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Introduction

Introduction

M : a Riemannian symmetric space
sx : the geodesic symmetry at x ∈ M
S ⊂ M : a subset

S : an antipodal set
def⇐⇒ ∀x , y ∈ S , sx(y) = y

(Chen-Nagano 1988)

Example 1. ∀p ∈ Sn(⊂ Rn+1), sp = 1⟨p⟩R − 1p⊥
=⇒ {p,−p} : an antipodal set

Example 2. For x ∈ RPn, sx is induced by 1x − 1x⊥ on Rn+1

y ⊂ x⊥ : 1-dim subspace =⇒ {x , y} : an antipodal set
More generally,
e1, e2, . . . , en+1 : o.n.b. of Rn+1

=⇒ {⟨e1⟩R, . . . , ⟨en+1⟩R} : a (maximal) antipodal set
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Introduction

Introduction

M : a compact Riemannian symmetric space

the 2-number #2M of M
#2M := sup{#S | S ⊂ M : an antipodal set}

(Chen-Nagano 1988)
Remark. #2M < ∞

S ⊂ M : an antipodal set

S is great
def⇐⇒ #S = #2M (Chen-Nagano 1988)

Remark. A great antipodal set is maximal but the converse is not
true in general.

Chen-Nagano gave #2M for compact irreducible Riemannian
symmetric spaces M with some exceptions.
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Introduction

Introduction

Examples.

#2S
n = 2. S = {p,−p} is a great antipodal set.

#2RPn = n + 1. S = {⟨e1⟩R, . . . , ⟨en+1⟩R} is a great antipodal set.

K = R,C,H
GK
k (Kn) = {V ⊂ Kn | V : K-subspace, dimKV = k}

#2G
K
k (Kn) =

n!

k!(n − k)!

{⟨ei1 , . . . , eir ⟩K ∈ GK
k (Kn) | 1 ≤ i1 < · · · < ir ≤ n}

where e1, . . . , en is the canonical basis of Kn
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Related works after Chen-Nagano :

Takeuchi, 1989
M : a symmetric R-space =⇒ #2M = dimH∗(M ,Z2)

A compact Riemannian symmetric space is called a symmetric
R-space if it is an orbit under the linear isotropy action of a
semisimple Riemannian symmetric space.

Sánchez, 1993, 1997
generalization to k-symmetric spaces and flag manifolds

Berndt, Console and Fino, 2001
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Introduction

Introduction

M : a Hermitian symmetric space of compact type
τ : an involutive anti-holomorphic isometry of M

F (τ,M) := {x ∈ M | τ(x) = x} : a real form of M if F (τ,M) ̸= ∅

Remarks.

A real form is connected.

A real form L is totally geodesic Lagrangian submanifold of M .

Every real form is a symmetric R-space, and vice versa
(Takeuchi).
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Introduction

Introduction

What we did are :

to investigate fundamental properties of antipodal sets of a
Hermitian symmetric space of compact type and those of a real
form,

to investigate the intersection of two real forms in a Hermitian
symmetric space of compact type and to clarify the relation to
antipodal sets.
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Fundamental properties of antipodal sets

Fundamental properties of antipodal sets

M : a Hermitian symmetric space of compact type

M = Ad(G )J ⊂ g = Lie(G ),

where G : a compact semisimple Lie group,

J( ̸= 0) ∈ g, (adJ)3 = −adJ

S1, S2 ⊂ M

S1 and S2 are congruent
def⇐⇒ ∃g ∈ I0(M), s.t. g(S1) = S2
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Fundamental properties of antipodal sets

Fundamental properties of antipodal sets

.
Theorem 1 (Sánchez(1997), T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
M = Ad(G )J ⊂ g

X ,Y ∈ M, sX (Y ) = Y ⇐⇒ [X ,Y ] = 0
Moreover, the following conditions (A) and (B) hold.
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.

