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1. Symmetric spaces and antipodal sets

A C∞ manifold M is called a symmetric space

if for every x ∈ M there exists a C∞ map

sx : M → M such that

(i) sx ◦ sx = idM,

(ii) x is an isolated fixed point of sx,

(iii) sx ◦ sy = ssx(y) ◦ sx for ∀y ∈ M,

(iv) M ×M ∋ (x, y) 7→ sx(y) ∈ M is a C∞ map.

sx is called a symmetry at x. A symmetric

space is a quandle.



When a symmetric space M is a Rieman-

nian (resp. Hermitian) manifold and every

symmetry is an isometry (resp. holomor-

phic isometry), M is a Riemannian (resp.

Hermtian) symmetric space. If M is con-

nected, a symmetry at each point is unique.

Examples: (1) Rn is a symmetric space.

sx(y) = 2x− y.

(2) Sn (⊂ Rn+1) is a symmetric space. ρx =

idRx − id(Rx)⊥ induces sx at x ∈ Sn.



(3) A Lie group G is a symmetric space.

sx(y) = xy−1x.

A subset S of a symmetric space M is called

an antipodal set if sx(y) = y for every x, y ∈
S. If M is connected, sx(y) = y holds iff

there exists a closed geodesic on which x, y

are antipodal.

Let M be a compact symmetric space. An

antipodal set of M is finite.



#2M := max{|S| | S ⊂ M antipodal set} is

called the 2-number of M.

The 2-number has relation to the 2-rank

of compact Lie groups.

An antipodal set S is called great if it sat-

isfies |S| = #2M.

Examples. (1) An antipodal set of Rn is a

set of one point. #2Rn = 1.

(2) For each x ∈ Sn, {x,−x} is a great an-

tipodal set. #2S
n = 2.



(3) Let e1, . . . , en+1 be an o.n.b. of Rn+1.

{⟨e1⟩R, . . . , ⟨en+1⟩R} is a great antipodal set

of RPn. #2RPn = n+1.

If N is a totally geodesic submanifold of a

symmetric space M, sx(N) ⊂ N for x ∈ N. N

is a symmetric space. If S is an antipodal

set of N, S is an antipodal set of M. #2N ≤
#2M.

Fact 1 (Chen-Nagano 1988) If M is a com-

pact connected Riemmanian symmetric space,



#2M ≥ χ(M), the Euler number of M. “=”

if M is a Hermitian symmetric space of

compact type.

A Riemannain symmetric space M which

has a realization as a linear isotropy orbit of

a certain Riemannian symmetric space of

compact type is called a symmetric R-space.

Fact 2 (Takeuchi 1989) If M is a symmetric

R-space, #2M =
dimM∑
k=0

bk(M ;Z2), the sum of

Z2-Betti numbers.



A symmetric R-space is a real form L of

a certain Hermitian symmetric space M of

compact type, i.e., there exists an involu-

tive anti-holomorphic isometry τ of M such

that L = {x ∈ M | τ(x) = x}.

Fact 3 (T.-Tasaki 2012) Let M be a Her-

mitian symmetric space of compact type.

Let L1, L2 be real forms of M. If L1 ∩ L2

is discrete, L1 ∩ L2 is an antipodal set of

L1 and L2. Moreover, if L1, L2 are I0(M)-

congruent, L1 ∩L2 is a great antipodal set.



If M = CP1 ∼= S2, a real form is a great

circle ∼= RP1 ∼= S1. Any two different great

circles intersects at antipodal points.

A great antipodal set is a maximal antipo-

dal set. The converse is not true in general.

Fact 4 (T.-Tasaki 2013) Let M be a sym-

metric R-space. (i) Any antipodal set of M

is included in a great antipodal set. (ii) Any

two great antipodal sets of M are I(M)0-

congruent. (iii) A great antipodal set of M

is an orbit of the Weyl group.



Chen-Nagano determined #2M for most com-

pact symmetric spaces M. One of the ex-

ceptions is the oriented real Grassmann man-

ifolds. We have interest in not only the car-

dinalities but also the structures of maximal

antipodal sets of M.

Our goal: Classify maximal antipodal sets

of compact symmetric spaces.



2.Maximal antipodal subgroups of classical

compact Lie groups

G: a cpt. Lie gr. with biinvariant metric

sx(y) = xy−1x (x, y ∈ G)

1：the unit element of G

s1(y) = y ⇔ y2 = 1

If x2 = y2 = 1, sx(y) = y ⇔ xy = yx

1 ∈ S：max. antipodal set of G ⇒ S: subgroup

S ∼= Z2 × · · · × Z2︸ ︷︷ ︸
r

|S| = 2r

r ≥ rank(G)



∆n :=




±1

. . .

