Maximal antipodal subgroups of compact Lie groups II

Makiko Tanaka (Tokyo Univ. of Science) Hiroyuki Tasaki (Univ. of Tsukuba)

> **MSJ Spring Meeting 2016 March 16, 2016**

MSJ Autumn Meeting 2015: Classification of maximal antipodal subgroups of $U(n)/\mathbb{Z}_{\mu}$, $SU(n)/\mathbb{Z}_\mu$

This time: Classification of maximal antipodal subgroups of $O(n)/\{\pm 1_n\}$, $SO(n)/\{\pm 1_n\}$, $Sp(n)/\{\pm 1_n\}$, G_2

- *M*:**compact Riemannian symmetric space**
- s_x : the geodesic symmetry at $x \in M$
- *S* ⊂ *M* : antipodal set \Leftrightarrow $\forall x, y \in S$, $s_x(y) = y$
- *S* **: great antipodal set** *⇔*

 $|S|$ = max $\{|A| \mid A \subset M$ antipodal set $\}$ =: $\#_2 M$

e.g. $M = S^n$, $\{x, -x\}$: great antipodal set $M = \mathbb{R}P^n$, $\{\mathbb{R}e_1, \ldots, \mathbb{R}e_{n+1}\}$: great antip. set

Theorem 1 (T.-Tasaki 2013) In a symmetric *R***-space (i) any antipodal set is included in a great antipodal set, (ii) any two great antipodal sets are congruent, and (iii) a great antipodal set is an orbit of the Weyl group.**

A great antipodal set is a maximal antipodal set. The converse is not true in general. **We do not know much about antipodal sets in a compact Riemmanian symmetric space which is not a symmetric** *R***-space. A quotient group of a compact Lie group is not a symmetric** *R***-space generally.**

$$
G: \text{compact Lie group}
$$

\n
$$
x \in G, \quad s_x(y) = xy^{-1}x \quad (y \in G)
$$

\n
$$
s_e(y) = y \Leftrightarrow y^2 = e \quad (e: \text{unit element})
$$

\nif $x^2 = y^2 = e, \quad s_x(y) = y \Leftrightarrow xy = yx$
\n**A maximal antipodal set** $S \subset G, \ e \in S$ is a
\nfinite abelian subgroup of G .

∆*n* **is a unique great antipodal subgroup of** $O(n)$, $U(n)$, $Sp(n)$ up to conjugation. ∆⁺ *ⁿ* **is a unique great antipodal subgroup of** *SO*(*n*)*, SU*(*n*) **up to conjugation.**

$$
D[4] := \left\{ \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix}, \begin{bmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{bmatrix} \right\} \subset O(2)
$$

$$
D^{\pm}[4] := \{ g \in D[4] \mid \det g = \pm 1 \}
$$

D[4] : **dihedral group**

$$
n = 2^{k} \cdot l, \ l : \text{odd} \qquad 0 \le s \le k
$$

$$
C(s, n) := D[4] \otimes \cdots \otimes D[4] \otimes \Delta_{n/2^s} \subset O(n)
$$

$$
Q[8] := \{\pm 1, \pm i, \pm j, \pm k\}
$$

$$
i^2 = j^2 = k^2 = -1,
$$

$$
ij = -ji = k, \ jk = -kj = i, \ ki = -ik = j
$$

Theorem 2 $\tilde{G} = O(n), \ SO(n), \ Sp(n), \ G =$

 $O(n)/\{\pm 1_n\}$, $SO(n)/\{\pm 1_n\}$ (*n* : **even**), $Sp(n)/\{\pm 1_n\}$

$$
\pi_n : \tilde{G} \to G : \text{ natural projection}
$$
\n
$$
n = 2^k \cdot l, \quad l : \text{odd}
$$
\n(I)
$$
G = O(n) / \{\pm 1_n\}
$$
\nA is a maximal antipodal subgroup (MAS)\nof G iff A is conjugate to\n
$$
\pi_n(C(s, n)) \quad (0 \le s \le k),
$$

 $\mathbf{where}(s,n) = (k-1,2^k)$ is excluded.

