type, and vice

versa.
∃τ : invol. anti-holo. isom. of M

L = F (τ,M) := {x ∈ M | τ(x) = x}

(T.-Tasaki) M : a Herm. sym. of cpt.

type, L1, L2 : real forms of M, L1 ⋔ L2

⇒ L1 ∩ L2 : an antipodal set of Li (i = 1,2)



Application : calculation of Lagrangian Floer

homology (Iriyeh-Sakai-Tasaki)

Fundamental problem : classification of max-

imal antipodal sets



2. Antipodal sets of symmetric R-spaces

Theorem 1 (T.-Tasaki 2013)

In a symmetric R-space M (i) any antipodal

set is included in a great antipodal set, (ii)

any two great antipodal sets are (I0(M)-)

congruent. (iii) a great antipodal set is an

orbit of “the Weyl group”.

M is a real form of M̂

M̂ : Herm. sym. sp. of cpt. type

i.e., τ : inv. anti-holo. isometry of M̂

M = F (τ, M̂)



M̂ = Ad(G)ξ ⊂ g, (adξ)3 = −adξ

∪ ∪
M = Ad(K)ξ ⊂ p, τ ⇝ g = k⊕ p

G/K : Riem. sym. sp. of cpt. type

X,Y ∈ M, sX(Y ) = Y ⇔ [X,Y ] = 0

A ⊂ M : MAS ⇔ A = M ∩ a, a ⊂ p : max.

abel. ⇝ (i)-(iii)

“the Weyl gr.” = the Weyl group of G/K



We do not know much about antipodal sets

in a cpt. Riem. sym. sp. which is not a

sym. R-space.

A quotient group of a compact Lie group

is not a symmetric R-space in general.



3. Antipodal sets of compact Lie groups

G : a cpt. Lie gr. with bi-invariant metric

x ∈ G, sx(y) = xy−1x (y ∈ G)

1：the unit element of G

s1(y) = y ⇔ y2 = 1

If x2 = 1, y2 = 1, sx(y) = y ⇔ xy = yx

1 ∈ S ⊂ G：max. antipodal set ⇒ subgroup

S ∼= Z2 × · · · × Z2︸ ︷︷ ︸
r

|S| = 2r (r = r2(G))

r ≥ rank(G) (r > rank(G) can occur)



∆n :=




±1

. . .

±1




⊂ O(n)

∆±
n := {g ∈ ∆n | det g = ±1}

A maximal antipodal subgr. of O(n), U(n),

Sp(n) is conjugate to ∆n.

A maximal antipodal subgr. of SO(n), SU(n)

is conjugate to ∆+
n .

#2O(n) = #2U(n) = #2Sp(n) = 2n

#2SO(n) = #2SU(n) = 2n−1



4. Classification of maximal antipodal sub-

groups of quotient groups of U(n), SU(n),

O(n), SO(n), Sp(n)

the center of U(n)
id
= {z ∈ C | |z| = 1} = U(1)

Zµ ⊂ U(1)：cyclic gr. of order µ

⇒ U(n)/Zµ is a cpt. Lie gr. locally isomor-

phic to U(n)

the center of SU(n)
id
= {z ∈ C | zn = 1} ∼= Zn

Zµ ⊂ Zn：cyclic gr. of order µ, where n is

divided by µ.



⇒ SU(n)/Zµ is a cpt. Lie gr. locally isomor-

phic to SU(n)

D[4] :=


±1 0
0 ±1

 ,
 0 ±1
±1 0


 ⊂ O(2)

D[4]：dihedral group

D±[4] := {g ∈ D[4] | det g = ±1}

n = 2k · l, l：odd

0 ≤ s ≤ k

D(s, n) := D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
s

⊗∆n/2s ⊂ O(n)



Theorem 2（T.-Tasaki）

Zµ : a cyclic subgr. of the center of U(n)

θ : a primitive 2µ-th root of 1　

πn : U(n) → U(n)/Zµ : the natural proj.

A max. antip. subgr. (MAS) of U(n)/Zµ is

conjugate to one of the followings.

（1）n or µ is odd

πn({1, θ}D(0, n)) = πn({1, θ}∆n)

（2）n and µ are even

πn({1, θ}D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.



Remark. ∆2 ⊊ D[4].

D(k − 1,2k) = D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
s

⊗∆2

⊊ D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
s

⊗D[4] = D(k,2k)

MAS is not unique (up to conjugation)

⇔ n, µ : even, n ≥ 4

A great antipodal subgroup (GAS) is unique

for ∀n, ∀µ.

Sketch of Proof :

A ⊂ U(n)/Zµ : MAS



B := π−1
n (A) ⊂ U(n)

Case 1. B is abelian.

A is conjugate to πn(∆n ∪ θ∆n).

Case 2. B is not abelian.

