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1 Maximal antipodal sets

Let M be a connected compact Riemannian

symmetric space with the identity connected

component I(M)0 of the isometry group.

And sx the geodesic symmetry at x ∈M .

Definition (Chen-Nagano, Trans. AMS, 1988)

(1) An antipodal set A2 in M is a subset of

M such that sxy = y (x, y ∈ A2).

(2) ♯2M is the maximal possible cardinality

♯A2 of an antipodal set A2 in M .



(3) A great antipodal set A2 is an antipodal

set in M such that ♯A2 = ♯2M .

(4) A maximal antipodal set A is an antipodal

set in M such that A′ = A for all antipodal

subset A′ in M such as A′ ⊇ A.

(5) Two antipodal sets A,A′ in M are

congruent iff αA = A′ for some α ∈ I(M)0.



2 Poles and polars of a set of all fixed points

Put F (sx,M) := {y ∈M | sxy = y}. Then
F (sx,M) \ {x} = {oi | 1 ≤ i ≤ a} ∪ (∪b

j=1M
+
j )

as a disjoint union of some poles, i.e.,

zero-dimensional connected components {oi}
(1 ≤ i ≤ a), and some polars, i.e.,

positive-dimensional connected components

M+
j (1 ≤ j ≤ b) being compact Riemannian

symmetric space with respect to the induced

metric defined from the one of M .



Lemma 1. If (a, b) ∈ {(0, 1), (1, 1)}, then the

assignment with respect to x ∈M defined as

A1 7→ A′
1 := {x} ∪ {oi| 1 ≤ i ≤ a} ∪A1

from the set of all maximal antipodal sets in

M+
1 to that in M induces a surjection

between their congruent class.

Proof. Let A be a maximal antipodal set in M

containing x, A1 := A \ {x, oi} ⊆ F (sx,M)

\ {x, oi} =M+
1 is a priori a maximal

antipodal set in M+
1 such that A′

1 = A. //



3 Maximal antipodal subgroups

Let M be a connected compact Lie group,

which is a Riemannian symmetric space with a

bi-invariant metric. Any two conjugate

subgroups of M are congruent in M , and vice

varsa if M is a simple Lie group.

Remark. (Chen-Nagano, Remarks 1.2, 1.3) Any

maximal antipodal set A in M containing the

unit e is a discrete abelian subgroup of M ,

which is isomorphic to (Z2)
t with 2t <∞.



4 Connected simple Lie group G2

Theorem 1(Nagano, Tokyo J.Math., 1988; p.66)

F (se, G2)\{e} =M+
1

∼= G2/SO(4).

Moreover, F (so,M
+
1 )\{o} =M+

1,1
∼= S2 · S2

for o ∈M+
1 , where S2 · S2 is defined as

(S2 × S2)/Z2 by a natural action of Z2 :=

{±(1, 1)} on S2 × S2 (Chen-Nagano, 3.8).

Lemma 2. Put M := (S2 × S2)/Z2,

[x⃗, y⃗] := {±(x⃗, y⃗)} and x±i := [e⃗i,±e⃗i] for an
arbitary orthonormal frame {e⃗1, e⃗2, e⃗3} of R3.



Then any maximal antipodal set in M is

congruent to A := {x±i | i = 1, 2, 3}.
Proof. F (sx1 ,M) \ {x1} = {x−1} ∪ M+

1 ;

M+
1 := (S2 ∩ e⃗⊥1 )2 /Z2. Any maximal

antipodal set in M is congruent to A′
1 :=

{x±1} ∪ A1 for some maximal antipodal set

A1 ∋ x2 in M+
1 by Lemma 1 (a = 1). Then

A1\{x2} ⊆ {x−2} ∪ (S2 ∩ e⃗⊥1 ∩ e⃗⊥2 )2/Z2 =

{x−2, x±3}, so that A′
1 ⊆ A which is

antipodal. Since A′
1 is maximal, A′

1 = A. //



Theorem 2. (Tanaka-Tasaki-Y.) For the

maximal antipodal set A in (S2 × S2)/Z2

defined in Lemma 2, put B := φ(A) by an

isometry φ : (S2 × S2)/Z2 −→M+
1,1 with

respect to (S2 × S2)/Z2
∼=M+

1,1 mentioned

in Theorem 1. Then:

(1) Any maximal antipodal set in M+
1 is

congruent to B′ := {o} ∪B;

(2) Any maximal antipodal subgroup of G2 is

conjugate to B′′ := {e, o} ∪B.



5 Explicit description of G2

· H := R1⊕Ri⊕Rj ⊕Rk: the quaternions

with the Hamilton’s triple i, j,k and the

conjugation b̄ := b01− b1i− b2j − b3k of

b = b01 + b1i+ b2j + b3k ∈ H.

· O := H ×H: the octanions defined by

Cayley-Dickson process providing the product

xy := (mn− ba, an+ bm) for x = (m, a) and

y = (n, b) ∈ O with x̄ := (m̄,−a) ∈ O,

(x | y) := (xȳ + yx̄)/2 ∈ R and



G := {α ∈ GLR(O) | α(xy) = (αx)(αy)}
as the conjugation, a positive-definite

R-bilinear inner product and the group of all

automorphisms on the R-algebra O. For any

α ∈ G, x, y ∈ O, one has that α1 = 1,

αx = αx̄ and (αx | αy) = (x | y). Put
ImO := {x ∈ O | x̄ = −x} ∼= R7,

S6 := {x ∈ ImO | (x | x) = 1} ∋ (i, 0) and

H := {α ∈ G | α(i, 0) = (i, 0)}.
Proposition 1. (1) G acts transitively on S6



such that H ∼= SU(3), so that G/H ∼= S6.

