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1 Introduction

M = S2

L1, L2 : great circles intersecting transversally

=⇒ L1 ∩ L2 = {o, ō}
(o and ō are antipodal)

S2 ∼= CP1

L1, L2
∼= RP1 : totally geodesic

R. Howard¶ ³
M = CPn

L = RPn : totally geodesic

=⇒ #(L ∩ g · L) = n + 1

(∀g ∈ I(M) s.t. g · L intersects L transversally)
∀x, y ∈ L ∩ g · L are antipodalµ ´

RPn is a “real form” of CPn.
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“2-number” (B.-Y. Chen and T. Nagano)
#2(RPn) = n + 1

M. Takeuchi¶ ³
N : symmetric R-space

=⇒ #2(N) = SB(N, Z2)

(=the sum of Z2-Betti numbers of N)µ ´
Remark Every real form in a Hermitian symmetric space of com-
pact type is a symmetric R-space.

“globally tight” (Y.-G. Oh)
M : Hermitian symmetric space
L : Lagrangian submanifold
L : globally tight

def⇐⇒ #(L ∩ g · L) = SB(M, Z2) for ∀g ∈ I(M)
s.t. g · L intersects L transversally

Remark : RPn is globally tight.
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Problem 1

Does the intersection of two real forms of a Hermitian symmetric

space of compact type consist of antipodal points if they intersect

transversally? Moreover, does the number of such points coincide

with the 2-number of the real form?

Problem 2

Is every real form of any Hermitian symmetric space of compact

type globally tight?
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2 Preliminaries

Definition¶ ³
M : connected Riemannian manifold

M : Riemannian symmetric space
def⇐⇒ ∀x ∈ M , ∃sx : involutive isometry

s.t. x is an isolated fixed point of sx

sx is called the symmetry at xµ ´

Definition¶ ³
M : connected Hermitian manifold

M : Hermitian symmetric space
def⇐⇒ ∀x ∈ M , ∃sx : involutive holomorphic isometry

s.t. x is an isolated fixed point of sxµ ´
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If M is a Riemannian (resp. Hermitian) symmetric space, M = G/K

with the identity component of the isometry group (resp. holomor-

phic isometry group) G and the isotropy subgroup K at some point

in M .

Definition¶ ³
M : Hermitian manifold

L : real form of M
def⇐⇒ ∃σ : M → M : anti-holomorphic involutive isometry

s.t. L = {x ∈ M | σ(x) = x}µ ´

Remark Real forms are connected. (M. Takeuchi)

M : Hermitian symmetric space of compact type

(i.e., M = G/K, G : compact, semisimple)

=⇒ Every real form of M is a totally geodesic Lagrangian subman-

ifold.
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M : irreducible Hermitian symmetric space of compact type

L : real form of M

L M
UI(n) = U(n)/SO(n) CI(n) = Sp(n)/U(n)
Sp(n) = Sp(n) × Sp(n)/∆ CI(2n)
Gr(Rn+r) = SO(n + r)/S(O(r) × O(n)) Gr(Cn+r) = SU(n + r)/S(U(r) × U(n))
Gr(Hn+r) = Sp(n + r)/Sp(r) × Sp(n) G2r(C2n+2r)
U(n) = U(n) × U(n)/∆ Gn(C2n)
SO(n) = SO(n) × SO(n)/∆ DIII(n) = SO(2n)/U(n)
UII(n) = U(2n)/Sp(n) DIII(2n)
Sk × Sl/Z2 Go

2(Rk+l) = SO(k + l)/SO(2) × SO(k + l − 2)
FII = F4/Spin(9) EIII = E6/T · Spin(10)
G2(H4)/Z2 EIII
T · EIV = T · E6/F4 EV II = E7/T · E6

AII(4)/Z2 EV II

( ∆ : the diagonal subgroup , T ∼= U(1) )

M. Takeuchi, D.P.S. Leung
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Definition (B.-Y. Chen - T. Nagano)¶ ³
M : Riemannian symmetric space

S ⊂ M : subset

S : antipodal set
def⇐⇒ ∀x, y ∈ S, sxy = y

(sx : the symmetry at x)