∀S : a great antipodal set of M
∃t : a maximal abelian subalgebra of g s.t. S = M ∩ t
In particular, a great antipodal set is an orbit of the Weyl group of g.
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In particular, a great antipodal set is an orbit of the Weyl group of g.
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M : a Hermitian symmetric space of compact type,
M = Ad(G )J ⊂ g

τ : an involutive anti-holomorphic isometry of M
L = F (τ,M) : a real form, assume J ∈ L
Iτ : G → G , Iτ (g) = τgτ−1 (g ∈ G )
g = l+ p : the decomposition w.r.t. dIτ
Then, L = M ∩ p.
Moreover, (A) and (B) in Theorem 1 hold.

∀S : a great antipodal set of L
∃a : a maximal abelian subspace of p s.t. S = M ∩ a
In particular, a great antipodal set is an orbit of the Weyl group of
the symmetric pair determined by Iτ .
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Fundamental properties of antipodal sets

.
Corollary 3 (T.-Tasaki)
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.

M : a symmetric R-space
=⇒

(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.

Remark. Ad(SU(4)) = SU(4)/Z4 does not satisfy (A), that is, there
exists a maximal antipodal set which is not great.
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Polars

Polars

M : compact Riemannian symmetric space
p ∈ M

F (sp,M) = {x ∈ M | sp(x) = x} =
r∪

j=1

M+
j : the disjoint union of

the connected components, where M+
1 = {p}

M+
j is called a polar of M w.r.t. p.

(Chen-Nagano 1977, 1978, 1988)

Remark. A polar is a totally geodesic submanifold of M .

Example. M = CPn

e1, . . . , en+1 : a unitary basis of Cn+1, p := ⟨e1⟩C
F (sp,CPn) = {p} ∪ {V ⊂ ⟨e2, . . . , en+1⟩C | dimV = 1}(∼= CPn−1)
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Polars

Polars

M : a compact Riemannian symmetric space

F (sp,M) =
r∪

j=1

M+
j =⇒ #2M ≤

r∑
j=1

#2M
+
j

Remark. S : an antipodal set, p ∈ S =⇒ S ⊂ F (sp,M)
.
Theorem 4 (Chen-Nagano, 1988)
..

.

. ..

.

.

M : a compact Riemannian symmetric space
=⇒ #2M ≥ χ(M)

M : a Hermitian symmetric space of compact type

=⇒ #2M = χ(M), #2M =
r∑

j=1

#2M
+
j
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Polars

Polars
.
Theorem 5 (Takeuchi,1989)
..

.

. ..

.

.

M : a symmetric R-space =⇒ #2M =
r∑

j=1

#2M
+
j

M : a Hermitian symmetric space of compact type

=⇒ M+
j : a Hermitian symmetric space of compact type if

dimM+
j > 0

.
Lemma 6
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L : a real form of M, o ∈ L
M+ : a polar of M w.r.t. o, M+ ∩ L ̸= ∅
=⇒ M+ ∩ L is a real form of M+
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Intersections of two real forms

Intersections of two real forms

Simple example.

S2 = CP1 is a Hermitian symmetric space of compact type.
A real form of S2 is a great circle, and vice versa.
Any two great circles intersect in two points which are antipodal to
each other, if they intersect transversally.

More generally,
M = CPn, L = RPn : a real form of CPn

g ∈ I0(M), L and g(L) intersect transversally
=⇒ ∃u1, . . . , un+1 : a unitary basis of Cn+1 s.t.
L ∩ g(L) = {⟨u1⟩C, . . . , ⟨un+1⟩C} (Howard, 1993)

In particular, L ∩ g(L) is a great antipodal set of L.
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Intersections of two real forms

Intersections of two real forms

.
Theorem 8 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2 : real forms of M, L1 t L2

=⇒ L1 ∩ L2 is an antipodal set of L1 and L2.

