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1. Introduction

M: a compact Riemannian symmetric space

sx: the geodesic symmetry at x

i.e., (i) sx is an isometry of M, (ii) sx2 = id,

(iii) x is an isolated fixed point of sx

S ⊂ M: a subset

S: an antipodal set def⇐⇒ ∀x, y ∈ S, sx(y) = y

The 2-number #2M of M

#2M := max{|S| | S ⊂ M antipodal set}
S: great def⇐⇒ |S| = #2M

(Chen-Nagano 1988)



Examples. (1) M = Sn (⊂ Rn+1)

{x,−x}: a great antipodal set for ∀x ∈ Sn

(2) M = RPn

e1, . . . , en+1: an o.n.b. of Rn+1

{⟨e1⟩R, . . . , ⟨en+1⟩R}: a great antipodal set

(3) M = U(n) sx(y) = xy−1x

s1n(x) = x ⇔ x2 = 1n (1n: the unit matrix)

x2 = y2 = 1n ⇒ sx(y) = y iff xy = yx




±1

. . .

±1




: a great antipodal set



M ⊂ N: totally geodesic

S ⊂ M: an antip. set ⇒ S ⊂ N: an antip. set

⇝ #2M ≤ #2N

(Chen-Nagano) M: cpt. conn.

#2M ≥ χ(M), χ(M): the Euler number

“=” if M: a Herm. sym. sp. of cpt. type

(Takeuchi) M: a symmetric R-space

⇒ #2M =
dimM∑
k=0

bk(M ;Z2)

bk: the k-th Betti number



Remark. Sn, RPn, U(n): sym. R-sp.

Remark. Generally ∃maximal antp. set, not

great

(T.-Tasaki 2013) In a symmetric R-space

M (i) any antipodal set is included in a

great antipodal set, (ii) any two great an-

tipodal sets are (I(M)0-)congruent, (iii) a

great antipodal set is an orbit of “the Weyl

group”.



A sym. R-sp. is a real form L of some

Herm. sym. sp. M of cpt. type,

i.e., ∃τ : an invol. anti-holo. isom. of M;

L = F (τ,M) := {x ∈ M | τ(x) = x} (connected)

(T.-Tasaki 2012)

M: a Herm. sym. of cpt. type

L1, L2: real forms of M, L1 ⋔ L2

⇒ L1 ∩ L2: an antipodal set of Li (i = 1,2)

Moreover, if L1, L2: congruent, then L1∩L2:

great.



Chen-Nagano determined #2M for most cpt.

Riem. sym. sp.M but we don’t know much

about antipodal sets themselves, especially

when M is not a sym. R-space.

Problem: Classification of maximal antipo-

dal sets of M which is not a sym. R-sp.

E.g. G̃k(Rn): oriented real Grassmann mfd.

(k = 3,4 Tasaki), G/Γ: quotient groups of

cpt. Lie gr. (G: classical T.-Tasaki), G2

(T.-Tasaki-Yasukura), quotient spaces of

Herm. sym. sp. of cpt. type



2. Maximal antip. subgr. of cpt. classical

Lie groups

G: a cpt. Lie gr. with bi-invariant metric

x ∈ G, sx(y) = xy−1x (y ∈ G)

1：the unit element of G

s1(y) = y ⇔ y2 = 1

If x2 = y2 = 1, sx(y) = y ⇔ xy = yx

1 ∈ S ⊂ G：max. antipodal set ⇒ subgroup

S ∼= Z2 × · · · × Z2︸ ︷︷ ︸
r

|S| = 2r

r ≥ rank(G) (r > rank(G) can occur)



∆n :=




±1

. . .

±1




⊂ O(n)

∆+
n := {g ∈ ∆n | det g = 1}

A maximal antipodal subgr.(MAS) of O(n),

U(n), Sp(n) is conjugate to ∆n.

A MAS of SO(n), SU(n) is conjugate to ∆+
n .

#2O(n) = #2U(n) = #2Sp(n) = 2n

#2SO(n) = #2SU(n) = 2n−1



D[4] :=


±1 0
0 ±1

 ,
 0 ±1
±1 0


 ⊂ O(2)

the dihedral group

n = 2k · l, l：odd

0 ≤ s ≤ k

D(s, n) := D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
s

⊗∆n/2s ⊂ O(n)

Q[8] := {±1,±i,±j,±k}
i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j



Theorem 1（T.-Tasaki）

G̃ = U(n), O(n), Sp(n)

G = U(n)/{±1n}, O(n)/{±1n}, Sp(n)/{±1n}
πn : G̃ → G : the projection

n = 2k · l, l : odd

(I) MAS of G = O(n)/{±1n} is conjugate to

πn(D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.

(II) MAS of G = U(n)/{±1n} is conjugate to

πn({1,
√
−1}D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.



(III)MASofG = Sp(n)/{±1n} is conjugate to

πn(Q[8] ·D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.

Remark. ∆2 ⊊ D[4].

D(k − 1,2k) = D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
s

⊗∆2

⊊ D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
s

⊗D[4] = D(k,2k)

#2G and great antipodal subgroups (GAS)

of G are given as follows.

