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1. Introduction

M: a Riemannian manifold

M iIs called a Riemannian symmetric space
iIf for Vx €¢ M, the point symmetry s, at z
IS given, i.e., (i) sy Is an isometry of M,
(ii) sy osy = idys, (iii) z is an isolated fixed
point of s,.

e The differential (dsz)s IS —idp j;.

e When M IS connected, s; IS uniquely de-
termined by (i)-(iii) and s, Is the geodesic

symmetry.



F(sz, M) :={y € M|sz(y) = y}

A connected component of F'(s;, M) is called
a polar w.r.t. =.

By (iii), {«} is a polar w.r.t. z, called the
trivial polar.

e A polar M1 of positive dimension is a to-
tally geodesic submanifold and hence M is
a Riemannian symmetric space. The point
symmetry at y € M is given by sy|, +.

e R"™: Euclidean space, F(s;, R") = {z}
e S": a sphere, F(s;, S") = {x, —x}



e P": the projective space, F(s;, P") = {z} U
pn—1

() Set K =R, C, or H and denote P" by KP".
Since s; IS induced by the reflection along
z in K71, F(sy, KP") =

{z} U {1—dim. subspaces in z+}(=KpP"1).

o If M is of noncompact type, F(s;, M) =
{z}.

Hereafter we consider the case where M IS
compact.



e A compact connected Riem. sym. sp. M IS
(i) of compact type (I/(M) is compact and
semisimple), (ii) a torus, or a product of (i)
and (ii) locally.

A: a subset of M

A is called an antipodal set if for Vz,y € A,
sz(y) = vy holds.

For Ve €¢ A, A C F(sgz,M). =z is an isolated
point in F(sy, M) as well as in A. Thus A is
discrete. Hence an antipodal set is finite.



The 2-number of M is #,M = max{|A|| A C
M : an antipodal set}.

If A satisfies |A| = #->M, A is called great.
If AC A implies A = A/, we say A is maxi-
mal.

e A great antipodal set iIs maximal but the
converse Is not true.

o 755" =2 and {z,—x} is a great antipodal
set.

Bang-Yen Chen and Tadashi Nagano gave
detailed studies of the 2-numbers (Chen-
Nagano, 1988).



In the past ten years there was progress
in the research of antipodal sets. Our in-
terest Is In maximal antipodal sets them-
selves rather than their cardinalities. We
are working on the classification of maxi-
mal antipodal sets.

e INn (T.-Tasaki, 2017) we classified max. antip.
subgr. of some classical cpt. Lie groups (.

e In (T.-Tasaki, 2020) we classified max. antip.
sets of some classical cpt. Riem. sym. sp. M.
The basic principle is to make use of an



embedding of M into G as a polar w.r.t.
the identity element and apply the classifi-
cation of max. antip. subgr. of .

e In order to continue the classification of
max. antip. sets for some other classical cpt.
Riem. sym. sp. M, we need a realization of
M as a polar of a disconnected cpt. Lie gr.
e Chen-Nagano and Nagano gave detailed
studies of polars of connected cpt. Riem.
symmetric spaces.

e \We studied polars of disconnected cpt. Lie
groups (T.-Tasaki, submitted).



2. Relations between antipodal sets and po-
lars

G: a compact Lie group

e: the identity element of ¢

Go: the identity component of G

da biinvariant Riemannian metric on &G
G 1S a compact Riem. symmetric space.
Ve € G, sz(y) =zy 1z (y € Q)

® se(y) — y_l, S:c(y) = Lz o0Se© Lx—l(y)

F(s¢,G) ={x € G | z°=¢€}



T
F(se,G) = U G+ G+. a polar, GJ = {e}
7=0
In general, when a polar consists of a single

point z, we call x a pole.

Proposition 1

Za(Gp): the centralizer of Gg in G

75(G) .= Zo(Gp) N F(se, G)

e The set of poles coincides with Z5(G).

e For a point z in G, Gj-' = {ly4(z) | g € Gp},
where [,(z) = grg L.



Hence each polar is a Gp-conjugacy class
of involutive elements.

