コンパクト型 Hermite 対称空間の 二つの実形の対の Floer ホモロジー

入江 博 (東京電機大学未来科学部) 酒井高司 (首都大学東京理工学研究科) 田崎博之 (筑波大学物質科学研究科)

2011年3月20日

概要

単調なコンパクト型Hermite対称空間の実形の対 (L_0,L_1) について、 \mathbb{Z}_2 係数のFloerホモロジー $HF(L_0,L_1:\mathbb{Z}_2)$ を計算

- ・ コンパクト型 Hermite 対称空間 M の 二つの実形 L_0 と L_1 の交叉
 - = 対蹠集合

(田中真紀子-田崎博之, 2010)

ullet M のラグランジュ部分多様体 L_0 と L_1 に境界にもつholomorphic strips の空間に自由な \mathbb{Z}_2 作用

1. 定義と問題

Definition.

 (M^{2n}, ω) : シンプレクティック多様体 $\stackrel{\text{def}}{\Longleftrightarrow} \omega \in \Omega^2(M), \ d\omega = 0, \ \omega^n \neq 0.$

Definition.

 $L\subset (M,\omega)$: ラグランジュ部分多様体 $\stackrel{\mathsf{def}}{\Longleftrightarrow} \dim L = \frac{1}{2}\dim M, \; \omega|_L = 0.$

Example.

 (M, J, ω) : コンパクト型エルミート対称空間

 σ : M の対合的な反正則等長変換

 $L = Fix \sigma$ (実形)

Arnold-Givental不等式 (Y.-G. Oh, 1995)

 (M,J,ω) : コンパクト型エルミート対称空間

 $\sigma: M$ の対合的な反正則等長変換

 $L = Fix \sigma$ (実形)

Lは単調で最小Maslov数 $\Sigma_L \geq 2$

 $\Rightarrow L \, \mathcal{L} \, \phi(L) \,$ が横断的に交わるような任意の $\phi \in \mathsf{Ham}(M,\omega)$ に対して,

$$\#(L \cap \phi(L)) \ge \sum_i \operatorname{rank} H_i(L, \mathbb{Z}_2)$$

が成り立つ.

 $HF(L, L : \mathbb{Z}_2) \cong H_*(L, \mathbb{Z}_2)$

Problem (Y.-G. Oh, 1993)

コンパクト型 Hermite 対称空間 M において,実形 L_0 と L_1 が必ずしも合同でないとき, $HF(L_0,L_1:\mathbb{Z}_2)$ を計算せよ.

● 実形の対ではないが、

Theorem (Alston, 2008)

複素射影空間 ($\mathbb{C}P^n, J, \omega_{FS}$) の2つのLagrange 部分多様体である実射影空間 $\mathbb{R}P^n$ と Clifford トーラス $T^n=\{[z_0:\cdots:z_n]\mid |z_0|=\cdots=|z_n|\}$ を考える. n=2k-1 のとき,

$$HF(\mathbb{R}P^{2k-1}, T^{2k-1} : \mathbb{Z}_2) \cong (\mathbb{Z}_2)^{2^k}.$$

2. 主結果

Theorem 1 (酒井-田崎- I).

 (M,J,ω) を単調なコンパクト型 Hermite対称空間とする. L_0,L_1 をM の横断的に交わる2つの実形で,最小 Maslov数はともに3以上ならば,

$$HF(L_0, L_1 : \mathbb{Z}_2) \cong \bigoplus_{p \in L_0 \cap L_1} \mathbb{Z}_2[p].$$

• $L_0 \cap L_1 = M$ の対蹠集合 (田中-田崎)

Definition (Chen-長野, 1988)

M: Riemann 対称空間

 $M \supset S$: 部分集合, s_x : 点x に関する点対称

● Sが対蹠集合

 $\stackrel{\text{def}}{\iff} S$ のすべての点x,yに対して $s_xy=y$ が成り立つ.

ullet M の対蹠集合の元の個数の上限を $\#_2M$ と表す.

2-number

3. *M* が既約の場合

Theorem 2 (酒井-田崎- I).

(1) $M = G_{2m}^{\mathbb{C}}(\mathbb{C}^{4m})$ $(m \geq 2)$ であり, L_0 は $G_m^{\mathbb{H}}(\mathbb{H}^{2m})$ と合同, L_1 はU(2m) と合同ならば,

$$HF(L_0, L_1 : \mathbb{Z}_2) \cong (\mathbb{Z}_2)^{2^m}.$$

(2) それ以外では,

 $HF(L_0, L_1 : \mathbb{Z}_2) \cong (\mathbb{Z}_2)^{\min\{\#_2 L_0, \#_2 L_1\}}.$

- $2^m < {2m \choose m} = \#_2 L_0 < 2^{2m} = \#_2 L_1$.
- L: 実形 \Rightarrow $\#_2L = \sum_i \operatorname{rank} H_i(L, \mathbb{Z}_2).$ (竹内勝)

Corollary 3 (酒井-田崎- I).

 L_0 と $\phi(L_1)$ が横断的に交わるような任意の $\phi\in {\sf Ham}(M,\omega)$ に対して,

(1) $M=G_{2m}^{\mathbb{C}}(\mathbb{C}^{4m})$ $(m\geq 2)$ であり、 L_0 は $G_m^{\mathbb{H}}(\mathbb{H}^{2m})$ と合同、 L_1 はU(2m) と合同ならば、

$$\#(L_0 \cap \phi(L_1)) \ge 2^m$$
.

(2) それ以外では,

$$\#(L_0\cap\phi(L_1))\geq \min\{\sum_i \mathrm{rank} H_i(L_0,\mathbb{Z}_2),$$
 $\sum_i \mathrm{rank} H_i(L_1,\mathbb{Z}_2)\}.$

Table.

M	L_0	L_1
$Q_n(\mathbb{C})$	$S^{k,n-k}$	$S^{l,n-l}$
$G_{2q}^{\mathbb{C}}(\mathbb{C}^{2m+2q})$	$G_q^{\mathbb{H}}(\mathbb{H}^{m+q})$	$G_{2q}^{\mathbb{R}}(\mathbb{R}^{2m+2q})$
$G_n^{\mathbb{C}}(\mathbb{C}^{2n})$	U(n)	$G_n^{\mathbb{R}}(\mathbb{R}^{2n})$
$G_{2m}^{\mathbb{C}}(\mathbb{C}^{4m})$	$G_m^{\mathbb{H}}(\mathbb{H}^{2m})$	U(2m)
Sp(2m)/U(2m)	Sp(m)	U(2m)/O(2m)
SO(4m)/U(2m)	U(2m)/Sp(m)	SO(2m)
$E_6/T \cdot Spin(10)$	$F_4/Spin(9)$	$G_2^{\mathbb{H}}(\mathbb{H}^4)/\mathbb{Z}_2$
$E_7/T \cdot E_6$	$T \cdot (E_6/F_4)$	$(SU(8)/Sp(4))/\mathbb{Z}_2$

ここで、
$$S^{k,n-k} = (S^k \times S^{n-k})/\mathbb{Z}_2$$
.

4. *M* が可約の場合

Proposition 4.

コンパクト型 Hermite対称空間 (M, J, ω) について, (M, ω) が単調であることと(M, J) が $K\ddot{a}hler$ -Einsteinであることは同値である.

Example.

 $M = \mathbb{C}P^n$ とする.

Mの実形 L_0, L_1 は $\mathbb{R}P^n$ と合同である.

 $HF(L_0 \times L_1, D_{\sigma}(M) : \mathbb{Z}_2) \cong (\mathbb{Z}_2)^{n+1}.$