Theorem 2 (T.-Tasaki)

(I) G = O(n)/{±1n}



If n = 2, #2G = 22, GAS: π2(D[4])

If n = 4, #2G = 24, GAS: π4(D(2,4))

If n ̸= 2,4, #2G = 2n−1, GAS: πn(∆n)

(II) G = U(n)/{±1n}
If n = 2, #2G = 23, GAS: π2({1,

√
−1}D[4])

If n = 4, #2G = 25, GAS: π4({1,
√
−1}D(2,4))

If n ̸= 2,4, #2G = 2n, GAS: πn({1,
√
−1}∆n)

(III) G = Sp(n)/{±1n}
If n = 2, #2G = 24, GAS: π2(Q[8] ·D[4])

If n = 4, #2G = 26, GAS: π4(Q[8] ·D(2,4))

If n ̸= 2,4, #2G = 2n+1, GAS: πn(Q[8] ·∆n)



Griess (1991) , Yu (2013)

They classified conjugate classes of ele-

mentary abelian p-subgroups of algebraic

groups by algebraic methods.

Antipodal subgroups = Elementary abelian

2-subgroups



3. The bottom space CI(n)∗ of CI(n)

CI(n) := {x ∈ Sp(n) | x2 = −1n} ∼= Sp(n)/U(n)

an irr. Herm. sym. sp. of cpt. type

i∆n ⊂ CI(n): unique max. antip. set

⇝ a great antip. set #2CI(n) = 2n

Sp(n)∗ := Sp(n)/{±1n}, 1∗n := πn(1n)

πn : Sp(n) → Sp(n)∗ the projection

CI(n)∗ := πn(CI(n)) = CI(n)/{±1n}
a Riem. sym. sp. but not a Hermit. sym. sp.

CI(n)∗ ⊂ F (s1∗n, Sp(n)
∗)



4. Maximal antipodal sets of CI(n)∗

S ⊂ CI(n)∗: a max. antipodal set

{1∗n} ∪ S: an antipodal set of Sp(n)∗

∃S̃: a max. antipodal subgroup of Sp(n)∗;

{1∗n} ∪ S ⊂ S̃

∃g ∈ Sp(n); S̃ = πn(g(Q[8] ·D(s, n))g−1)

{1∗n} ∪ πn(g)−1Sπn(g) ⊂ πn(Q[8] ·D(s, n))

πn(g)−1Sπn(g) ⊂ πn(Q[8] ·D(s, n)) ∩ CI(n)∗

The r.h.s. is an antip. subset of CI(n)∗.

By the maximality of S we obtain “=”.



πn(g)−1Sπn(g) = πn(Q[8] ·D(s, n)) ∩ CI(n)∗

= πn({x ∈ Q[8]·D(s, n) | x2 = −1n})

PD(s, n) := {d ∈ D(s, n) | d2 = 1n}
ND(s, n) := {d ∈ D(s, n) | d2 = −1n}

{x ∈ Q[8] ·D(s, n) | x2 = −1n}
= ND(s, n) ∪ {i, j, k}PD(s, n)

n = 2k · l, l：odd

Theorem 3 (T.-Tasaki) A maximal antipo-

dal subset of CI(n)∗ is congruent to

πn(ND(s, n) ∪ {i, j, k}PD(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.



Theorem 3 ⇝ #2CI(n)∗ & great antipodal

sets (GAS) of CI(n)∗

|πn(ND(s, n) ∪ {i, j, k}PD(s, n))|
= (2s+1 +1)2s−1+2k−s·l

J1 :=

0 −1
1 0

 , K1 :=

0 1
1 0



Theorem 4 (T.-Tasaki)

(1) #2CI(2)∗ = 10

GAS: π2({±J1} ∪ {i, j, k}(∆2 ∪ {±K1}))



(2) #2CI(4)∗ = 36

GAS: π4(ND(2,4) ∪ {i, j, k}PD(2,4))

(3) If n ̸= 2,4, #2CI(n)∗ = 3 · 2n−1

GAS: πn({i, j, k}∆n)

In particular, a GAS of CI(n)∗ is unique up

to congruence.

Remark. CI(2)∗ ∼= G2(R5)



5. Other results

K = R,C,H
Gm(K2m): Grassmann mfd. of m-dim. sub-

spaces of K2m

γ : Gm(K2m) → Gm(K2m), γ(x) = x⊥

Gm(K2m)∗ := Gm(K2m)/{id, γ}
The corresponding sym. pair of Gm(K2m):

(G,K) = (O(2m), O(m)×O(m)) if K = R
(G,K) = (U(2m), U(m)× U(m)) if K = C
(G,K) = (Sp(2m), Sp(m)× Sp(m)) if K = H



Consider Gm(K2m) ⊂ G by the correspon-

dence x 7→ idx − idγ(x).

Gm(K2m)∗ ⊂ G∗ := G/{±12m}
Gm(K2m) ⊂ F (s12m, G)

Gm(K2m)∗ ⊂ F (se, G∗), e := π2m(12m)

2m = 2k · l, l：odd

Theorem 5 (T.-Tasaki) (I) A MAS of Gm(R2m)∗

is cong. to

π2m({d1 ⊗ · · · ⊗ ds ⊗ d0 ∈ PD(s,2m) |
∃di(0 ≤ i ≤ s) Trdi = 0}) (0 ≤ s ≤ k)



where (s,2m) = (k − 1,2k) is excluded.

(II) A MAS of Gm(C2m)∗ is cong. to

π2m({d1 ⊗ · · · ⊗ ds ⊗ d0 ∈ PD(s,2m) |
∃di(0 ≤ i ≤ s) Trdi = 0} ∪

√
−1ND(s,2m))

(0 ≤ s ≤ k)

where (s,2m) = (k − 1,2k) is excluded.

(III) A MAS of Gm(H2m)∗ is cong. to

π2m({d1 ⊗ · · · ⊗ ds ⊗ d0 ∈ PD(s,2m) |
∃di(0 ≤ i ≤ s) Trdi = 0}∪{i, j, k}ND(s,2m))

(0 ≤ s ≤ k)

where (s,2m) = (k − 1,2k) is excluded.


