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Introduction

M : Kähler manifold

L0, L1 ⊂M : real forms

i.e. ∃σi : anti-holomorphic involutive isometry of M (i = 0, 1)

s.t. Li = Fix(σi,M)0
totally geodesic Lagrangian submanifold

Problems
1 Is the intersection L0 ∩ L1 discrete? symmetric triad

2 If so, count the intersection number #(L0 ∩ L1), and

describe the geometric meaning of #(L0 ∩ L1).

Floer homology

3 Study the structure of the intersection L0 ∩ L1.

antipodal set
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Antipodal set of a compact symmetric space

M : compact Riemannian symmetric space

sx : geodesic symmetry at x ∈M

Definition (Chen-Nagano 1988)

1 A ⊂M : antipodal set
def⇐⇒ sx(y) = y for all x, y ∈ A

2 #2M := max{#A | A ⊂M : antipodal set} 2-number

3 A ⊂M : great antipodal set
def⇐⇒ #A = #2M

Theorem (Takeuchi 1989)

M : symmetic R-space =⇒ #2M = dimH∗(M,Z2)
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Previous works

Theorem (Tanaka-Tasaki 2012)

M : Hermitian symmetric space of compact type

L0, L1 ⊂M : real forms, L0 ⋔ L1

=⇒ L0 ∩ L1 is an antipodal set of L0 and L1.

Theorem (Iriyeh-S.-Tasaki 2013)

1 Lagrangian Floer homology of two real forms in

irreducible Hermitian symmetric spacecs

2 Volume estimate of real forms under Hamiltonian defor-

mations

Takashi Sakai The intersection of two real flag manifolds



Example

RP n ⊂ CP n

A := {Re1, . . . ,Ren+1} ⊂ RP n great antipodal set

For g ∈ U(n+ 1), RP n ⋔ gRP n in CP n

RP n ∩ gRP n ∼= {Ce1, . . . ,Cen+1} ⊂ CP n

#(RP n ∩ gRP n) = n+ 1 = #2RP n = dimH∗(RP n,Z2)

Aim of our work

Generalizing the results on Hermitian symmetric spaces, study

the intersection of two real forms in a complex flag manifold.
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Complex flag manifold

G : compact connected semisimple Lie group

x0(̸= 0) ∈ g

M := Ad(G)x0 ⊂ g : complex flag manifold

∼= G/Gx0
∼= GC/PC

Gx0 := {g ∈ G | Ad(g)x0 = x0}

ω : Kirillov-Kostant-Souriau symplectic form on M defined by

ω(X∗
x, Y

∗
x ) := ⟨[X,Y ], x⟩ (x ∈M, X, Y ∈ g)

J : G-invariant complex structure on M compatible with ω

(·, ·) := ω(·, J ·) : G-invariant Kähler metric
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Antipodal set of a complex flag manifold

For x ∈M

Gx := {g ∈ G | Ad(g)x = x}
Z(Gx) := {g ∈ Gx | gh = hg (∀h ∈ Gx)}

Definition

y ∈M is antipodal to x ∈M
def⇐⇒ Ad(g)y = y for all g ∈ Z(Gx)0

A ⊂M : antipodal set
def⇐⇒ y is antipodal to x for any x, y ∈ A.

Note: This definition is equivalent to the notion of an

antipodal set of M defined using k-symmetric structure on M .

When M is a Hermitian symmetric space, it is also equivalent

to the notion of an antipodal set introduced by Chen-Nagano.
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Antipodal set of a complex flag manifold

Proposition

1 For x, y ∈M

y is antipodal to x ⇐⇒ [x, y] = 0

2 A ⊂M : maximal antipodal set

=⇒ ∃t ⊂ g : maximal abelian subalgebra

s.t. A =M ∩ t.

Hence A is an orbit of the Weyl group of g with respect

to t. In particular, any maximal antipodal sets of M are

congruent with each other by G.
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Real flag manifolds in a complex flag manifold

(G,K) : symmetric pair of compact type

θ : involution of G s.t. Fix(θ,G)0 ⊂ K ⊂ Fix(θ,G)

g = k⊕ p
x0(̸= 0) ∈ p

L := Ad(K)x0 ⊂ p : real flag manifold, R-space

∩ ∩ ∩
M := Ad(G)x0 ⊂ g : complex flag mfd, C-space

∼= G/Gx0
∼= GC/PC

dθ : g → g involutive automorphism

σ := −dθ : M →M anti-holomorphic involutive isometry

L =M ∩ p = Fix(σ,M) real form of M
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The intersection of real flag manifolds