(2) G is a connected, simply connected,

compact Lie group of dimension 14.

(3) rank G = rank H = 2.

Proof. (1) e.g. Yokota, Groups and Topology

(Gun to isoh in Japanese), Shōkabō, 1971,

pp.250–251. (2) is a consequence of (1).

(3) By (1), there exists an isomorphism

f : SU(3) −→ H. Let T 2 be a maximal torus

of SU(3). Then G2 = ∪α∈G αf(T 2)α−1:



In fact, by (2), G ⊆ SO(ImO) ∼= SO(7).

Since any element of SO(7) admits a

fixed-point in S6, any α ∈ G admits some

p ∈ S6 such that αp = p. By (1), βp = (i, 0)

for some β ∈ G. Then (βαβ−1)(i, 0) = (i, 0).

Hence, βαβ−1 = f(A) for some A ∈ SU(3).

For some B ∈ SU(3), BAB−1 ∈ T 2. Hence,

(f(B)β) α (f(B)β)−1 ∈ f(T 2). //

Put Sp(1) := {q ∈ H | |q| = 1},



ψ : Sp(1)× Sp(1) −→ GLR(O);

ψ(p, q)(m, a) := (qmq, paq).

Moreover, put e = ψ(1, 1), γ := ψ(1,−1),

Gγ := {α ∈ G | αγ = γα}.

Proposition 2(Yokota, J.F.S.Shinshu U., 1977)

(1) ψ(Sp(1)× Sp(1)) = Gγ ,

(2) kerψ = {±(1, 1)}, Gγ ∼= SO(4).

Proof. e.g. Yokota, Tsukuba J.Math. 14-1

(1990), 185–223; 1.3.3, 1.3.4. //



Corollary. G is a connected, simply connected,

compact, simple Lie group of type G2 with

z(G) = {e}.
Proof. (1) (Yokota, arXiv:0902.0431v1,

Theorem 1.11.1) z(G) = {e}: In fact,

z(G) ⊂ z(Gγ) = z(ψ(Sp(1)× Sp(1))) =

{ψ(1,±1)} = {e, γ} and γ ̸∈ z(G) by

dimGγ = 6 < 14 = dimG. (2) By (1), G is

semisimple, so that the type is A1 ⊕A1, A2,

G2. By Proposition 1 (2), G = G2. //



6 Explicit description of polars in G2

Theorem 3. (Tanaka-Tasaki-Y.)

(1) F (se, G)\{e} =M+
1 = {gγg−1 | g ∈ G}

∼= G2/SO(4).

(2) o := γ ∈M+
1 , F (so,M

+
1 )\{o} =M+

1,1

= {ψ(p, q) | p2 = q2 = −1} ∼= (S2 × S2)/Z2.

(3) Any maximal antipodal set in M+
1,1 is

congruent to B := {ψ(p,±p) | p = i, j,k}.
(4) Any maximal antipodal set in M+

1 is

congruent to B′ := {ψ(1,−1)} ∪B.



(5) Any maximal antipodal subgroup of G2 is

conjugate to B′′ := {ψ(1,±1)} ∪B.

Proof. (1) Take a maximal torus of SU(3) as

T 2 := {A = diag(α1, α2, α3) | A ∈ SU(3)};
F (se, T

2) = {diag(±1,±1,±1) | det = 1} =

{e} ∪ {Aidiag(1,−1,−1)A−1
i | i = 1, 2, 3}

with some Ai ∈ SU(3). By Proposition 1 (3),

γ ∈ F (se, G)\{e} = ∪g∈G gf(F (se, T
2))g−1

\{e} = ∪g∈G{gγg−1 | g ∈ G} ∼= G/Gγ ,

which is connected since G is connected.



Hence, G2/SO(4) ∼= F (se, G)\{e} =M+
1 .

(2) F (sγ ,M
+
1 )\{γ} = M+

1 ∩Gγ\{γ} =

{ψ(p, q) | (p2, q2) = ±(1, 1)}\{e, γ} =

{ψ(p, q) | (p2, q2) = −(1, 1)} ∼=
(S2 × S2)/Z2, because of e = ψ(1, 1),

γ = ψ(1,−1) and {p ∈ Sp(1) | p2 = −1}
= {p ∈ Sp(1) | p = −p̄}
= {p = p1i+ p2j + p3k |

∑3
i=1 p

2
i = 1}.

(3) follows from Lemma 2 because of (2). (4)

(resp. (5)) follows from Lemma 1 with a = 0

because of (3) (resp. (4)) and (1). //



7 Conclusion.

Corollary. (Chen-Nagano, 3.13)

♯2(S
2 · S2) = 6, ♯2G2/SO(4) = 7, ♯2G2 = 8.

Proof. In S2 · S2 (resp. G2/SO(4), G2), B

(resp. B′, B′′) is a great antipodal set as

unique maximal one up to congruence. //

Remark. Posteriorly, Theorem 3 (5) is verified

by heavy use of weights of B′′ on O = R8.

By the use of Lemma 1, Theorem 3 provides

apriori classification for G2.
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