The 2-number of M

#2(M) := sup{#S | S ⊂ M : antipodal set}

If an antipodal set S satisfies #(S) = #2(M), S is called a great

antipodal set.µ ´

Remark #2(M) < ∞

Remark sxy = y ⇐⇒ ∃c : closed geodesic

s.t. x and y are antipodal on c

Hence we can define the “2-number” for any Riemannian manifold.
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Examples

#2(S
n) = 2

#2(T
n) = 2n

#2(KPn) = n + 1 (K = R, C, H)

e1, . . . , en+1 : o. n. b. of Kn+1

=⇒ {Ke1, . . . , Ken+1} : great antipodal set

#2(Gr(Kn)) =

(
n
r

)
, the binomial coefficient (K = R, C, H)

e1, . . . , en : o. n. b. of Kn

=⇒ {〈ei1, . . . , eir〉K | 1 ≤ i1 < · · · < ir ≤ n} : great antipodal set

#2(U(n)) = 2n
 ±1

.. .
±1


 : great antipodal set
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Definition¶ ³
M : compact Riemannian symmetric space, o ∈ M

F (so, M) = {x ∈ M | so(x) = x} =
k∪

j=0

M+
j , where M+

0 = {o}

Each connected component M+
j is called a polar of M w.r.t. o.

µ ´

Examples

(1) M = Sn, o = (1,0, . . . ,0) ∈ Rn+1

F (so, M) = {o} ∪ {−o}

(2) M = KPn (K = R, C, H)

e1, . . . , en+1 : o.n.b. of Kn+1, o = Ke1
F (so, M) = {Ke1} ∪ {1-dim subspaces in 〈e2, . . . , en+1〉K}

∼= {o} ∪ KPn−1
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(3) M = U(n), o = I : the identity matrix

F (so, M) = {X ∈ U(n) | X2 = I}
= [I] ∪ [I1] ∪ · · · ∪ [In−1] ∪ [In]
∼= {I} ∪ G1(Cn) ∪ · · · ∪ Gn−1(Cn) ∪ {−I}

[X] : conjugacy class of X

Ik =



−1 0
.. .

−1
1

.. .
0 1


(the cardinality of −1’s is k and that of 1’s is n − k)
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Lemma 2.1¶ ³
M : compact Riemannian symemtric space

S : antipodal set of M , x ∈ S

=⇒ S ⊂ F (sx, M)µ ´

Lemma 2.2¶ ³
M : Hermitian symmetric space of compact type

=⇒ ∀M+
j : Hermitian symmetric space of compact type

µ ´

Lemma 2.3¶ ³
M : Hermitian symmetric space of compact type

L : real form of M , o ∈ L

=⇒ L ∩ M+
j : real form of M+

j if L ∩ M+
j 6= ∅

(M+
j : polar of M w.r.t. o)

µ ´
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3 Main results

Theorem 1¶ ³
M : Hermitian symmetric space of compact type

L1, L2: real forms of M , intersect transversally

=⇒ L1 ∩ L2 : antipodal set of L1, L2µ ´

Remark : We do not assume that L1 and L2 are congruent to each

other.

L1 and L2 are congruent if they are transformed to each other by

some holomorphic isometry of M .
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Theorem 2¶ ³
M : Hermitian symmetric space of compact type

L1, L2: real forms of M , congruent, intersect transversally

=⇒ L1 ∩ L2 : great antipodal set of L1, L2

i.e., #(L1 ∩ L2) = #2L1 = #2L2µ ´

Corollary¶ ³
Any real form of a Hermitian symmetric space of compact type is

globally tight.µ ´
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Theorem 3¶ ³
M : irreducible Hermitian symmetric space of compact type

L1, L2 : real forms of M , intersect transversally

(1) (M, L1, L2) = (G2m(C4m), Gm(H2m), U(2m))

=⇒ #(L1 ∩ L2) = 2m < #2L1 < #2L2

(2) (M, L1, L2) 6= (G2m(C4m), Gm(H2m), U(2m))

=⇒ #(L1 ∩ L2) = min{#2L1,#2L2}µ ´
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4 Outline of proofs

