Maximal antipodal sets of G_2 and $G_2/SO(4)$ and related geometry

Makiko Sumi Tanaka*, Hiroyuki Tasaki and Osami Yasukura

The 22nd International Workshop on Differential Geometry of Submanifolds in Symmetric Spaces July 31–August 5, 2019

Kyungpook National University, Korea

Contents

- 1. Introduction
- 2. Polars
- **3.** Maximal antipodal sets of G_2 and $G_2/SO(4)$
- 4. Explicit descriptions of maximal antipodal sets

5. $G_2/SO(4)$ as an oriented real Grassmann manifold

1. Introduction

M: a compact Riemannian symmetric space

- s_x : the geodesic symmetry at $x \in M$
- $S \subset M$: a subset

S: an antipodal set $\stackrel{\text{def}}{\Longrightarrow} \forall x, y \in S, \ s_x(y) = y$ the 2-number of M

 $#_2M := \max\{|S| \mid S \subset M : \text{ an antipodal set}\}$ S: a great antipodal set $\stackrel{\text{def}}{\Longrightarrow} |S| = #_2M$ (Chen-Nagano)

Theorem A (Takeuchi 1989)

If *M* is a symmetric *R*-space, $\#_2M$ coincides with the sum of the \mathbb{Z}_2 -Betti numbers of *M*.

<u>Theorem B</u> (Tanaka-Tasaki 2013)

- M : a symmetric R-space
- (1) Any antipodal set of M is included in a great antipodal set.

(2) Any two great antipodal sets are congruent, that is, if A, A' are great antipodal sets, there is $g \in I_0(M)$, the identity component of the group of isometries of M, such that A' = gA.

 G_2 , $G_2/SO(4)$ are not symmetric *R*-spaces.

2. Polars

M: a compact connected Riemnnian symmetric space, $o \in M$

A connected component of

$$F(s_o, M) := \{ p \in M \mid s_o(p) = p \}$$

is called a polar of M w.r.t. o. $F(s_o, M) = \bigcup_{i=0}^{k} M_i^+, M_i^+$: a polar, $M_0^+ = \{o\}$ $\dim M_i^+ > 0 \Rightarrow$ a totally geodesic submanifold A: an antipodal set of M $o \in A \Rightarrow A \subset F(s_o, M)$ $A \cap M_i^+ \neq \emptyset \Rightarrow$ an antipodal set of M_i^+

$$G := I_0(M)$$

$$K := \{g \in G \mid go = o\}, \quad M \cong G/K$$

$$K_0 : \text{ the identity component of } K$$

$$M_i^+ = K_0 x_i \quad (x_i \in M_i^+)$$

$$I_0(M_i^+) = \{k|_{M_i^+} \mid k \in K_0\}$$

<u>Proposition 1</u> When $F(s_o, M) = \{o\} \cup M_1^+$, the assignment $A \mapsto \{o\} \cup A$ from the set of maximal antipodal sets in M_1^+ to that of in M induces a bijection between their congruence classes.

 S_i^m : m-dim sphere with radius r_i (i = 1, 2) $S_1^m \times S_2^m$: a Riemannian symmetric space $s_{(x_1,x_2)}(y_1,y_2) = (s_{x_1}(y_1), s_{x_2}(y_2)) \ (x_i, y_i \in S_i^m)$ $\mathbb{Z}_2 = \{1, -1\} \cap S_1^m \times S_2^m$ -1 acts as $(x_1, x_2) \mapsto (-x_1, -x_2)$ $S_1^m \times S_2^m \in (x_1, x_2) \mapsto [x_1, x_2] \in (S_1^m \times S_2^m) / \mathbb{Z}_2$: the natural projection $(S_1^m \times S_2^m)/\mathbb{Z}_2$: a Riem. symmetric space $s_{[x_1,x_2]}[y_1,y_2] = [s_{x_1}(y_1), s_{x_2}(y_2)] \ (x_i, y_i \in S_i^m)$

