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Abstract. In this paper we study tangential degeneracy of the orbits of s-
representations in the sphere. We show that the orbit of an s-representation

is tangentially degenerate if and only if it is through a long root, or a short
root of restricted root system of type G2. Moreover these orbits provide many
new examples of tangentially degenerate submanifolds which satisfy the Ferus

equality.

1. Introduction

The linear isotropy representation of a Riemannian symmetric pair is called an
s-representation, which was coined by Ozeki-Takeuchi [13]. This representation is
orthogonal, so we regard its orbit of a point as a submanifold of the hypersphere
in the representation space. A submanifold whose Gauss map is degenerate is
said to be tangentially degenerate. The purpose of this paper is to give a Lie-
algebraic characterization of tangentially degenerate orbits of s-representations.
For the purpose we describe the kernels of the differentials of the Gauss maps of
the orbits by the restricted root systems of the Riemannian symmetric pair which
determine s-representations. The description of the kernels of the differentials of the
Gauss maps of the orbits lead us to a Lie-algebraic characterization of tangentially
degenerate orbits and the classification of them. We can obtain the rank of the
Gauss map of them and many examples of orbits satisfying the Ferus equality. We
shall explain the Ferus equality in the next paragraph.

Ferus [5] obtained a remarkable result for tangentially degenerate submanifolds
in the sphere. He showed that for a submanifold, there exists a number, called
the Ferus number, with property that if the rank of the Gauss map is less than
the Ferus number, then the submanifold must be a totally geodesic sphere. If the
rank of the Gauss map is equal to the Ferus number, we call this equality the
Ferus equality. Many examples of submanifolds which satisfy the Ferus equality
have not been found. In their papers [10, 11, 12], Ishikawa, Kimura and Miyaoka
studied submanifolds with degenerate Gauss mappings in the sphere via a method
of isoparametric hypersurfaces. They showed that Cartan hypersurfaces and some
focal submanifolds of homogeneous isoparametric hypersurfaces are tangentially
degenerate. Moreover, some of them satisfy the Ferus equality.

We want to emphasize the importance of the orbits of s-representations. In
fact, every homogeneous hypersurface in a sphere is an orbit of s-representation of
Riemannian symmetric spaces of rank 2, by Hsiang-Lawson [8], and they are all
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isoparametric, by Takagi-Takahashi [15]. We have already studied austere orbits
and weakly reflective orbits of s-representations and classified them in our previous
paper [9]. Ishikawa, Kimura and Miyaoka showed some relationship between tan-
gentially degeneracy and the property ‘austere’ of isoparametric hypersurfaces and
their focal submanifolds. In this paper we study tangentially degenerate orbits of
s-representations via methods of symmetric spaces and obtain that the spaces of
relative nullity of them. The following theorem is the main result of this paper.

Theorem 1.1. Let (G, K) be an irreducible compact symmetric pair. An orbit of
the s-representation is tangentially degenerate in the sphere if and only if either
one of the followings is valid:

(1) The orbit is through a longest root of the restricted root system of (G,K).
(2) The restricted root system of (G,K) is of type G2 and the orbit is through

a short root.
In such cases the space of relative nullity of the orbit is equal to the root space of
the root.

It is well known that an s-representation admits a subspace which intersects all
orbits orthogonally. An orthogonal representation of a compact Lie group which
satisfies such a property is called a polar representation. Dadok [4] showed that with
few exceptions s-representations occupy all polar representations of compact Lie
groups and that any orbit of a polar representation is an orbit of an s-representation.
By this result our main theorem gives the classification of tangentially degenerate
orbits of irreducible polar representations in the spheres.

We have showed that the orbit of any root is weakly reflective in [9], so a tangen-
tially degenerate orbit is weakly reflective. After the classification of tangentially
degenerate orbits of s-representations we shall observe that these orbits provide
many new examples of tangentially degenerate submanifolds in the sphere which
satisfy the Ferus equality.

The organization of this paper is as follows:
1. Introduction
2. Preliminaries
3. Proof of Theorem 1.1 (Sufficiency for tangential degeneracy)
4. Spaces of relative nullity
5. Proof of Theorem 1.1 (Necessity for tangential degeneracy)
6. Lemmas on quaternionic symmetric spaces
7. Ferus equalities

In Section 2, we review the definition of the Gauss map of a submanifold in
a sphere and its tangential degeneracy, and results concerning them. We also
review fundamental facts on the orbits of s-representations and obtain a basic
result on tangentially degenerate orbits mentioned in Proposition 2.5, which states
that a tangentially degenerate orbit is always through a restricted root. After this
proposition it is enough to consider only the orbits of restricted roots.

