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Abstract. This is a joint work with Hiroyuki Tasaki ([10], [11]). We investigate

fundamental properties of antipodal sets of symmetric R-spaces. We also investigate the

intersection of two real forms in a Hermitian symmetric space of compact type. We

obtained that the intersection is an antipodal set and that its cardinality is equal to the

2-number of the real form if two real forms are congruent. As a consequence we obtained

that every real form of a Hermitian symmetric space of compact type is a globally tight

Lagrangian submanifold.

1 Introduction

A subset S in a Riemannian symmetric space is called an antipodal set if
sx(y) = y for any x and y in S, where sx denotes the symmetry at x. The 2-
number #2M of a compact Riemannian symmetric space M is the supremum of the
cardinality of antipodal sets in M . It is known that #2M is finite. If the cardinality
of an antipodal set S in M attains #2M , S is called a great antipodal set. These
notions were introduced by Chen and Nagano [3]. Takeuchi [9] proved that the
2-number of a symmetric R-space is coincides with the sum of the Betti numbers
with Z2-coefficient. A compact Riemannian symmetric space is called a symmetric
R-space if it is an orbit of the linear isotropy action of a Riemannian symmetric
pair of semisimple type.

Hermitian symmetric spaces of compact type have realizations as orbits of the
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adjoint representations of compact semisimple Lie groups. We proved that the
following properties of antipodal sets of Hermitian symmetric spaces of compact
type (Theorem 3.1).

(A) Any antipodal set is induced in a great antipodal set.

(B) Any two great antipodal sets are congruent.

Here we say that two subsets in a Hermitian symmetric space of compact type M
are congruent, if one is transformed to another by an element of I0(M), the identity
component of the group of all isometries on M . We also proved that antipodal sets
of symmetric R-spaces satisfy the properties (A) and (B) (Theorem 3.3).

The fixed point set of an involutive anti-holomorphic isometry of Hermitian
symmetric space is called a real form. It is known that a real form is connected.
Every real form is a totally geodesic Lagrangian submanifold ([5], [8]). Leung [5]
and Takeuchi [8] classified real forms of Hermitian symmetric spaces of compact
type. A simple example of real form is a great circle in the 2-sphere S2. It is easily
seen that any two great circles in S2 intersects in two points, which are antipodal
to each other. Roughly speaking, we have the similar situation for two real forms
in a Hermitian symmetric space of compact type. Precisely, we proved that the
intersection of two real forms is an antipodal set if they intersect transversally
(Theorem 4.1) and that furthermore if two real forms are congruent to each other,
the intersection is a great antipodal set of the real form. Hence the cardinality of
the intersection is equal to the 2-number of the real form (Theorem 4.5). They are
generalizations of the earlier results of Tasaki [12].

Takeuchi [8] proved that every real form of Hermitian symmetric spaces of com-
pact type is a symmetric R-space. As a consequence, every real form of Hermitian
symmetric spaces of compact type is a globally tight Lagrangian submanifold in the
meaning of Oh [6] (Corollary 4.6).

By applying Theorems 4.1 and 4.7, Iriyeh, Sakai and Tasaki [4] computed the
Lagrangian Floer homology HF (L0, L1 : Z2) of a pair of real forms (L0, L1) in a
monotone Hermitian symmetric space M of compact type (Theorems 4.8 and 4.9).

2 Preliminaries

Let M be a compact connected Riemannian symmetric space and p ∈ M . We
decompose the fixed point set F (sp,M) of sp to the disjoint union of its connected
components:

F (sp,M) =
r∪

j=0

M+
j ,

where M+
0 = {p}. We call each connected component M+

j a polar of M with
respect to p ([1], [2], [3]). Every polar is a totally geodesic submanifold. Since the
symmetry of a Hermitian symmetric space at any point is an involutive holomorphic
isometry, every polar of a Hermitian symmetric space of compact type is a Hermitian
symmetric space of compact type. For example, let M be the complex projective
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space CPn and e1, . . . , en+1 be a unitary basis of Cn+1. The symmetry so at
o = 〈e1〉C, the subspace spanned by e1 is induced by the reflection with respect to
the hyperplane 〈e2, . . . , en+1〉C. Then

F (so, CPn) = {o} ∪ {V | V : one-dimensional subspace in〈e2, . . . , en+1〉C}
∼= {o} ∪ CPn−1.

Lemma 2.1 ([10]). Let M be a Hermitian symmetric space of compact type and L

be a real form of M through o. If a polar M+ with respect to o satisfies L∩M+ 6= ∅,

then L ∩ M+ is a real form of M+.

