# The intersection of two real forms in the complex Grassmann manifold

Makiko Sumi Tanaka (Tokyo University of Science)

October 30 2009 OCAMI-KNUGRG DGworkshop

# Contents -

- 1 Introduction
- 2 Preliminaries
- 3 Intersection of two real forms in  $Q_n(\mathbb{C})$
- 4 Intersection of two real forms in  $G_r(\mathbb{C}^n)$

#### 1 Introduction

$$\begin{split} M &= S^2 \\ L_1, L_2: \text{ great circles intersecting transversally} \\ &\implies L_1 \cap L_2 = \{o, \bar{o}\} \\ &\quad (o \text{ and } \bar{o} \text{ are antipodal to each other}) \end{split}$$

 $S^2 \cong \mathbb{C}P^1$  $L_1, L_2 \cong \mathbb{R}P^1$  : totally geodesic

# Known fact (R. Howard):

$$\begin{split} M &= \mathbb{C}P^n \\ L &= \mathbb{R}P^n : \text{ totally geodesic} \\ &\implies \quad \sharp(L \cap g \cdot L) = n+1 \\ \quad (^\forall g \in I(M) \text{ such that } L \text{ intersects } g \cdot L \text{ transversally}) \\ \quad \forall x, y \in L \cap g \cdot L \text{ are antipodal to each other} \end{split}$$

"2-number" (B.-Y. Chen and T. Nagano)  $\#_2(\mathbb{R}P^n) = n+1$ 

(M. Takeuchi) 
$$\#_2(M) = SB(M, \mathbb{Z}_2)$$
  
(:=the sum of  $\mathbb{Z}_2$ -Betti numbers of  $M$ )  
if  $M$  is a symmetric R-space

#### "globally tight" (Y.-G. Oh)

 ${\cal M}$  : Hermitian symmetric space

- L: Lagrangian submanifold

such that L intersects  $g \cdot L$  transversally

**Remark :**  $\mathbb{R}P^n$  is globally tight.

#### Problem :

Does the intersection of two real forms of a compact Hermitian symmetric space consist of antipodal points if they intersect transversally? Moreover, does the number of such points coincide with the 2-number of the real form?

#### Problem :

Is every real form of any compact Hermitian symmetric space globally tight?

### 2 Preliminaries

 $\begin{array}{c} \hline M : \text{Hermitian manifold} \\ L: \textit{real form of } M \stackrel{\text{def}}{\iff} \exists \sigma : M \to M : \text{ anti-holomorphic involutive} \\ \text{isometry s.t. } L = \{x \in M \mid \sigma(x) = x\} \end{array}$ 

M: Hermitian symmetric space of compact type  $\implies$  Every real form of M is a totally geodesic Lagrangian submanifold.

**Remark :** A real forms of a Hermitian symmetric space of compact type is so-called a symmetric R-space.

# M : Hermitian symmetric space of compact type L : real form of M

| L                                                     | M                                                          |
|-------------------------------------------------------|------------------------------------------------------------|
| UI(n) = U(n)/SO(n)                                    | CI(n) = Sp(n)/U(n)                                         |
| $Sp(n) = Sp(n) \times Sp(n) / \Delta$                 | CI(2n)                                                     |
| $G_r(\mathbb{R}^{n+r}) = SO(n+r)/S(O(r) \times O(n))$ | $G_r(\mathbb{C}^{n+r}) = SU(n+r)/S(U(r) \times U(n))$      |
| $G_r(\mathbb{H}^{n+r}) = Sp(n+r)/Sp(r) \times Sp(n)$  | $G_{2r}(\mathbb{C}^{2n+2r})$                               |
| $U(n) = U(n) \times U(n) / \Delta$                    | $G_n(\mathbb{C}^{2n})$                                     |
| $SO(n) = SO(n) \times SO(n) / \Delta$                 | DIII(n) = SO(2n)/U(n)                                      |
| UII(n) = U(2n)/Sp(n)                                  | DIII(2n)                                                   |
| $S^k 	imes S^l / \mathbb{Z}_2$                        | $G_2^o(\mathbb{R}^{k+l}) = SO(k+l)/SO(2) \times SO(k+l-2)$ |
| $FII = F_4/Spin(9)$                                   | $E\overline{I}II = E_6/T \cdot Spin(10)$                   |
| $G_2(\mathbb{H}^4)/\mathbb{Z}_2$                      | EIII                                                       |
| $T \cdot EIV = T \cdot E_6/F_4$                       | $EVII = E_7/T \cdot E_6$                                   |
| $AII(4)/\mathbb{Z}_2$                                 | EVII                                                       |
| $\Delta$ : the diagonal subgroup, $T\cong 0$          | U(1)                                                       |

 $\begin{array}{l} \hline & \mathsf{Definition} \\ M : \text{ Riemannian symmetric space} \\ S \subset M : \text{ subset} \\ S : antipodal set & \stackrel{\text{def}}{\longleftrightarrow} \quad \forall x, y \in S, \ s_x y = y \\ & (s_x : \text{ the symmetry at } x) \\ \hline & The 2-number \text{ of } M \\ & \#_2(M) := \sup\{\#S \mid S \subset M : \text{ antipodal set}\} \end{array}$ 

