有向実Grassmann多様体の対蹠集合

田崎 博之 (筑波大学数理物質系)*

最近数年間コンパクト型 Hermite 対称空間や対称 R 空間の対蹠集合に関連する研究発表を行なってきた。これらの成果はコンパクト型 Hermite 対称空間の対蹠集合の持つよい性質によるものと思われる。これに対して標題の有向実 Grassmann 多様体の対蹠集合はかなり異なる性質を持っているようである。この講演では、 \mathbb{R}^n 内の向きの付いた k 次元部分空間全体の成す有向実 Grassmann 多様体 $\tilde{G}_k(\mathbb{R}^n)$ の極大対蹠集合が、 $\{1,2,\ldots,n\}$ のある条件を満たす部分集合の族と対応することを示す。さらに、 $k\leq 4$ の場合の分類を与える。

コンパクト Riemann 対称空間 M の点x における点対称を s_x で表す。部分集合 $S \subset M$ の任意の元x,y が $s_x(y)=y$ を満たすとき、S を M の対蹠集合という。対蹠集合は有限集合になり、その元の個数は上に有界になる。そこで $\#_2M=\max\{\#S\mid S$ は M の対蹠集合 $\}$ によって、M の 2-number $\#_2M$ を定める。2-number を与える対蹠集合を大対蹠集合という。以上の定義は 2-number による。

 \mathbb{R}^n 内のk次元部分空間全体の成す Grassmann 多様体を $G_k(\mathbb{R}^n)$ で表す。 $G_k(\mathbb{R}^n)$ には標準的な計量があり、それに関して Riemann 対称空間になる。 $G_k(\mathbb{R}^n)$ の極大対蹠集合は、 \mathbb{R}^n の正規直交基底 v_1,\ldots,v_n によって

$$\{\langle v_{\alpha(1)}, \dots, v_{\alpha(k)} \rangle \mid \alpha \in \operatorname{Inc}_k(n)\}$$

と表示できる。ここで、 $\operatorname{Inc}_k(n)$ は $\{1,\ldots,k\}$ から $\{1,\ldots,n\}$ への単調増加写像の全体である。 $\operatorname{Riemann}$ 多様体 X の部分集合 S_1,S_2 が X の等長変換全体の単位連結成分の元で写り合うとき、 S_1,S_2 は合同であるという。すると上記極大対蹠集合同士は合同になり、大対蹠集合になる。特に $\#_2G_k(\mathbb{R}^n)=\#\operatorname{Inc}_k(n)=\binom{n}{k}$ が成り立つ。

二重被覆写像 $p: \tilde{G}_k(\mathbb{R}^n) \to G_k(\mathbb{R}^n)$ を向きを忘れる対応によって定める。 $P_k(n) = \{X \subset \{1,\ldots,n\} \mid \#X = k\}$ とおくと、 $\operatorname{Inc}_k(n)$ と $P_k(n)$ を自然に同一視できる。 $\tilde{G}_k(\mathbb{R}^n)$ を自然な対応によって外積の空間 $\bigwedge^k \mathbb{R}^n$ に埋め込んでおく。 \mathbb{R}^n の正規直交基底 $\mathbf{v} = \{v_i\}$ をとり、 $\alpha \in P_k(n)$ に対して $\vec{v}_\alpha = v_{\alpha(1)} \wedge \cdots \wedge v_{\alpha(k)}$ とおく。すると、 $\tilde{G}_k(\mathbb{R}^n)$ の点対称は

$$s_{\vec{v}_{\alpha}}(\vec{v}_{\beta}) = (-1)^{\#(\beta-\alpha)} \vec{v}_{\beta} \quad (\alpha, \beta \in P_k(n))$$

を満たす。そこで、 $\alpha, \beta \in P_k(n)$ に対して $\#(\beta - \alpha)$ が偶数になるとき、 α, β は対蹠的という。部分集合 $A \subset P_k(n)$ の任意の二元 $\alpha, \beta \in A$ が対蹠的になるとき、A を対蹠的という。これと上記二重被覆写像を利用することにより、次の定理を得る。

定理1 \mathbb{R}^n の正規直交基底 $\mathbf{v} = \{v_i\}$ と $P_k(n)$ の極大対蹠的部分集合 A に対して、 $\{\pm \vec{v}_{\alpha} \mid \alpha \in A\}$ は $\tilde{G}_k(\mathbb{R}^n)$ の極大対蹠集合になる。逆に $\tilde{G}_k(\mathbb{R}^n)$ の任意の極大対蹠集合はこのようにして得られる。