Lemma 2.2 ([10]). Let M be a Hermitian symmetric space of compact type, and

denote by

F (so,M) =
r∪

j=0

M+
j

the polars of M with respect to a point o ∈ M .

(1) If L is a real form of M through o, then the polars of L with respect to o is

described by

F (so, L) =
r∪

j=0

L ∩ M+
j ,

and the following equality holds.

#2L =
r∑

j=0

#2(L ∩ M+
j ).

(2) If L1, L2 are real forms of M through o, then we have

L1 ∩ L2 =
r∪

j=0

{
(L1 ∩ M+

j ) ∩ (L2 ∩ M+
j )

}
,

#(L1 ∩ L2) =
r∑

j=0

#
{
(L1 ∩ M+

j ) ∩ (L2 ∩ M+
j )

}
.

3 Antipodal sets of symmetric R-spaces

Hermitian symmetric spaces of compact type have realizations as orbits of the
adjoint representations of compact semisimple Lie groups.

Let g be a compact semisimple Lie algebra and let G = Int(g). We take a
G-invariant innner product 〈 , 〉 on g. Let J ∈ g be an nonzero element which
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satisfies (adJ)3 = −adJ . Then the G-orbit M = G · J is a Hermitian symmetric
space of compact type with respect to the induced metric from 〈 , 〉. Let K be the
isotropy subgroup at J . Then the Lie algebra k of K is k = {X ∈ g | [J,X] = 0}.
Let m = {[J,X] | X ∈ g}, then we have an orthogonal direct sum decomposition
g = k + m. k is the (+1)-eigenspace and m is the (−1)-eigenspace of the involutive
automorphism eπadJ of g respectively. adJ is a complex structure of m which can be
identified with the tangent space of M at J . Conversely, every Hermitian symmetric
space of compact type is obtained like this.

Theorem 3.1 ([7], [11]). Let M be a Hermitian symmetric space of compact type

and take X, Y ∈ M . sX(Y ) = Y if and only if [X, Y ] = 0. Moreover the following

conditions (A) and (B) hold.

(A) Any antipodal set is included in a great antipodal set.

(B) Any two great antipodal sets are congruent.

A great antipodal set of M is represented as M ∩ t for a maximal abelian subalgebra

t of g. In particular, a great antipodal set of M is an orbit of the Weyl group of g.

Remark 3.2. Sánchez [7] obtained a similar result for complex flag manifolds.

Theorem 3.3 ([11]). Let M be a Hermitian symmetric space of compact type and

τ : M → M be an involutive anti-holomorphic isometry determining a real form

L = F (τ, M). We define an automorphism Iτ of G by

Iτ : G → G ; g 7→ τgτ−1.

We assume that L contains J . Let g = l + p be the canonical direct sum decomposi-

tion determined by Iτ . We have L = M ∩ p. Moreover the following conditions (A)

and (B) hold.

(A) Any antipodal set is included in a great antipodal set.

(B) Any two great antipodal sets are congruent.

A great antipodal set of L is represented as M ∩ a for a maximal abelian subspace

a of p. In particular, a great antipodal set of L is an orbit of the Weyl group of the

symmetric pair determined by Iτ .
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Since every symmetric R-space is a real form of some Hermitian symmetric
space of compact type by a result of Takeuchi [8], we have the following.

Corollary 3.4 ([11]). For a symmetric R-space the following conditions (A) and

(B) hold.

(A) Any antipodal set is included in a great antipodal set.

(B) Any two great antipodal sets are congruent.

In [11] we proved that the adjoint group Ad(SU(4)) does not satisfy (A).

4 Intersections of two real forms

Theorem 4.1 ([10]). Let M be a Hermitian symmetric space of compact type. If

two real forms L1 and L2 of M intersect transversally, then L1 ∩L2 is an antipodal

set of L1 and L2.

To prove it, we use some properties of maximal tori. One of them is the follow-
ing.

Lemma 4.2 ([10]). Let A1, A2 be two maximal tori of a compact Riemannian

symmetric space through the origin o. We define the root system from A2 and

determine S ⊂ a2. If A1 ∩ A2 ∩ ExpS∆ 6= ∅ for a subset ∆ ⊂ Π#, then ExpS∆ ⊂

A1 ∩ A2.

Here we omit the detailed definitions of notations in this lemma. It is known
that a maximal torus has a fundamental domain which has a stratification. The
lemma says that if two maximal tori through the origin intersect at least in a point,
then the intersection includes the image of Exp of the whole cell which contains the
point.