.
Theorem 9 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2, L

′
1, L

′
2 : real forms of M, L1 t L2, L

′
1 t L′2

Li and L′i are congruent (i = 1, 2)

=⇒ #(L1 ∩ L2) = #(L′1 ∩ L′2)
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Intersections of two real forms

Intersections of two real forms
.
Corollary 10
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2, L

′
1, L

′
2 : real forms of M, L1 t L2, L

′
1 t L′2

Li and L′i are congruent (i = 1, 2)

#(L1 ∩ L2) = min{#2L1,#2L2}
(i.e., L1 ∩ L2 is a great antipodal set of L1 or L2.)

=⇒ L1 ∩ L2 and L′1 ∩ L′2 are congruent.

.
Theorem 11 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2 : congruent real forms of M, L1 t L2

=⇒ L1 ∩ L2 is a great antipodal set of L1 and L2,
i.e., #(L1 ∩ L2) = #2L1 = #2L2.

Makiko Sumi Tanaka (The 15th International Workshop on Differential Geometry)Antipodal sets of compact Riemannian symmetric spaces and their applicationsNovember 4, 2011 19 / 24



Intersections of two real forms

Intersections of two real forms
.
Corollary 10
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2, L

′
1, L

′
2 : real forms of M, L1 t L2, L

′
1 t L′2

Li and L′i are congruent (i = 1, 2)
#(L1 ∩ L2) = min{#2L1,#2L2}

(i.e., L1 ∩ L2 is a great antipodal set of L1 or L2.)

=⇒ L1 ∩ L2 and L′1 ∩ L′2 are congruent.

.
Theorem 11 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2 : congruent real forms of M, L1 t L2

=⇒ L1 ∩ L2 is a great antipodal set of L1 and L2,
i.e., #(L1 ∩ L2) = #2L1 = #2L2.

Makiko Sumi Tanaka (The 15th International Workshop on Differential Geometry)Antipodal sets of compact Riemannian symmetric spaces and their applicationsNovember 4, 2011 19 / 24



Intersections of two real forms

Intersections of two real forms
.
Corollary 10
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2, L

′
1, L

′
2 : real forms of M, L1 t L2, L

′
1 t L′2

Li and L′i are congruent (i = 1, 2)
#(L1 ∩ L2) = min{#2L1,#2L2}
(i.e., L1 ∩ L2 is a great antipodal set of L1 or L2.)

=⇒ L1 ∩ L2 and L′1 ∩ L′2 are congruent.

.
Theorem 11 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2 : congruent real forms of M, L1 t L2

=⇒ L1 ∩ L2 is a great antipodal set of L1 and L2,
i.e., #(L1 ∩ L2) = #2L1 = #2L2.

Makiko Sumi Tanaka (The 15th International Workshop on Differential Geometry)Antipodal sets of compact Riemannian symmetric spaces and their applicationsNovember 4, 2011 19 / 24



Intersections of two real forms

Intersections of two real forms
.
Corollary 10
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2, L

′
1, L

′
2 : real forms of M, L1 t L2, L

′
1 t L′2

Li and L′i are congruent (i = 1, 2)
#(L1 ∩ L2) = min{#2L1,#2L2}
(i.e., L1 ∩ L2 is a great antipodal set of L1 or L2.)

=⇒ L1 ∩ L2 and L′1 ∩ L′2 are congruent.

.
Theorem 11 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2 : congruent real forms of M, L1 t L2

=⇒ L1 ∩ L2 is a great antipodal set of L1 and L2,
i.e., #(L1 ∩ L2) = #2L1 = #2L2.

Makiko Sumi Tanaka (The 15th International Workshop on Differential Geometry)Antipodal sets of compact Riemannian symmetric spaces and their applicationsNovember 4, 2011 19 / 24



Intersections of two real forms

Intersections of two real forms
.
Corollary 10
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2, L

′
1, L

′
2 : real forms of M, L1 t L2, L

′
1 t L′2

Li and L′i are congruent (i = 1, 2)
#(L1 ∩ L2) = min{#2L1,#2L2}
(i.e., L1 ∩ L2 is a great antipodal set of L1 or L2.)