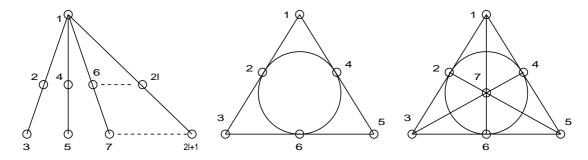
 $P_k(n)$ の部分集合 A_1, A_2 が $\{1, \ldots, n\}$ の置換で写り合うとき、 A_1, A_2 は合同であるという。 $\tilde{G}_k(\mathbb{R}^n)$ の極大対蹠集合の合同類の分類は、 $P_k(n)$ の極大対蹠的部分集合の合同類の分類に帰着することもわかる。 $k \leq 4$ の場合の分類結果は以下のとおり。

^{*}e-mail: tasaki@math.tsukuba.ac.jp

k=1の場合、 $\{\{1\}\}$ が唯一の $P_1(n)$ の極大対蹠的部分集合の合同類の代表元であり、対応する $\tilde{G}_1(\mathbb{R}^n)=S^{n-1}$ の対蹠集合は $\{\pm x\}$ である。よって、 $\#_2S^{n-1}=2$ である。

k=2の場合、 $\{\{1,2\},\{3,4\},\ldots,\{2[n/2]-1,2[n/2]\}\}$ が唯一の $P_2(n)$ の極大対蹠的部分集合の合同類の代表元である。よって、 $\#_2\tilde{G}_2(\mathbb{R}^n)=2[n/2]$ である。

k=3の場合、 $P_3(n)$ の対蹠的部分集合 A(3,2l+1), B(3,6), B(3,7) を次のように定める。B(3,7)の交叉の構造は二元体 $\{0,1\}$ 上の射影平面の射影直線全体と同じである。



定理 l = [(n-1)/2] とする。 $P_3(n)$ の極大対蹠的部分集合のすべての合同類の代表元は以下のとおり。

n	3, 4	5	6	7,8	9以上
	A(3,3)	A(3,5)	B(3,6)	B(3,7)	A(3, 2l + 1), B(3, 7)

系3

n	4	5	6	$7, \ldots, 16$	17以上
$\#_2\tilde{G}_3(\mathbb{R}^n)$	2	4	8	14	2[(n-1)/2]

$$\alpha \in P_k(n)$$
 に対して $\vec{v}_{\alpha}^* = v_{\alpha(1)}^* \wedge \dots \wedge v_{\alpha(k)}^*$ とおく。
$$\sum_{\alpha \in B(3,6)} \epsilon_{\alpha} \vec{v}_{\alpha}^* \quad (\epsilon_{\alpha} = \pm 1) \ \mathrm{は} \mathbb{R}^6 = \mathbb{C}^3$$

上の特殊 Lagrange 3次交代形式であり、SU(3) 不変である。 $\sum_{\alpha \in B(3,7)} \vec{v}_{\alpha}^*$ は $\mathbb{R}^7 = \text{Im} \mathbb{O}$ 上

の G_2 不変3次交代形式であり、Harvey-Lawsonが発見した calibration である。 G_2 は八元数体 $\mathbb O$ の自己同型群であり、1を固定するので $\mathbb I$ m $\mathbb O$ に働く。

k = 4の場合、 $P_4(n)$ の対蹠的部分集合 A(4,2l), B(4,7), B(4,8) を次のように定める。

$$A(4,2l) = \{\alpha \cup \beta \in P_4(2l) \mid \alpha, \beta \in \{\{1,2\}, \{3,4\}, \dots, \{2l-1,2l\}\}\},\$$

$$B(4,7) = \{ \alpha^c \mid \alpha \in B(3,7) \},\$$

$$B(4,8) = B(4,7) \cup \{\alpha \cup \{8\} \mid \alpha \in B(3,7)\}.$$

定理4 $P_4(n)$ の極大対蹠的部分集合のすべての合同類の代表元は、A(4,2l) $(l \ge 2, \ne 4)$, B(4,7), B(4,8) と合同なもののしかるべき合併でつきる。

系5

$$n$$
 5 6 7 8...,11 12以上 $\#_2 \tilde{G}_4(\mathbb{R}^n)$ 2 6 14 28 $[n/2]([n/2]-1)$

 $\sum_{\alpha \in A(4,2l)} \vec{v}_{\alpha}^* = \frac{1}{2} \omega^2 \, \text{が成り立ち、} U(l) \, \text{不変4次交代形式である。ここで、} \omega \, \text{は} \, \mathbb{R}^{2l} = \mathbb{C}^l$

上の Kähler 形式である。 $\sum_{\alpha \in B(4,8)} \epsilon_{\alpha} \vec{v}_{\alpha}^*$ は $\mathbb{R}^8 = \mathbb{H}^2$ 上の Kraines が発見した Sp(2)Sp(1) 不変 4 次交代形式である。