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1. Introduction

M : a compact Riemannian symmetric space

sx : the geodesic symmetry at x ∈M

S ⊂M : a subset

S : an antipodal set def⇐⇒ ∀x, y ∈ S, sx(y) = y

the 2-number of M

#2M := max{|S| | S ⊂M : an antipodal set}
S : a great antipodal set def⇐⇒ |S| = #2M

(Chen-Nagano)

Theorem A (Takeuchi 1989)

If M is a symmetric R-space, #2M coincides

with the sum of the Z2-Betti numbers of M.



Theorem B (Tanaka-Tasaki 2013)

M : a symmetric R-space

(1) Any antipodal set of M is included in a

great antipodal set.

(2) Any two great antipodal sets are con-

gruent, that is, if A,A′ are great antipodal

sets, there is g ∈ I0(M), the identity compo-

nent of the group of isometries of M, such

that A′ = gA.

G2, G2/SO(4) are not symmetric R-spaces.



2. Polars

M : a compact connected Riemnnian sym-

metric space, o ∈M

A connected component of

F (so,M) := {p ∈M | so(p) = p}
is called a polar of M w.r.t. o.

F (so,M) =
k∪
i=0

M+
i , M+

i : a polar, M+
0 = {o}

dimM+
i >0 ⇒ a totally geodesic submanifold

A : an antipodal set of M

o ∈ A ⇒ A ⊂ F (so,M)

A ∩M+
i ̸= ∅ ⇒ an antipodal set of M+

i



G := I0(M)

K := {g ∈ G | go = o}, M ∼= G/K

K0 : the identity component of K

M+
i = K0xi (xi ∈M+

i )

I0(M
+
i ) = {k|

M+
i

| k ∈ K0}

Proposition 1 When F (so,M) = {o} ∪ M+
1 ,

the assignment A 7→ {o} ∪ A from the set

of maximal antipodal sets in M+
1 to that

of in M induces a bijection between their

congruence classes.



Smi : m-dim sphere with radius ri (i = 1,2)

Sm1 × Sm2 : a Riemannian symmetric space

s(x1,x2)(y1, y2) = (sx1(y1), sx2(y2)) (xi, yi ∈ Smi )

Z2 = {1,−1} ↷ Sm1 × Sm2

−1 acts as (x1, x2) 7→ (−x1,−x2)
Sm1 × Sm2 ∈ (x1, x2) 7→ [x1, x2] ∈ (Sm1 × Sm2 )/Z2 :

the natural projection

(Sm1 × Sm2 )/Z2 : a Riem. symmetric space

s[x1,x2][y1, y2] = [sx1(y1), sx2(y2)] (xi, yi ∈ Smi )



By Proposition 1 we obtain :

Lemma 2 Let {e1. . . . , em+1} ⊂ Sm1 and {f1, . . . ,
fm+1} ⊂ Sm2 be orthogonal frames of Rm+1.

Any maximal antipodal set of (Sm1 × Sm2 )/Z2

is congruent to {[e1,±f1], . . . , [em+1,±fm+1]}
and #2(S

m
1 × Sm2 )/Z2 = 2(m+1).



3. Maximal antipodal sets of G2 and G2/SO(4)

G2 : a compact connected Lie group whose

root system is of type G2

e : the identity element

F (se, G2) = {e} ∪M+
1 , M

+
1

∼= G2/SO(4)

o ∈M+
1

F (so,M
+
1 ) = {o} ∪M+

1,1, M
+
1,1

∼= (S2 × S2)/Z2

G : a compact Lie group

sx(y) = xy−1x (x, y ∈ G)

A ⊂ G : a maximal antipodal set

e ∈ A ⇒ A : a subgroup ∼= Z2 × · · · × Z2



By Proposition 1 :

Theorem 3 (1) A maximal antipodal set of

G2/SO(4) is congruent to {o}∪A for a max-

imal antipodal set A of M+
1,1

∼= (S2 × S2)/Z2

given in Lemma 2. Hence {o}∪A is a great

antipodal set and #2G2/SO(4) = 7.