(II)
$$
G = SO(n)/\{\pm 1_n\}
$$

A **is a MAS of** *G* **iff** *A* **is conjugate to** $(LI-1)$ $k=1$ $\pi_n(\Delta_n^+), \quad \pi_n(D^+[4] \otimes \Delta_l),$

where $\pi_2(\Delta_2^+)$ is excluded when $n=2$. **(II-2)** *k ≥* 2 $\pi_n(\Delta_n^+), \quad \pi_n(C(s,n)) \quad (1 \leq s \leq k),$ $\mathbf{where}\,\left(s,n\right) =\left(k-1,2^{k}\right)$ is excluded $\boldsymbol{\&}% _{k}\in\mathbb{R}^{2}\backslash\left\{ k\right\}$ $\pi_4(\Delta_4^+)$ is excluded when $n=4$. **(III)** $G = Sp(n)/\{\pm 1_n\}$ *A* **is a MAS of** *G* **iff** *A* **is conjugate to** $\pi_n(Q[8] \cdot C(s, n))$ (0 < *s* < *k*)*,* $\mathbf{where}(s,n) = (k-1,2^k)$ is excluded.

Corollary 3

(I) *G* = *O*(*n*)*/{±*1*n}*

$$
(\mathbf{I-1}) \ n=2
$$

 $\pi_2(D[4])$ is a unique great antipodal sub**group (GAS) up to conjugation.** $\#_2 G =$ $2^2 = 2^n$

 $(I-2)$ $n = 4$

 $\pi_4(C(2,4))$ is a unique GAS. $\#_2 G = 2^4 = 2^n$ **(I-3) the others**

 $\pi_n(\Delta_n)$ is a unique GAS. $\#_2 G = 2^n$

(II) $G = SO(n)/\{\pm 1_n\}$ **(II-1)** $n = 2$ $\pi_2(D^+[4])$ is a unique GAS. $\#_2G = 2^1 =$ 2 *n−*1 $(II-2)$ $n = 4$ $\pi_4(C(2,4))$ is a unique GAS. $\#_2 G = 2^4 = 2^n$ **(II-3)** $n = 8$ $\pi_8(\Delta_8^+)$ and $\pi_8(C(3,8))$ are the GAS's. $\#_2G=$ $2^6 = 2^{n-2}$

(II-4) the others $\pi_n(\Delta_n^+)$ is a unique GAS. $\#_2G = 2^{n-2}$

(III) *G* = *Sp*(*n*)*/{±*1*n}* **(III-1)** $n = 2$

 $\pi_2(Q[8] \cdot D[4])$ is a unique GAS. $\#_2 G = 2^4 =$ 2^{n+2}

 $(III-2)$ $n = 4$ $\pi_4(Q[8] \cdot C(2,4))$ is a unique GAS. $\#_2 G =$ $2^6 = 2^{n+2}$

(III-3) the others $\pi_n(Q[8] \cdot \Delta_n)$ is a unique GAS. $\#_2 G = 2^{n+1}$ **Maximal antipodal subgroups of the compact Lie group** *G*2 **of exceptional type**

e : **unit element**

 $F(s_e, G_2) = \{x \in G_2 \mid x^2 = e\} = \{e\} \cup M_1^+$ $M_1^+ \cong G_2/SO(4)$ $o \in M_1^+$ $F(s_0, M_1^+) = \{x \in M_1^+ \mid xo = ox\} = \{o\} \cup M_{1,1}^+$ $M_{1,1}^+ \cong (S^2 \times S^2)/\mathbb{Z}_2$ $S^2 \times S^2 \ni (p, q) \mapsto [p, q] \in (S^2 \times S^2)/\mathbb{Z}_2$ $(u_i, v_i) \in S^2 \times S^2 \quad (i = 1, 2, 3)$

 $u_i \perp u_j$, $v_i \perp v_j$ (*i* $\neq j$) $B := \{ [u_1, \pm v_1], [u_2, \pm v_2], [u_3, \pm v_3] \}$ is a unique maximal antipodal set of $(S^2 \times S^2) / \mathbb{Z}_2$ up to **congruence.**

$$
B \ \leftrightarrow \ B_{1,1} \subset M_{1,1}^+
$$

Theorem 4 *A* **is a maximal antipodal subgroup of** G_2 **iff** A **is conjugate to** $\{e, o\} \cup B_{1,1}$. $\#_2 G_2 = |\{e, o\} \cup B_{1,1}| = 8$