=⇒ L1 ∩ L2 and L′1 ∩ L′2 are congruent.

.
Theorem 11 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2 : congruent real forms of M, L1 t L2

=⇒ L1 ∩ L2 is a great antipodal set of L1 and L2,
i.e., #(L1 ∩ L2) = #2L1 = #2L2.

Makiko Sumi Tanaka (The 15th International Workshop on Differential Geometry)Antipodal sets of compact Riemannian symmetric spaces and their applicationsNovember 4, 2011 19 / 24



Intersections of two real forms

Intersections of two real forms
.
Corollary 10
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2, L

′
1, L

′
2 : real forms of M, L1 t L2, L

′
1 t L′2

Li and L′i are congruent (i = 1, 2)
#(L1 ∩ L2) = min{#2L1,#2L2}
(i.e., L1 ∩ L2 is a great antipodal set of L1 or L2.)

=⇒ L1 ∩ L2 and L′1 ∩ L′2 are congruent.

.
Theorem 11 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2 : congruent real forms of M, L1 t L2

=⇒ L1 ∩ L2 is a great antipodal set of L1 and L2,
i.e., #(L1 ∩ L2) = #2L1 = #2L2.

Makiko Sumi Tanaka (The 15th International Workshop on Differential Geometry)Antipodal sets of compact Riemannian symmetric spaces and their applicationsNovember 4, 2011 19 / 24



Intersections of two real forms

Intersections of two real forms

M : a Hermitian symmetric space
L : a Lagrangian submanifold

L : globally tight
def⇐⇒ #(L ∩ g(L)) = dimH∗(L,Z2) for

∀g ∈ I0(M) with L t g(L)
(Y.-G Oh, 1991)

.
Corollary 12 (T.-Tasaki)
..

.

. ..

.

.

Any real form of a Hermitian symmetric space of compact type is a
globally tight Lagrangian submanifold.
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Intersections of two real forms

Intersections of two real forms

Remark. The classification of real forms is obtained by D. P. S.
Leung (1979) and M. Takeuchi (1984).

Example. M = GC
k (Cn)

L ∼=


GR
k (Rn)

GH
l (Hm) if k = 2l , n = 2m

U(k) if n = 2k
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Intersections of two real forms

Intersections of two real forms

.
Theorem 13 (T.-Tasaki)
..

.

. ..

.

.

M : an irreducible Hermitian symmetric space of compact type
L1, L2 : real forms of M, L1 t L2, #2L1 ≤ #2L2

(1) (M , L1, L2) = (GC
2m(C4m),GH

m (H2m),U(2m))

=⇒ #(L1 ∩ L2) < #2L1 < #2L2

In particular, L1 ∩ L2 is not a great antipodal set of L1 (and not of
L2).

(2) Otherwise, #(L1 ∩ L2) = #2L1
i.e., L1 ∩ L2 is a great antipodal set of L1.
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Intersections of two real forms

Intersections of two real forms

Example (non-irreducible case).

M = CP1 × CP1 × CP1 × CP1

τ1, τ2 : CP1 → CP1 : involutive anti-holomorphic isometries
s.t. real forms determined by τ1, τ2 intersect transversally
L1 = {(x , y , τ1(x), τ1(y)) | x , y ∈ CP1}
L2 = {(x , τ2(x), y , τ2(y)) | x , y ∈ CP1}
=⇒ L1, L2 : real forms of M , L1 t L2

#(L1 ∩ L2) = 2 < 4 = #2L1 = #2L2
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Intersections of two real forms

Intersections of two real forms

Application.

.
Theorem 14 (Iriyeh-Sakai-Tasaki)
..

.

. ..

.

.

M : an irreducible Hermitian symmetric space of compact type
L1, L2 : real forms of M, L1 t L2

=⇒ HF (L1, L2 : Z2) =
⊕

p∈L1∩L2 Z2p

i.e., the intersection L1 ∩ L2 itself becomes a basis of the Floer
homology HF (L1, L2 : Z2).
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