(G,K0), (G,K1) : symmetric pairs of compact type

θ0, θ1 : involutions of G

g = k0 + p0 = k1 + p1,

x0(̸= 0) ∈ p0 ∩ p1

L0 := Ad(K0)x0, L1 := Ad(K1)x0 ⊂ M := Ad(G)x0

For g ∈ G, we consider the intersection of L0 ∩Ad(g)L1 in M .

a : maximal abelian subspace of p0 ∩ p1 containing x0
A := exp a ⊂ G : toral subgroup

Then G = K0AK1, i.e.

g = g0ag1 (g0 ∈ K0, g1 ∈ K1, a ∈ A)

L0 ∩ Ad(g)L1 = L0 ∩ Ad(g0ag1)L1 = Ad(g0)(L0 ∩ Ad(a)L1)
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Symmetric triads

Hereafter we assume θ0θ1 = θ1θ0.

g = (k0 ∩ k1) + (p0 ∩ p1) + (k0 ∩ p1) + (p0 ∩ k1)

ad(a)-invariant ad(a)-invariant

Then
(
(k0 ∩ k1) + (p0 ∩ p1), (k0 ∩ k1), dθ0 = dθ1

)
is an

orthogonal symmetric Lie algebra. For λ ∈ a ⊂ p0 ∩ p1

pλ := {X ∈ p0 ∩ p1 | [H, [H,X]] = −⟨λ,H⟩2X (H ∈ a)}
Vλ := {X ∈ p0 ∩ k1 | [H, [H,X]] = −⟨λ,H⟩2X (H ∈ a)}

Σ := {λ ∈ a \ {0} | pλ ̸= {0}}
W := {λ ∈ a \ {0} | Vλ ̸= {0}}
Σ̃ := Σ ∪W

(Σ̃,Σ,W ) : symmetric triad
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The structure of the intersection

areg :=
∩
λ∈Σ
α∈W

{
H ∈ a

∣∣∣∣∣ ⟨λ,H⟩ ̸∈ πZ, ⟨α,H⟩ ̸∈ π

2
+ πZ

}

W (Σ̃) : Weyl group of the root system Σ̃ of a

Theorem (Ikawa-Iriyeh-Okuda-S.-Tasaki)

For a = expH (H ∈ a), the intersection L0 ∩ Ad(a)L1 is

discrete if and only if H ∈ areg. Moreover, if L0 ∩ Ad(a)L1 is

discrete, then

L0 ∩ Ad(a)L1 =M ∩ a = W (Σ̃)x0.

In particular, L0 ∩ Ad(a)L1 is an antipodal set of M .
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Lagrangian Floer homology

(M,ω) : closed symplectic manifold

J = {Jt}0≤t≤1 : family of almost complex structures on M

compatible with ω

L0, L1 : closed Lagrangian submanifolds, L0 ⋔ L1

Definition

For p, q ∈ L0 ∩ L1,

u : R× [0, 1] −→M : J-holomorphic strip from p to q

def⇐⇒


∂̄Ju := ∂u

∂s
+ Jt(u)

∂u
∂t

= 0

u(s, 0) ∈ L0, u(s, 1) ∈ L1

u(−∞, t) = p, u(+∞, t) = q

MJ(L0, L1 : p, q) := {u : J-holomorphic strips from p to q}
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Lagrangian Floer homology

MJ(L0, L1 : p, q) := {u : J-holomorphic strips from p to q}

CF (L0, L1) :=
⊕

p∈L0∩L1

Z2 p

∂ : CF (L0, L1) −→ CF (L0, L1)

∂(p) =
∑

q∈L0∩L1

n(p, q) · q

n(p, q) := #{isolated J-holomorphic strips from p to q} (mod 2)

∂ ◦ ∂ = 0 =⇒ HF (L0, L1 : Z2) := ker ∂/im∂

HF (ϕL0, ψL1 : Z2) ∼= HF (L0, L1 : Z2)

for ∀ϕ, ψ ∈ Ham(M,ω) with ϕL0 ⋔ ψL1.
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Lagrangian Floer homology for two real forms

Theorem (Ikawa-Iriyeh-Okuda-S.-Tasaki)

M : complex flag manifold with a Kähler-Einstein metric

L0, L1 ⊂M : real flag manifolds, θ0θ1 = θ1θ0

minimal Maslov numbers ΣL0 ,ΣL1 ≥ 3.