∃a, b ∈ B s.t. ab ̸= ba

n = 2n′ : even

⟨a, b⟩ ∼= D[4]⊗ 1n′

A is conjugate to πn(D[4]⊗B′),

B′ = π−1
n (MAS in U(n′)/Zµ)

⇝ induction



SU(n)/Zµ ⊂ U(n)/Zµ (n is divided by µ)

Theorem 2 ⇝ classification of MAS of SU(n)/Zµ

When n = 8, ∃ two GAS’s:

π8({1, θ}∆+
8 ), π8({1, θ}D(3,8))

Q[8] := {±1,±i,±j,±k}
i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j



Theorem 3（T.-Tasaki）

G̃ = O(n), SO(n), Sp(n), G = O(n)/{±1n},
SO(n)/{±1n} (n : even), Sp(n)/{±1n}
πn : G̃ → G : the natural proj.

n = 2k · l, l : odd

(I) MAS of G = O(n)/{±1n} is conjugate to

πn(D(s, n)) (0 ≤ s ≤ k),

where (s, n) = (k − 1,2k) is excluded.



(II) MAS of G = SO(n)/{±1n} is conjugate

to

(II-1) k = 1

πn(∆+
n ), πn(D+[4]⊗∆l),

where π2(∆
+
2 ) is excluded when n = 2.

(II-2) k ≥ 2

πn(∆+
n ), πn(D(s, n)) (1 ≤ s ≤ k),

where (s, n) = (k − 1,2k) is excluded &

π4(∆
+
4 ) is excluded when n = 4.



(III) MAS of G = Sp(n)/{±1n}
is conjugate to

πn(Q[8] ·D(s, n)) (0 ≤ s ≤ k),

where (s, n) = (k − 1,2k) is excluded.

Corollary 4

(I) G = O(n)/{±1n}
n = 2, π2(D[4]) is a unique GAS.

n = 4, π4(D(2,4)) is a unique GAS.

n ̸= 2,4, πn(∆n) is a unique GAS.



(II) G = SO(n)/{±1n}
n = 2, π2(D

+[4]) is a unique GAS.

n = 4, π4(D(2,4)) is a unique GAS.

n = 8, π8(∆
+
8 ) and π8(D(3,8)) are the GAS’s.

n ̸= 2,4,8, πn(∆+
n ) is a unique GAS.

(III) G = Sp(n)/{±1n}
n = 2, π2(Q[8] ·D[4]) is a unique GAS.

n = 4, π4(Q[8] ·D(2,4)) is a unique GAS.

n ̸= 2,4, πn(Q[8] ·∆n) is a unique GAS.



5. Classification of MAS’s of the automor-

phism groups of Lie algebras

G：conn. cpt. semisimple Lie gr.

Z：the center of G （discrete subgr. of G）

G/Z ∼= Inn(g)∼= Ad(G)

How many involutive inner automorphisms

of g which commute to each other can we

take ? ⇝ MAS of Inn(g)

Section 4 ⇝ classification of MAS of Inn(g),

g = su(n), so(n), sp(n)



Aut(g)：the group of automorphisms of g

Aut(g)0 = Inn(g)

Ad : G → G/Z : the natural proj.

Theorem 5（T.-Tasaki）

n = 2k · l, l : odd

（I）τ : su(n) → su(n) ; X 7→ X̄

MAS of Aut(su(n)) is conjugate to

{e, τ}Ad(D(s, n)) (0 ≤ s ≤ k),

where (s, n) = (k − 1,2k) is excluded.

（II）MAS of Aut(so(n)) : is conjugate to



Ad(D(s, n)) (0 ≤ s ≤ k),

where (s, n) = (k − 1,2k) is excluded.

（III）MAS of Aut(sp(n)) : is conjugate to

Ad(Q[8] ·D(s, n)) (0 ≤ s ≤ k),　

where (s, n) = (k − 1,2k) is excluded.



6. Classification of maximal antipodal sub-

sets of G2 and G2/SO(4)

M : a cpt. Rieman. sym. sp., o ∈ M

Assume F (so,M) = {o} ∪M+
1

o ∈ A ⊂ M

A : MAS of M ⇔ A ∩M+
1 : MAS of M+

1

e : the unit element

F (se, G2) = {e} ∪M+
1 , M+

1
∼= G2/SO(4)

o ∈ M+
1

F (so,M
+
1 ) = {o} ∪M+

1,1, M+
1,1

∼= (S2 × S2)/Z2



S2 × S2 ∋ (p, q) 7→ [p, q] ∈ (S2 × S2)/Z2

(ui, vi) ∈ S2 × S2 (i = 1,2,3)

ui ⊥ uj, vi ⊥ vj (i ̸= j)

A := {[u1,±v1], [u2,±v2], [u3,±v3]} is a unique

MAS of (S2 × S2)/Z2 up to congruence.

A ↔ A1,1 ⊂ M+
1,1

Theorem 6 (T.-Tasaki)

MAS of G2/SO(4) is congruent to {o}∪A1,1.

MAS of G2 is conjugate to {e, o} ∪A1,1.