±1




⊂ O(n)

∆+
n := {g ∈ ∆n | det g = 1}

MAS: a maximal antipodal subgroup

MAS of O(n), U(n), Sp(n) is conjugate to

∆n. MAS of SO(n), SU(n) is conjugate to

∆+
n .

#2O(n) = #2U(n) = #2Sp(n) = 2n

#2SO(n) = #2SU(n) = 2n−1



D[4] :=


±1 0
0 ±1

 ,
 0 ±1
±1 0


 ⊂ O(2)

n = 2k · l, l：odd

0 ≤ s ≤ k

D(s, n) := {d1⊗· · ·⊗ds⊗d0 | d1, . . . , ds ∈ D[4], d0 ∈
∆n/2s} = D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸

s
⊗∆n/2s ⊂ O(n)

Q[8] := {±1,±i,±j,±k}
i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j



Theorem 1（T.-Tasaki 2017）

G̃ = U(n), O(n), Sp(n)

G = U(n)/{±1n}, O(n)/{±1n}, Sp(n)/{±1n}
πn : G̃ → G : projection

n = 2k · l, l : odd

(1) MAS of O(n)/{±1n} is conjugate to

πn(D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.

(2) MAS of U(n)/{±1n} is conjugate to

πn({1,
√
−1}D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.



(3) MAS of Sp(n)/{±1n} is conjugate to

πn(Q[8] ·D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.

Remark. ∆2 ⊊ D[4].

D(k − 1,2k) = D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
k−1

⊗∆2

⊊ D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
k−1

⊗D[4] = D(k,2k)

Griess (1991) and Yu (2013) classified con-

jugate classes of elementary abelian p-subgr.

of algebraic groups by algebraic methods.



3.Maximal antipodal sets of classical com-

pact symmetric spaces

We use an appropriate totally geodesic em-

bedding of a classical compact symmetric

space into a classical compact Lie group.

CI(n) := {x ∈ Sp(n) | x2 = −1n} ∼= Sp(n)/U(n)

CI(n) is a Hermitian symmetric space of

compact type. i∆n is a unique maximal

antipodal set of CI(n) up to congruence.

#2CI(n) = 2n.



Sp(n)∗ := Sp(n)/{±1n}
πn : Sp(n) → Sp(n)∗ projection, 1∗n := πn(1n)

CI(n)∗ := πn(CI(n)) = CI(n)/{±1n}
CI(n)∗ ⊂ {x ∈ Sp(n)∗ | x2 = 1∗n} = Fix(s1∗n)

Let S ⊂ CI(n)∗be a maximal antipodal set.

{1∗n}∪S is an antipodal set of Sp(n)∗. There

exists a maximal antipodal subgroup S̃ of

Sp(n)∗ such that {1∗n} ∪ S ⊂ S̃. By Theorem

1, ∃g ∈ Sp(n), ∃s ∈ {0, . . . , k} such that

S̃ = πn(g)πn(Q[8] ·D(s, n))πn(g)−1.

{1∗n} ∪ πn(g)−1 S πn(g) ⊂ πn(Q[8] ·D(s, n)).



By the maximality of S

πn(g)−1 S πn(g) = πn(Q[8] ·D(s, n)) ∩ CI(n)∗.

RHS= πn({x ∈ Q[8] ·D(s, n) | x2 = −1n}).
PD(s, n) := {d ∈ D(s, n) | d2 = 1n}
ND(s, n) := {d ∈ D(s, n) | d2 = −1n}

{x ∈ Q[8] ·D(s, n) | x2 = −1n}
= ND(s, n) ∪ {i, j, k}PD(s, n)



Theorem 2 (T.-Tasaki) Let n = 2k · l where

l is odd. A maximal antipodal set of CI(n)∗

is congruent to

πn(ND(s, n) ∪ {i, j, k}PD(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.

Other cases: DIII(n) = SO(2n)/U(n) is re-

garded as one of two connected compo-

nents of {x ∈ SO(2n) | x2 = −12n}. When

n = 2m, DIII(n)∗ ⊂ {x ∈ SO(2n)∗ | x2 = 1∗2n}.



Gk(Kn), K = R,C,H, is regarded as one of

(n + 1) connected components of {x ∈ G |
x2 = 1n}, G = O(n), U(n), Sp(n) respectively.

When n = 2k, Gk(Kn)∗ ⊂ {x ∈ G∗ | x2 = 1∗n}.
When M = G/K is one of UI(n) = U(n)/O(n),

AI(n) = SU(n)/SO(n), UII(n) = U(2n)/Sp(n),

AII(n) = SU(2n)/Sp(n), we use the fact that

{x ∈ G ⋊ ⟨σ⟩ | x2 = 1} contains Mσ as a con-

nected component, where σ is an involutive

automorphism for a symmetric pair (G,K).