A: an antipodal set of G

We can assume ec A by left (or right) trans-
lations. Then,

ezl =c¢c (z €A, zy=yx (z,y € A).

oIf A is maximal, A is a subgroup =

Lio X+« X Lo

We call such A a maximal antipodal sub-

group.



Example. G = O(n): the orthogonal group

Go = SO(n)
1,: the identity matrix
I; =daig(—1,...,-1,1,...,1) € O(n)

J
G;-r = {gl;g71 | g € SO(n)}
= 50(n)/S(O(j) x O(n —3))
= G;(R"™): the real Grassmann mfd.
Ag = {diag(eq,...,en) | ¢ = +1} is a maximal
antipodal subgroup of O(n).

Z2(0(n)) = {*1n}




e Ap IS a
up to conj
of O(n) /{4

unique max. antip. subgr. of O(n)
ugation, while a max. antip. subgr.

tion when

-1,} 1s not unique up to conjuga-
n IS even and n > 4.

M = G;.L: a polar of positive dim.

M 1S a connected cpt. Riem. sym. sp.
xo € M, M ={I4(z0) | g € Go}

o [p(M) =

Uglpr | 9 € Go}

oIf A is an antip.set of M, then AU {e} is
an antip. set of G.



e JA: a max. antip. subgr. Au{e} C 4
o If A is maximal in M, then A = M N A.

Cq,...,CL: Gp-conjugacy classes of makxi.
antip. subgr. of G

Bs: a representative of (s (1 <s<k)

(We gave their explicit descriptions for some
classical G.)

g€ Go, 1 <3Is <k, A=1Iy(Bs)
A=MnNA=MnIyuBs) =I,(MnN Bs)

Hence A is Ig(M)-congruent to M N Bs.



Therefore, a representative of an Iy(M)-
congruence class of maximal antipodal sets
of M is one of M NBy,...,M N B;.

e Using this principle, for some classical cpt.
Riem. sym. sp. M, we determined I5(M )-cong.
classes of max. antip. sets of M and gave
explicit descriptions of their representatives.
e JM, realized as a polar not of a connected
G but of a disconnected G.

e.g., U(n)/O(n),U(2n)/Sp(n)



3. Polars of disconnected compact Lie groups

G: a compact Lie group
Go: the identity component of G

G=GoU U Gy, Gy: a conn.component
AEN
F(se,G) = (F(se,G) NGo) U /\UA(F(Se, G)NG)y)
€
We know F'(se,G) N Gg by Chen-Nagano.

We study F'(se, G) NG

If F'(se, G)NGy) # D, for Vx, € G\NF(se, G) We
have G, = Gpox) = x)\Gp.

Iy, (Is,(y) = z)yzy') is an involutive auto-
morphism of Gy.



The action defined by g.h = ghl;,(9)~ 1 (g,h €
(GGp) is called the twisted conjugate action
by I»,. (It is a Hermann action.)

Th: a maximal torus of the identity comp. of
F(Iz,,Go).

By a property of Hermann actions we have:

Proposition 2 G, = U g(z)T)\)g *
g€Go
(It is well-known Go = | ¢T¢ ' for a max-
geGo

imal torus T of Gg.)



F(se, )NGy= U g{z ez )|z =¢e}g 1
gelo

In order to determine F(se,G) N G,, it is
enough to determine {z € z,T) |22 = e} and
Go-conjugacy classes of each element of
the set.

We can carry out them for each G on a
case-by-case argument.

On the other hand, we have the following:
Proposition 3 Assume G, N F(se, G) #= 0.
(1) Go UG,y is a subgroup.




(2) For =z, € GyN F(se,G), GogUG, is isomor-
phic to Gox(Iz,), where (I,) is the subgroup
of Aut(Gp) generated by I;,.

Hence, the determination of polars of G is
reduced to the determination of polars of

Go % (Iz,) consists of two connected com-

ponents:
GO X <ICI?)\> — {(97 Id) ‘g & GO} U {(galw)\) |g < GO}



The group operation of Gg x (Iz,):

For g,h € Gp, € :=id, 7:= Iy,

(g,€)(h,€e') = (gh,€), (g,€)(h,T) = (gh,T),
(g;7)(h,e") = (gr(h),7), (g,7)(h,T) = (g7(h),¢€).