Theorem 4.3 ([10]). Let M be a Hermitian symmetric space of compact type and

let L1, L2, L
′
1, L

′
2 be real forms of M . We assume that L1, L

′
1 are congruent and

that L2, L
′
2 are congruent. If L1, L2 intersect transversally and if L′

1, L
′
2 intersect

transversally, then #(L1 ∩ L2) = #(L′
1 ∩ L′

2).

Corollary 4.4 ([11]). Under the assumption of Thoerem 4.3, if #(L1 ∩ L2) =

min{#2L1, #2L2}, then L1 ∩ L2 is congruent to L′
1 ∩ L′

2.
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Theorem 4.5 ([10]). Let M be a Hermitian symmetric space of compact type and

let L1 and L2 be real forms of M which are congruent to each other and intersect

transversally. Then L1 ∩L2 is a great antipodal set of L1 and L2. That is, #(L1 ∩

L2) = #2L1 = #2L2.

The idea of the proof is to use induction on polars. Every polar of a Hermitian
symmetric space M of compact type is also a Hermitian symmetric space of compact
type. And every polar of a real form L of M is a real form of some polar of M
by Lemma 2.1. These facts and Lemma 2.2 make us reduce the problem to lower
dimensional cases, since the dimension of a polar is less than that of the ambient
space.

Oh [6] introduced the notion of global tightness of Lagrangian submanifolds in
a Hermitian symmetric space. We call a Lagrangian submanifold L of a Hermitian
symmetric space M globally tight, if L satisfies

#(L ∩ g · L) = dimH∗(L, Z2)

for any g ∈ I0(M) with property that L intersects transversally with g · L. By
Takeuchi [8] and Theorem 4.5 we have the following.

Corollary 4.6 ([11]). Any real form of a Hermitian symmetric space of compact

type is a globally tight Lagrangian submanifold.

Let GK
k (Kn) denote the Grassmann manifold of the k dimensional K-subspaces

in Kn, where K = R, C or H.

Theorem 4.7 ([10]). Let M be an irreducible Hermitian symmetric space of com-

pact type and let L1 and L2 be two real forms of M which intersect transversally.

(1) If M = GC
2m(C4m) (m ≥ 2), L1 is congruent to GH

m(H2m) and L2 is congruent

to U(2m), then

#(L1 ∩ L2) = 2m <

(
2m

m

)
= #2L1 < 22m = #2L2.

(2) Otherwise, L1 ∩ L2 is a great antipodal set of one of Li’s whose 2-number is

less than or equal to another and we have

#(L1 ∩ L2) = min{#2L1, #2L2}.

The list of irreducible Hermitian symmetric spaces of compact type and their
real forms which we have to show the statements of the theorem is, according to
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the results of Leung [5] or Takeuchi [8], as follows:

M L1 L2

Qn(C) Sk,n−k Sl,n−l

GC
2q(C2m+2q) GH

q (Hm+q) GR
2q(R2m+2q)

GC
n(C2n) U(n) GR

n(R2n)
GC

2m(C4m) GH
m(H2m) U(2m)

Sp(2m)/U(2m) Sp(m) U(2m)/O(2m)
SO(4m)/U(2m) U(2m)/Sp(m) SO(2m)
E6/T · Spin(10) F4/Spin(9) GH

2 (H4)/Z2

E7/T · E6 T · (E6/F4) (SU(8)/Sp(4))/Z2

The following results which was obtained by Iriyeh, Sakai and Tasaki [4] is an
application of Theorems 4.1 and 4.7.

Theorem 4.8 ([4]). Let (M,J0, ω) be a Hermitian symmetric space of compact type

which is monotone as a symplectic manifold. Let L0, L1 be real forms of M such

that L0 intersects L1 transversally. Assume that the minimal Maslov numbers of

L0 and L1 are greater than or equal to 3. Then we have

HF (L0, L1 : Z2) ∼=
⊕

p∈L0∩L1

Z2[p].

That is, the intersection L0 ∩ L1 itself becomes a basis of the Floer homology

HF (L0, L1 : Z2).

Theorem 4.9 ([4]). Let M be an irreducible Hermitian symmetric space of compact

type and L0, L1 be real forms of M which intersect transversally. Then the following

results hold.

(1) If M = GC
2m(C4m)(m ≥ 2), L0 is congruent to GH

m(H2m) and L1 is congruent

to U(2m), then we have

HF (L0, L1 : Z2) ∼= (Z2)2
m

,

where 2m <
(
2m
m

)
= #2L0 < 22m = #2L1. Here #2L denotes the 2-number

of L.

(2) Otherwise, we have

HF (L0, L1 : Z2) ∼= (Z2)min{#2L0,#2L1}.
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