(2) A maximal antipodal subgroup of G2 is

conjugate to {e} ∪A′ for a maximal antipo-

dal set A′ of M+
1

∼= G2/SO(4) given in (1).

Hence {e}∪A′ is a great antipodal subgroup

and #2G2 = 8.



4. Explicit descriptions of maximal antipo-

dal sets

O : the octonions

O = H× H, (m,a), (n, b) ∈ O
(m,a)(n, b) = (mn− b̄a, an̄+ bm)

H ↪→ O, H ∋ m 7→ (m,0) ∈ O
Aut(O)

= {α ∈ GLR(O) | α(xy) = (αx)(αy), x, y ∈ O} :

a compact connected Lie group of type G2

G2
id
= Aut(O)



Sp(1) = {p ∈ H | |p| = 1}
ψ : Sp(1)× Sp(1) → GLR(O)

ψ(p, q)(m,a) := (qmq̄, paq̄)

(p, q ∈ Sp(1),m, a ∈ H) (Yokota)

ψ is a homomorphism, Imψ ⊂ G2

The following is showed by Yokota :　

・Imψ = Zψ(1,−1)(G2) : the centralizer

・Zψ(1,−1)(G2)
∼= (Sp(1) × Sp(1))/{±(1,1)} ∼=

SO(4)

Imψ
id
= SO(4)



F (se, G2) = {e} ∪M+
1

ψ(1,−1)2 = e, i.e., se(ψ(1,−1)) = ψ(1,−1)

M+
1 = {g ψ(1,−1) g−1 | g ∈ G2} ∼= G2/SO(4)

o = ψ(1,−1) ∈M+
1

F (so,M
+
1 ) = {o} ∪M+

1,1

M+
1,1 = {ψ(p, q) | p2 = q2 = −1}

M+
1,1

∼= (S2 × S2)/Z2 where S2 = {x ∈ Sp(1) |
x2 = −1}



A maximal antipodal set of M+
1,1 is congru-

ent to {ψ(i,±i), ψ(j,±j), ψ(k,±k)} where i, j, k

are elements of the standard basis of H.

A maximal antipodal set of M+
1 is congru-

ent to {ψ(1,−1), ψ(i,±i), ψ(j,±j), ψ(k,±k)}.
A maximal antipodal subgroup of G2 is con-

jugate to {ψ(1,±1), ψ(i,±i), ψ(j,±j), ψ(k,±k)}(∼=
Z2 × Z2 × Z2) ⊂ SO(4).



5. G2/SO(4) as an oriented real Grassmann

manifold

H : a quaternion subalgebra of O
{1}⊥ in H is a canonically oriented 3-plane

in ImO = ImH×H ∼= R7, called an associative

3-plane.

G̃ass : the set of associative 3-planes in ImO
G̃ass ⊂ G̃3(R7) : totally geodesic

G̃ass
∼= G2/SO(4) (Harvey-Lawson)

M+
1

∼= G̃ass by ξ 7→ V (ξ) = {x ∈ ImO | ξx = x}



The classification of maximal antipodal sets

of G̃3(R7) is given by Tasaki.

[7] = {1,2,3,4,5,6,7}(
[7]
3

)
= {α ⊂ [7] | |α| = 3}

A ⊂ [7] : an antipodal set def⇔ ∀α, β ∈
(
[7]
3

)
, |α\β|

: even

A ⊂
(
[7]
3

)
: a maximal antipodal set

e1, . . . , e7 : an orthonormal basis of R7

⇒ {±⟨eα1, eα2, eα3⟩R | {α1, α2, α3} ∈ A} is a max-

imal antipodal set of G̃3(R7), and vice versa.

The set of maximal antipodal sets of
(
[7]
3

)



coincides with the set of lines of the Fano

plane under the actions of permutations.
1

2

3

4

5

7

6

A maximal antipodal set of M+
1 = G2/SO(4)

↔ a maximal antipodal set A of G̃ass

→ a maximal antipodal set {±α | α ∈ A} of

G̃3(R7)

↔ the set of lines of the Fano plane
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