Proof of Prop.3: (1) is easily seen by the
group operation. (2) ¢ : Ggx (Iz,) = GogUG),
defined by ¢(g,id) = g,¢(g, Iz,) = gz) gives a
Lie group iIsomorphism.

G: a connected cpt. Lie group
o: an involutive atumorphism of &G
e = (e,id): the identity element of G x (o)



T heorem 4
F(sz,Gx (o)) = (F(8e,G),id)U (F(se00o,G),o0)
In particular, each connected component of

(F(se0o,G), o) is a polar of Gx (o). Moreover,
the conn. comp. of (F(sco0,G), o) containing
(e, o) coincides with (ps(G) -e,0), where p,
IS the twisted conjugate action by o, and
po(G) -e=G/F(o0,G).

Proof of Thm. 4:
F(Séa G X <0>) — F(Séa (G7 Id)) U F(Séa (G7 U))



F(sz (G,id)) = (F(se,G),id)
F(sz (G,0)) = (F(se00,G),0)
() Vg eG,

se(g,0) = (g,0)

& (g,0)=(g9,0)"t=(a(g1),0)
& g=o(g™h)

& seoo(g) =g

As stated before, if we obtain the classifi-
cation of max.antip. sugr. of G x (o), we can
determine max. antip. sets of G/F(0,G).



4. Examples

U(n): the unitary group
F(s1,,U(n)) =

n
{zeUm)|z?=1p} = ,Uo{gfjg_l lg e U(n)}
]:
I; = diag(\—l,..v..,—l, 1,...,1) e U(n)

4

J
The polars of U(n) w.r.t. 1, is:

{171}7 {_171}7
U(n)/(U(g) x U(n —3)) = G;(C*") (1 <35 <
n—1) the complex Grassmann mfd.

7(g) '=g (g € U(n))



7 is an involutive autom. of U(n)
G=U(n) x(r), (1) ={e,7}

We write (g,€¢’) by g, and (g,7) by g¢gr.
(x) ~G=UMn)uU(n)T
F(s;,G) = (F(sg,G)NU(n))U (F(Sé‘hG) NU(n)T)

F(sg, G) NU(n) = F(s1,,U(n)) = 'Uo G;(C")
=

We study F'(s;,G) "U(n)T by using Thm. 4.
T: a maximal torus of F(7,U(n)) = O(n)

Un)r= U g(=T)g~' (by Prop.2)
geU(n)



F(s;,G)NU(n)tr= U glxerT| 12 = 1n}g_1
geU(n)

So we study {z € 7T |z2 = 1,,}. We can take

T C O(n) as
R(01)
T = « 01,...,0. e R},
R(0) g
| (1)
cosf —sind
) — k= |1
f(6) sing cosf |’ 2]

Vvte T, 7t = (1n,7)(t,e) = (7(¢t),7) = tr,
()2 = 72t2 = t2



Hence, {z € 7T |22 = 1,} = 1{t € T |t? = 1}

e1lo
— T S 617---7€l<:::1>-
€k12
| (1), |
F(s5,G)NUM)T= U gr{teT|t?=1,}g "
geU(n)

oVt € T,Vg € U(n), g(rt)g~t =gtlgr
e Since (’ilz)(—lz)(ilz) = 1,,
Vi € T,t2 = 1,, Jh e U(n) s.t. htth = 1,.

Hence, ift € T,t° = 1,, {g(tt)g 1 |g e Un)} =
{gtlglg e Un)}r ={glnlg|g € U(n)}r.



So F(s;,G)NUM)T ={g91lnlg|lgc Un)}r
Here gl,'g = glng ' = glu7(9) ™1 = pr(g)(1n).
or: the twisted conjugate action by .
Hence {g1,%|g € U(n)} is an orbit of p-(Q)
through 1,,.

glpnlg=1lpely=g1 =< g O0(n)
F(s;,G)NU(Mn)T=U(n)/O(n) (connected)
U(n)/O(n) is realized as a polar of U(n) x (7).
(U(n)/O(n) is not realized as a polar of a
connected compact Lie group.)
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