In Section 3, we show that the orbits satisfying one of the conditions (1) and (2)
in Theorem 1.1 are tangentially degenerate.

Section 4 describes the spaces of relative nullity of the orbits of restricted roots.
Proposition 4.1 gives a fundamental description of those spaces and leads Theorem
4.5 which determines the spaces of relative nullity of tangentially degenerate orbits.
Using these we prove the last assertion of Theorem 1.1.
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In Section 5, we show that the orbits which do not satisfy (1) or (2) in The-
orem 1.1 are not tangentially degenerate. At the last of this section we list all
irreducible compact symmetric pair such that the orbits of their s-representations
have degenerate Gauss maps.

In Section 5, we collect some results on restricted root systems of compact quater-
nionic symmetric pairs. The last lemma 6.7 is used in Subsection 5.6.

In Section 7, we review the definition of the Ferus number and collect its prop-
erties we need. Using these we show new examples of tangentially degenerate
submanifolds which satisfy the Ferus equality.

We wish to thank the referee for helpful suggestions on improvement of our
manuscript.

2. Preliminaries

Let f : M −→ Sn be an immersion of an l-dimensional manifold M into an
n-dimensional sphere Sn. The Gauss map γ of f is defined as a mapping from M
to a Grassmannian manifold Gl+1(Rn+1) of all (l + 1)-dimensional subspaces in
Rn+1 by:

γ : M −→ Gl+1(Rn+1)
x 7−→ Rf(x) ⊕ Tf(x)(f(M)).

We denote by r the maximal rank of the Gauss map γ of f . If the Gauss map is
degenerate, i.e. r < l, then an immersed submanifold f(M) ⊂ Sn is said to be
tangentially degenerate or developable. We note that γ is constant, i.e. r = 0, if
and only if f(M) is a part of a totally geodesic sphere.

We denote by h the second fundamental form of f and by Aξ the shape operator
of f with respect to a normal vector ξ. Chern and Kuiper [3] introduced the notion
of the index of relative nullity at x ∈ M , that is the dimension of the vector space

Nx = {X ∈ Tx(M) | h(X,Y ) = 0, ∀Y ∈ Tx(M)}
=

⋂
ξ∈T⊥

x (M)

ker(Aξ).

It is easy to show ker(dγ)x = Nx, therefore the index of relative nullity is equal to
the degeneracy of the Gauss map at each point.

A linear isotropy representation of a Riemannian symmetric pair is called an
s-representation. In the following section, we will study orbits of s-representations
which are tangentially degenerate. For this purpose, we shall provide some funda-
mental notions of orbits of s-representations in this section.

Let G be a compact, connected Lie group and K a closed subgroup of G. Assume
that θ is an involutive automorphism of G and G0

θ ⊂ K ⊂ Gθ, where

Gθ = {g ∈ G | θ(g) = g}

and G0
θ is the identity component of Gθ. Then (G, K) is a compact symmetric pair

with respect to θ. We denote the Lie algebras of G and K by g and k, respectively.
The involutive automorphism of g induced from θ will be also denoted by θ. Then
we have

k = {X ∈ g | θ(X) = X}.
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Take an inner product 〈 , 〉 on g which is invariant under θ and the adjoint repre-
sentation of G. Set

m = {X ∈ g | θ(X) = −X},
then we have a canonical orthogonal direct sum decomposition

g = k + m.

Fix a maximal abelian subspace a in m and a maximal abelian subalgebra t in g
containing a. For α ∈ t we set

(2.1) g̃α = {X ∈ gC | [H,X] =
√
−1〈α,H〉X (H ∈ t)}

and define the root system R̃ of g by

(2.2) R̃ = {α ∈ t − {0} | g̃α 6= {0}}.
For λ ∈ a we set

gλ = {X ∈ gC | [H,X] =
√
−1〈λ, H〉X (H ∈ a)}

and define the restricted root system R of (g, k) by

R = {λ ∈ a − {0} | gλ 6= {0}}.
Set

R̃0 = R̃ ∩ k

and denote the orthogonal projection from t to a by H 7→ H̄. Then we have

R = {ᾱ | α ∈ R̃ − R̃0}.
We take a basis of t extended from a basis of a and define the lexicographic orderings
> on a and t with respect to these bases. Then for H ∈ t, H̄ > 0 implies H > 0.
We denote by F̃ the set of simple roots of R̃ with respect to the ordering >. Set

F̃0 = F̃ ∩ R̃0,

then the set of simple roots F of R with respect to the ordering > is given by

F = {ᾱ | α ∈ F̃ − F̃0}.
We set

R̃+ = {α ∈ R̃ | α > 0}, R+ = {λ ∈ R | λ > 0}.
Then we have

R+ = {ᾱ | α ