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1. Introduction

M: a Riemannian manifold

M is called a Riemannian symmetric space

if for ∀x ∈ M, the point symmetry sx at x

is given, i.e., (i) sx is an isometry of M,

(ii) sx ◦ sx = idM, (iii) x is an isolated fixed

point of sx.

• The differential (dsx)x is −idTxM.

• When M is connected, sx is uniquely de-

termined by (i)-(iii) and sx is the geodesic

symmetry.



F (sx,M) := {y ∈ M |sx(y) = y}
A connected component of F (sx,M) is called

a polar w.r.t. x.

By (iii), {x} is a polar w.r.t. x, called the

trivial polar.

•A polar M+ of positive dimension is a to-

tally geodesic submanifold and hence M+ is

a Riemannian symmetric space. The point

symmetry at y ∈ M+ is given by sy|M+.

• Rn: Euclidean space, F (sx,Rn) = {x}
• Sn: a sphere, F (sx, Sn) = {x,−x}



• Pn: the projective space, F (sx, Pn) = {x} ∪
Pn−1

(∵) Set K = R,C, or H and denote Pn by KPn.

Since sx is induced by the reflection along

x in Kn+1, F (sx,KPn) =

{x} ∪ {1−dim. subspaces in x⊥}(= KPn−1).

• If M is of noncompact type, F (sx,M) =

{x}.
Hereafter we consider the case where M is

compact.



•A compact connected Riem. sym. sp.M is

(i) of compact type (I(M) is compact and

semisimple), (ii) a torus, or a product of (i)

and (ii) locally.

A: a subset of M

A is called an antipodal set if for ∀x, y ∈ A,

sx(y) = y holds.

For ∀x ∈ A, A ⊂ F (sx,M). x is an isolated

point in F (sx,M) as well as in A. Thus A is

discrete. Hence an antipodal set is finite.



The 2-number of M is #2M := max{|A| |A ⊂
M : an antipodal set}.
If A satisfies |A| = #2M, A is called great.

If A ⊂ A′ implies A = A′, we say A is maxi-

mal.

• A great antipodal set is maximal but the

converse is not true.

• #2S
n = 2 and {x,−x} is a great antipodal

set.

Bang-Yen Chen and Tadashi Nagano gave

detailed studies of the 2-numbers (Chen-

Nagano, 1988).



In the past ten years there was progress

in the research of antipodal sets. Our in-

terest is in maximal antipodal sets them-

selves rather than their cardinalities. We

are working on the classification of maxi-

mal antipodal sets.

• In (T.-Tasaki, 2017) we classified max. antip.

subgr. of some classical cpt. Lie groups G.

• In (T.-Tasaki, 2020) we classified max. antip.

sets of some classical cpt. Riem. sym. sp.M.

The basic principle is to make use of an



embedding of M into G as a polar w.r.t.

the identity element and apply the classifi-

cation of max. antip. subgr. of G.

• In order to continue the classification of

max. antip. sets for some other classical cpt.

Riem. sym. sp.M, we need a realization of

M as a polar of a disconnected cpt. Lie gr.

•Chen-Nagano and Nagano gave detailed

studies of polars of connected cpt. Riem.

symmetric spaces.

•We studied polars of disconnected cpt. Lie

groups (T.-Tasaki, submitted).



2. Relations between antipodal sets and po-

lars

G: a compact Lie group

e: the identity element of G

G0: the identity component of G

∃ a biinvariant Riemannian metric on G

G is a compact Riem. symmetric space.

∀x ∈ G, sx(y) = xy−1x (y ∈ G)

• se(y) = y−1, sx(y) = Lx ◦ se ◦ Lx−1(y)

F (se, G) = {x ∈ G | x2 = e}



F (se, G) =
r∪

j=0
G+
j , G+

j : a polar, G+
0 = {e}

In general, when a polar consists of a single

point x, we call x a pole.

Proposition 1

ZG(G0): the centralizer of G0 in G

Z̃2(G) := ZG(G0) ∩ F (se, G)

•The set of poles coincides with Z̃2(G).

•For a point x in G+
j , G+

j = {Ig(x) | g ∈ G0},
where Ig(x) = gxg−1.



Hence each polar is a G0-conjugacy class

of involutive elements.

A: an antipodal set of G

We can assume e∈A by left (or right) trans-

lations. Then,

• x2 = e (x ∈ A), xy = yx (x, y ∈ A).

• If A is maximal, A is a subgroup ∼=
Z2 × · · · × Z2.

We call such A a maximal antipodal sub-

group.



Example. G = O(n): the orthogonal group

G0 = SO(n)

1n: the identity matrix

Ij = daig(−1, . . . ,−1︸ ︷︷ ︸
j

,1, . . . ,1) ∈ O(n)

G+
j = {gIjg−1 | g ∈ SO(n)}

∼= SO(n)/S(O(j)×O(n− j))

= Gj(Rn): the real Grassmann mfd.

A0 = {diag(ϵ1, . . . , ϵn) | ϵi = ±1} is a maximal

antipodal subgroup of O(n).

Z̃2(O(n)) = {±1n}



•A0 is a unique max. antip. subgr. of O(n)

up to conjugation, while a max. antip. subgr.

of O(n)/{±1n} is not unique up to conjuga-

tion when n is even and n ≥ 4.

M = G+
j : a polar of positive dim.

M is a connected cpt. Riem. sym. sp.

x0 ∈ M, M = {Ig(x0) | g ∈ G0}
• I0(M) = {Ig|M | g ∈ G0}
• If A is an antip. set of M, then A ∪ {e} is

an antip. set of G.



• ∃Ã: a max. antip. subgr. A ∪ {e} ⊂ Ã

• If A is maximal in M, then A = M ∩ Ã.

C1, . . . , Ck: G0-conjugacy classes of maxi.

antip. subgr. of G

Bs: a representative of Cs (1 ≤ s ≤ k)

(We gave their explicit descriptions for some

classical G.)

∃g ∈ G0, 1 ≤ ∃s ≤ k, Ã = Ig(Bs)

A = M ∩ Ã = M ∩ Ig(Bs) = Ig(M ∩Bs)

Hence A is I0(M)-congruent to M ∩Bs.



Therefore, a representative of an I0(M)-

congruence class of maximal antipodal sets

of M is one of M ∩B1, . . . ,M ∩Bk.

•Using this principle, for some classical cpt.

Riem. sym. sp.M, we determined I0(M)-cong.

classes of max. antip. sets of M and gave

explicit descriptions of their representatives.

• ∃M, realized as a polar not of a connected

G but of a disconnected G.

e.g., U(n)/O(n), U(2n)/Sp(n)



3. Polars of disconnected compact Lie groups

G: a compact Lie group

G0: the identity component of G

G = G0 ∪ ∪
λ∈Λ

Gλ, Gλ: a conn. component

F (se, G) = (F (se, G) ∩G0) ∪
∪

λ∈Λ
(F (se, G) ∩Gλ)

We know F (se, G) ∩G0 by Chen-Nagano.

We study F (se, G) ∩Gλ.

If F (se, G)∩Gλ ̸= ∅, for ∀xλ ∈ Gλ∩F (se, G) we

have Gλ = G0xλ = xλG0.

Ixλ (Ixλ(y) = xλyx
−1
λ ) is an involutive auto-

morphism of G0.



The action defined by g.h = ghIxλ(g)
−1 (g, h ∈

G0) is called the twisted conjugate action

by Ixλ. (It is a Hermann action.)

Tλ: a maximal torus of the identity comp. of

F (Ixλ, G0).

By a property of Hermann actions we have:

Proposition 2 Gλ =
∪

g∈G0

g(xλTλ)g
−1

(It is well-known G0 =
∪

g∈G0

gTg−1 for a max-

imal torus T of G0.)



F (se, G) ∩Gλ =
∪

g∈G0

g{x ∈ xλTλ |x2 = e}g−1

In order to determine F (se, G) ∩ Gλ, it is

enough to determine {x ∈ xλTλ |x2 = e} and

G0-conjugacy classes of each element of

the set.

We can carry out them for each G on a

case-by-case argument.

On the other hand, we have the following:

Proposition 3 Assume Gλ ∩ F (se, G) ̸= ∅.
(1) G0 ∪Gλ is a subgroup.



(2) For xλ ∈ Gλ ∩ F (se, G), G0 ∪Gλ is isomor-

phic to G0⋊⟨Ixλ⟩, where ⟨Ixλ⟩ is the subgroup

of Aut(G0) generated by Ixλ.

Hence, the determination of polars of G is

reduced to the determination of polars of

G0 ⋊ ⟨Ixλ⟩.

G0 ⋊ ⟨Ixλ⟩ consists of two connected com-

ponents:

G0 ⋊ ⟨Ixλ⟩ = {(g, id) | g ∈ G0} ∪ {(g, Ixλ) | g ∈ G0}



The group operation of G0 ⋊ ⟨Ixλ⟩:
For g, h ∈ G0, e′ := id, τ := Ixλ,

(g, e′)(h, e′) = (gh, e′), (g, e′)(h, τ) = (gh, τ),

(g, τ)(h, e′) = (gτ(h), τ), (g, τ)(h, τ) = (gτ(h), e′).

Proof of Prop. 3: (1) is easily seen by the

group operation. (2) φ : G0⋊ ⟨Ixλ⟩ → G0 ∪Gλ

defined by φ(g, id) = g, φ(g, Ixλ) = gxλ gives a

Lie group isomorphism.

G: a connected cpt. Lie group

σ: an involutive atumorphism of G

ê = (e, id): the identity element of G ⋊ ⟨σ⟩



Theorem 4

F (sê, G ⋊ ⟨σ⟩) = (F (se, G), id) ∪ (F (se ◦ σ,G), σ)

In particular, each connected component of

(F (se◦σ,G), σ) is a polar of G⋊⟨σ⟩. Moreover,

the conn. comp. of (F (se◦σ,G), σ) containing

(e, σ) coincides with (ρσ(G) · e, σ), where ρσ

is the twisted conjugate action by σ, and

ρσ(G) · e ∼= G/F (σ,G).

Proof of Thm. 4：

F (sê, G ⋊ ⟨σ⟩) = F (sê, (G, id)) ∪ F (sê, (G, σ))



F (sê, (G, id)) = (F (se, G), id)

F (sê, (G, σ)) = (F (se ◦ σ,G), σ)

(∵) ∀g ∈ G,

sê(g, σ) = (g, σ)

⇔ (g, σ) = (g, σ)−1 = (σ(g−1), σ)

⇔ g = σ(g−1)

⇔ se ◦ σ(g) = g

As stated before, if we obtain the classifi-

cation of max.antip. sugr. of G⋊ ⟨σ⟩, we can

determine max. antip. sets of G/F (σ,G).



4. Examples

U(n): the unitary group

F (s1n, U(n)) =

{x ∈ U(n) |x2 = 1n} =
n∪

j=0
{g Ij g−1 | g ∈ U(n)}

Ij = diag(−1, . . . ,−1︸ ︷︷ ︸
j

,1, . . . ,1) ∈ U(n)

The polars of U(n) w.r.t. 1n is:

{1n}, {−1n},
U(n)/(U(j) × U(n − j)) = Gj(Cn) (1 ≤ j ≤
n− 1) the complex Grassmann mfd.

τ(g) := ḡ (g ∈ U(n))



τ is an involutive autom. of U(n)

G = U(n) ⋊ ⟨τ⟩, ⟨τ⟩ = {e′, τ}
G = {(g, e′) | g ∈ U(n)}∪{(g, τ) | g ∈ U(n)} · · · (∗)

We write (g, e′) by g, and (g, τ) by gτ .

(∗)⇝ G = U(n) ∪ U(n)τ

F (sê, G) = (F (sê, G)∩U(n))∪(F (sê, G)∩U(n)τ)

F (sê, G) ∩ U(n) = F (s1n, U(n)) =
n∪

j=0
Gj(Cn)

We study F (sê, G) ∩ U(n)τ by using Thm. 4.

T : a maximal torus of F (τ, U(n)) = O(n)

U(n)τ =
∪

g∈U(n)
g(τT )g−1 (by Prop. 2)



F (sê, G)∩U(n)τ =
∪

g∈U(n)
g{x ∈ τT |x2 = 1n}g−1

So we study {x ∈ τT |x2 = 1n}. We can take

T ⊂ O(n) as

T =





R(θ1)
. . .

R(θk)
(1)


∣∣∣∣∣ θ1, . . . , θk ∈ R


,

R(θ) =

cos θ − sin θ

sin θ cos θ

 , k = ⌊n2⌋

∀t ∈ T, τt = (1n, τ)(t, e′) = (τ(t), τ) = tτ,

(τt)2 = τ2t2 = t2



Hence, {x ∈ τT |x2 = 1n} = τ{t ∈ T | t2 = 1n}

= τ





ϵ112
. . .

ϵk12
(1)


∣∣∣∣∣ ϵ1, . . . , ϵk = ±1


.

F (sê, G) ∩ U(n)τ =
∪

g∈U(n)
gτ{t ∈ T | t2 = 1n}g−1

• ∀t ∈ T, ∀g ∈ U(n), g(τt)g−1 = g t tg τ

• Since (i12)(−12)(i12) = 12,

∀t ∈ T, t2 = 1n, ∃h ∈ U(n) s.t. h t th = 1n.

Hence, if t ∈ T, t2 = 1n, {g(τt)g−1 | g ∈ U(n)} =

{g t tg | g ∈ U(n)}τ = {g 1n tg | g ∈ U(n)}τ.



So F (sê, G) ∩ U(n)τ = {g 1n tg | g ∈ U(n)}τ
Here g1n tg = g1nḡ−1 = g1nτ(g)−1 = ρτ(g)(1n).

ρτ: the twisted conjugate action by τ .

Hence {g 1n tg | g ∈ U(n)} is an orbit of ρτ(G)

through 1n.

g 1n tg = 1n ⇔ tg = g−1 = tḡ ⇔ g ∈ O(n)

F (sê, G) ∩ U(n)τ ∼= U(n)/O(n) (connected)

U(n)/O(n) is realized as a polar of U(n)⋊⟨τ⟩.
(U(n)/O(n) is not realized as a polar of a

connected compact Lie group.)
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