By Proposition 1 we obtain : <u>Lemma 2</u> Let $\{e_1, \ldots, e_{m+1}\} \subset S_1^m$ and $\{f_1, \ldots, f_{m+1}\} \subset S_2^m$ be orthogonal frames of \mathbb{R}^{m+1} . Any maximal antipodal set of $(S_1^m \times S_2^m)/\mathbb{Z}_2$ is congruent to $\{[e_1, \pm f_1], \ldots, [e_{m+1}, \pm f_{m+1}]\}$ and $\#_2(S_1^m \times S_2^m)/\mathbb{Z}_2 = 2(m+1)$. **3.** Maximal antipodal sets of G_2 and $G_2/SO(4)$ G_2 : a compact connected Lie group whose root system is of type G_2

e : the identity element

$$F(s_e, G_2) = \{e\} \cup M_1^+, \ M_1^+ \cong G_2/SO(4)$$

$$o \in M_1^+$$

$$F(s_o, M_1^+) = \{o\} \cup M_{1,1}^+, \ M_{1,1}^+ \cong (S^2 \times S^2)/\mathbb{Z}_2$$

G: a compact Lie group $s_x(y) = xy^{-1}x \quad (x, y \in G)$ $A \subset G: a \text{ maximal antipodal set}$ $e \in A \Rightarrow A: a \text{ subgroup} \cong \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$

By Proposition 1 :

<u>Theorem 3 (1) A maximal antipodal set of</u> $G_2/SO(4)$ is congruent to $\{o\} \cup A$ for a maximal antipodal set A of $M_{1,1}^+ \cong (S^2 \times S^2)/\mathbb{Z}_2$ given in Lemma 2. Hence $\{o\} \cup A$ is a great antipodal set and $\#_2G_2/SO(4) = 7$. (2) A maximal antipodal subgroup of G_2 is conjugate to $\{e\} \cup A'$ for a maximal antipodal set A' of $M_1^+ \cong G_2/SO(4)$ given in (1). Hence $\{e\} \cup A'$ is a great antipodal subgroup

and $\#_2G_2 = 8$.

4. Explicit descriptions of maximal antipodal sets

 $\ensuremath{\mathbb{O}}$: the octonions

 $\mathbb{O} = \mathbb{H} \times \mathbb{H}, \quad (m, a), (n, b) \in \mathbb{O}$ $(m, a)(n, b) = (mn - \overline{b}a, a\overline{n} + bm)$ $\mathbb{H} \hookrightarrow \mathbb{O}, \quad \mathbb{H} \ni m \mapsto (m, 0) \in \mathbb{O}$ $\mathsf{Aut}(\mathbb{O})$

 $= \{ \alpha \in GL_{\mathbb{R}}(\mathbb{O}) \mid \alpha(xy) = (\alpha x)(\alpha y), \ x, y \in \mathbb{O} \} :$ a compact connected Lie group of type G_2 $G_2 \stackrel{\text{id}}{=} \operatorname{Aut}(\mathbb{O})$

 $Sp(1) = \{p \in \mathbb{H} \mid |p| = 1\}$ $\psi: Sp(1) \times Sp(1) \to GL_{\mathbb{R}}(\mathbb{O})$ $\psi(p,q)(m,a) := (qm\bar{q}, pa\bar{q})$ (Yokota) $(p,q \in Sp(1), m, a \in \mathbb{H})$ ψ is a homomorphism, $\operatorname{Im}\psi \subset G_2$ The following is showed by Yokota : · Im $\psi = Z_{\psi(1,-1)}(G_2)$: the centralizer $\cdot Z_{\psi(1,-1)}(G_2) \cong (Sp(1) \times Sp(1))/\{\pm(1,1)\} \cong$ SO(4) $\operatorname{Im}\psi \stackrel{\text{id}}{=} SO(4)$