B.-Y. Chen and T. Nagano (Trans. Amer. Math. Soc., 308 (1988), 273–297)

Examples :  $#_{2}(S^{n}) = 2$   $#_{2}(T^{n}) = 2^{n}$   $#_{2}(\mathbb{R}P^{n}) = n + 1$   $#_{2}(G_{r}(\mathbb{K}^{n})) = {}_{n}C_{r}, \text{ the binomial coefficient } (\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H})$   $#_{2}(U(n)) = 2^{n}$  3 Intersection of two real forms in  $Q_n(\mathbb{C})$ 

$$Q_n(\mathbb{C}) = \{ [z_1, \dots, z_{n+2}] \in \mathbb{C}P^{n+1} \mid z_1^2 + \dots + z_{n+2}^2 = 0 \}$$
  
: complex hyperquadric  
$$\cong G_2^o(\mathbb{R}^{n+2}) : \text{ oriented Grassmann manifold}$$
$$= SO(n+2)/SO(2) \times SO(n)$$

L: real form of  $G_2^o(\mathbb{R}^{n+2}) \iff L \cong S^k \times S^{n-k}/\mathbb{Z}_2 \quad (0 \le k \le [n/2])$ 

 $\begin{array}{l} \hline \\ L_1, L_2: \text{ real forms of } G_2^o(\mathbb{R}^{n+2}) \text{ intersecting transversally} \\ \implies & L_1 \cap L_2: \text{ antipodal set} \\ & \#(L_1 \cap L_2) = \min\{\#_2(L_1), \#_2(L_2)\} \end{array}$ 

**Remark** ; We do **not** assume that  $L_1$  and  $L_2$  are congruent to each other.

Every real form of  $G_2^o(\mathbb{R}^{n+2})$  is globally tight.

**Remark :** H. Iriyeh and T. Sakai proved that  $S^2, S^1 \times S^1/\mathbb{Z}_2 \text{ in } G_2^o(\mathbb{R}^4) \cong S^2 \times S^2$  $S^n, S^1 \times S^{n-1}/\mathbb{Z}_2 \text{ in } G_2^o(\mathbb{R}^{n+2})$ 

are globally tight in a different way.

# Lemma 1

M : compact Kähler manifold with  ${\rm HS}>0$ 

 $L_1, L_2$ : totally geodesic compact Lagrangian submanifolds

 $\implies \quad L_1 \cap L_2 \neq \emptyset$ 

HS : holomorphic sectional curvature

X : compact Riemannian manifold,  $p \in X$  $C_p(X)$  : the cut locus of X w.r.t. p $\tilde{C}_p(X)$  : the tangent cut locus of X w.r.t. p

$$\begin{array}{c} & \text{Lemma 2} \\ \hline M : \text{Hermitian symmetric space of compact type} \\ L : \text{ real form, } o \in L \\ \implies & \tilde{C}_o(L) = T_oL \cap \tilde{C}_o(M) \\ & C_o(L) = L \cap C_o(M) \end{array}$$
In particular, every minimal geodesic in L is minimal in M.

Idea of Proof :

(a)  $\exists o \in L_1 \cap L_2$  (from Lemma 1)

(b)  $L_1 \cap L_2 - \{o\} \subset C_o(M)$  (by using Lemma 2)

(c) Proving  $L_1 \cap L_2 \subset F(s_o, M)$  ( $\subset C_o(M)$ ), the fixed point set of  $s_o$ , we reduce the problem to the case of real forms of  $F(s_o, M)$  and use the induction.

(Since the symmetry  $s_o$  is holomorphic involutive isometry of M, each connected componet of  $F(s_o, M)$  is a compact Hermitian symmetric space.)

**Remark :** In the step (c), we use the properties peculiar to  $G_2^o(\mathbb{R}^{n+2})$ .

#### **Remark** :

M: compact Riemannian symmetric space,  $o \in M$ Each connected component of  $F(s_o, M)$  is called *a polar* and its detailed studies were done in a series of papers by Nagano and Nagano -T. (Tokyo J. Math. **11**(1988), 57–79, **15**(1992), 39–82, **18**(1995), 193–212, **22**(1999), 193–211, **23**(2000), 403–416). 4 Intersection of two real forms in  $G_r(\mathbb{C}^n)$ 

**Theorem (Tasaki-T.)**   $L_1, L_2$ : real forms of  $G_r(\mathbb{C}^{n+r})$  intersecting transversally as one the following three cases: (i)  $L_1, L_2 \cong G_r(\mathbb{R}^{n+r})$ (ii)  $L_1, L_2 \cong \mathbb{H}P^m$  for r = 2, n = 2m(iii)  $L_1 \cong \mathbb{H}P^m$  and  $L_2 \cong G_2(\mathbb{R}^{2m+2})$  for r = 2, n = 2m  $\implies L_1 \cap L_2$ : antipodal set  $\#(L_1 \cap L_2) = \min\{\#_2(L_1), \#_2(L_2)\}$ 



$$Conjecture$$

$$L_1, L_2: \text{ real forms of } G_r(\mathbb{C}^{n+r}) \text{ intersecting transversally}$$

$$\implies L_1 \cap L_2: \text{ antipodal set}$$

$$\#(L_1 \cap L_2) = \min\{\#_2(L_1), \#_2(L_2)\}$$