=⇒ ∃ a real flag manifold L′
1
∼= L1 s.t. L0 ⋔ L′

1 and

HF (L0, L
′
1 : Z2) ∼=

⊕
p∈L0∩L′

1

Z2[p]

Corollary

#(ϕL0 ∩ ψL1) ≥ #(L0 ∩ L′
1) = dimHF (L0, L

′
1 : Z2)

for any ϕ, ψ ∈ Ham(M,ω) with ϕL0 ⋔ ψL1.
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Example

(G,K0, K1) = (SU(2n), SO(2n), Sp(n))

θ0(g) = ḡ, θ1(g) = JnḡJ
−1
n (g ∈ G) where Jn :=

[
O In
−In O

]

p0 ∩ p1 =


[ √

−1X
√
−1Y

−
√
−1Y

√
−1X

] ∣∣∣∣ X,Y ∈Mn(R)
traceX = 0
tX = X, tY = −Y


Fix a maximal abelian subspace a in p0 ∩ p1 as

a =

{[ √
−1X O

O
√
−1X

] ∣∣∣∣ X = diag(t1, . . . , tn),

t1, . . . , tn ∈ R, t1 + · · ·+ tn = 0

}
Σ̃ = Σ = W = {±(ei − ej) | 1 ≤ i < j ≤ n}

where ei − ej ∈ a (i ̸= j) is defined by ⟨ei − ej, H⟩ = ti − tj.
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x0 =

[ √
−1X O

O
√
−1X

]
∈ a

where X = diag(x1In1 , . . . , xr+1Inr+1) and xi are distinct real

numbers satisfying n1x1 + · · ·+ nr+1xr+1 = 0.

L0 = Ad(K0)x0 ∼= FR
2n1,...,2nr

(R2n)

L1 = Ad(K1)x0 ∼= FH
n1,...,nr

(Hn)

M = Ad(G)x0 ∼= FC
2n1,...,2nr

(C2n)

K = R,C or H
n, n1, . . . , nr satisfying nr+1 := n− (n1 + · · ·+ nr) > 0

FK
n1,...,nr

(Kn) =

(V1, . . . , Vr)

∣∣∣∣∣
Vj is a K-subspace of Kn,

dimK Vj = n1 + · · ·+ nj,

V1 ⊂ V2 ⊂ · · · ⊂ Vr ⊂ Kn
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a = expH, H =

[ √
−1Y O

O
√
−1Y

]
∈ a

where Y = diag(t1, . . . , tn) and t1, . . . , tn ∈ R which satisfy

t1 + · · ·+ tn = 0. Then

L0 ∩ Ad(a)L1 is discrete

⇐⇒ H ∈ areg =
{
H ∈ a

∣∣∣ ⟨ei − ej, H⟩ ̸∈ π

2
Z (1 ≤ i < j ≤ n)

}
L0 ∩ Ad(a)L1 =M ∩ a = W (Σ̃)x0.

In this case, a maximal abelian subspace a in p0 ∩ p1 is also a

maximal abelian subspace in p1.
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We express the intersection in the flag model FC
2n1,...,2nr

(C2n).

v1, . . . , v2n : standard basis of C2n

Wi := ⟨vi, vn+i⟩C = ⟨vi⟩H (1 ≤ i ≤ n)

Proposition

For a = expH (H ∈ areg),

FR
2n1,...,2nr

(R2n) ∩ aFH
n1,...,nr

(Hn)

= {(Wi1 ⊕ · · · ⊕Win1
,Wi1 ⊕ · · · ⊕Win1+n2

, . . .

· · · ,Wi1 ⊕ · · · ⊕Win1+···+nr
)

| 1 ≤ i1 < · · · < in1 ≤ n, 1 ≤ in1+1 < · · · < in1+n2 ≤ n, . . . ,

1 ≤ in1+···+nr−1+1 < · · · < in1+···+nr ≤ n,

#{i1, . . . , in1+···+nr} = n1 + · · ·+ nr},

which is an antipodal set of FC
2n1,...,2nr

(C2n).
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Example

dimHF (FR
2n1,...,2nr

(R2n), FH
n1,...,nr

(Hn) : Z2)

= #
(
FR
2n1,...,2nr

(R2n) ∩ aFH
n1,...,nr

(Hn)
)

= #I(F
H
n1,...,nr

(Hn)) = dimH∗(F
H
n1,...,nr

(Hn) : Z2)

=
n!

n1!n2! · · ·nr+1!

< #I(F
R
2n1,...,2nr

(R2n)) = dimH∗(F
R
2n1,...,2nr

(R2n) : Z2)

= #k(F
C
2n1,...,2nr

(C2n)) = dimH∗(F
C
2n1,...,2nr

(C2n) : Z2)

=
(2n)!

(2n1)!(2n2)! · · · (2nr+1)!

for a = expH (H ∈ areg)
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Further problems

1 Study the intersection of two real flag manifolds in the

case where θ0θ1 ̸= θ1θ0.

2 Determine Hamiltonian volume minimizing properties of

all real forms in irreducible Hermitian symmetric spaces,

more generally, in complex flag manifolds.

Thank you very much for your attention
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