$$F(s_e, G_2) = \{e\} \cup M_1^+$$

$$\psi(1, -1)^2 = e, \text{ i.e., } s_e(\psi(1, -1)) = \psi(1, -1)$$

$$M_1^+ = \{g \, \psi(1, -1) \, g^{-1} \mid g \in G_2\} \cong G_2/SO(4)$$

$$o = \psi(1, -1) \in M_1^+$$

$$F(s_o, M_1^+) = \{o\} \cup M_{1,1}^+$$

$$M_{1,1}^+ = \{\psi(p,q) \mid p^2 = q^2 = -1\}$$

$$M_{1,1}^+ \cong (S^2 \times S^2) / \mathbb{Z}_2 \text{ where } S^2 = \{x \in Sp(1) \mid x^2 = -1\}$$

A maximal antipodal set of $M_{1,1}^+$ is congruent to $\{\psi(i,\pm i), \psi(j,\pm j), \psi(k,\pm k)\}$ where i, j, k are elements of the standard basis of \mathbb{H} . A maximal antipodal set of M_1^+ is congruent to $\{\psi(1,-1), \psi(i,\pm i), \psi(j,\pm j), \psi(k,\pm k)\}.$ A maximal antipodal subgroup of G_2 is conjugate to { $\psi(1,\pm 1), \psi(i,\pm i), \psi(j,\pm j), \psi(k,\pm k)$ }(\cong $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \subset SO(4).$

5. $G_2/SO(4)$ as an oriented real Grassmann manifold

H : a quaternion subalgebra of \mathbb{O}

 $\{1\}^{\perp}$ in *H* is a canonically oriented 3-plane in $Im\mathbb{O} = Im\mathbb{H} \times \mathbb{H} \cong \mathbb{R}^7$, called an associative 3-plane.

 \tilde{G}_{ass} : the set of associative 3-planes in Im \mathbb{O} $\tilde{G}_{ass} \subset \tilde{G}_3(\mathbb{R}^7)$: totally geodesic $\tilde{G}_{ass} \cong G_2/SO(4)$ (Harvey-Lawson) $M_1^+ \cong \tilde{G}_{ass}$ by $\xi \mapsto V(\xi) = \{x \in \text{Im}\mathbb{O} \mid \xi x = x\}$

The classification of maximal antipodal sets
of
$$\tilde{G}_3(\mathbb{R}^7)$$
 is given by Tasaki.
 $[7] = \{1, 2, 3, 4, 5, 6, 7\}$
 $\binom{[7]}{3} = \{\alpha \in [7] \mid |\alpha| = 3\}$
 $A \in [7]$: an antipodal set $\stackrel{\text{def}}{\Leftrightarrow} \forall \alpha, \beta \in \binom{[7]}{3}, |\alpha \setminus \beta|$
: even
 $A \in \binom{[7]}{3}$: a maximal antipodal set
 e_1, \ldots, e_7 : an orthonormal basis of \mathbb{R}^7
 $\Rightarrow \{\pm \langle e_{\alpha_1}, e_{\alpha_2}, e_{\alpha_3} \rangle_{\mathbb{R}} \mid \{\alpha_1, \alpha_2, \alpha_3\} \in A\}$ is a max-
imal antipodal set of $\tilde{G}_3(\mathbb{R}^7)$, and vice versa.
The set of maximal antipodal sets of $\binom{[7]}{3}$

coincides with the set of lines of the Fano plane under the actions of permutations.

- A maximal antipodal set of $M_1^+ = G_2/SO(4)$
- \leftrightarrow a maximal antipodal set A of \tilde{G}_{ass}
- \rightarrow a maximal antipodal set $\{\pm \alpha \mid \alpha \in A\}$ of $\tilde{G}_3(\mathbb{R}^7)$
- \leftrightarrow the set of lines of the Fano plane

Thank you for your kind attention.