Theorem 1¶ ³
M : Hermitian symmetric space of compact type

L1, L2: real forms of M , intersect transversally

=⇒ L1 ∩ L2 : antipodal set of L1, L2µ ´
Proof of Theorem 1

Lemma (H. Tasaki)¶ ³
M : compact Kähler manifold with positive holomorphic sectional

curvature

L1, L2 : totally geodesic compact Lagrangian submanifolds in M

=⇒ L1 ∩ L2 6= ∅µ ´
We can choose o ∈ L1 ∩ L2.
We prove that o and p are antipodal for ∀p ∈ L1 ∩ L2 − {o} by using
the properties of maximal tori.
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Lemma¶ ³
M : compact Riemannian symmetric space, o ∈ M

A, A1 : maximal tori of M , o ∈ A ∩ A1

S : fundamental cell of A, S =
∪

i Si

A1 ∩ A ∩ Exp Si 6= ∅ =⇒ Exp Si ⊂ A1 ∩ Aµ ´
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Theorem 2¶ ³
M : Hermitian symmetric space of compact type

L1, L2: real forms of M , congruent, intersect transversally

=⇒ L1 ∩ L2 : great antipodal set of L1, L2

i.e., #(L1 ∩ L2) = #2L1 = #2L2µ ´

Proof of Theorem 2

We can choose o ∈ L1 ∩ L2.

L1, L2 : congruent =⇒ #2L1 = #2L2

Let

F (so, M) =
r∪

j=0

M+
j ,

then

F (so, Li) =
r∪

j=0

(Li ∩ M+
j ) (i = 1,2)

and Li ∩ M+
j is a real form of M+

j by Lemma 2.3.
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By Theorem 1 we have

L1 ∩ L2 =
r∪

j=0

{(L1 ∩ M+
j ) ∩ (L2 ∩ M+

j )}

and

#(L1 ∩ L2) =
r∑

j=0

#{(L1 ∩ M+
j ) ∩ (L2 ∩ M+

j )}.

Thus we obtain :

(∗)¶ ³
∀j, #{(L1 ∩ M+

j ) ∩ (L2 ∩ M+
j )} = #2(L1 ∩ M+

j ) = #2(L2 ∩ M+
j )

=⇒ #(L1 ∩ L2) = #2L1 = #2L2µ ´
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F (so, M) =
r∪

j1=0

M+
j1

oj1 ∈ M+
j1

, F (soj1
, M+

j1
) =

∪
j2

M+
j1,j2

...

...

oj1,...,jk
∈ M+

j1,...,jk
, F (soj1,...,jk

, M+
j1,...,jk

) =
∪

jk+1

M+
j1,...,jk,jk+1

=⇒ dim M > dim M+
j1

> dim M+
j1,j2

> · · · > dim M+
j1,...,jl

= 0

(i.e., M+
j1,...,jl

= {a point})

Li ∩ M+
j1,...,jl

6= ∅ (i = 1,2)

=⇒
#{(L1∩M+

j1,...,jl
)∩(L2∩M+

j1,...,jl
)} = #2(Li∩M+

j1,...,jl
) = 1 (i = 1,2)

Now Theorem 2 is proved by induction due to (∗).
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Theorem 3¶ ³
M : irreducible Hermitian symmetric space of compact type

L1, L2 : real forms of M , intersect transversally

(1) (M, L1, L2) = (G2m(C4m), Gm(H2m), U(2m))

=⇒ #(L1 ∩ L2) = 2m < #2L1 < #2L2

(2) (M, L1, L2) 6= (G2m(C4m), Gm(H2m), U(2m))

=⇒ #(L1 ∩ L2) = min{#2L1,#2L2}µ ´

Proof of Theorem 3

We prove it case by case due to the classification of real forms of

irreducible Hermitian symmetric spaces of compact type by D. P. S.

Leung and M. Takeuchi.

We may consider only the cases where L1 and L2 are not congruent.
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M L1 L2
Qn(C) Sk,n−k Sl,n−l

GC
2q(C2m+2q) GH

q (Hm+q) GR
2q(R2m+2q)

GC
n(C2n) U(n) GR

n(R2n)

GC
2m(C4m) GH

m(H2m) U(2m)
Sp(2m)/U(2m) Sp(m) U(2m)/O(2m)
SO(4m)/U(2m) U(2m)/Sp(m) SO(2m)

E6/T · Spin(10) F4/Spin(9) GH
2 (H4)/Z2

E7/T · E6 T · (E6/F4) (SU(8)/Sp(4))/Z2
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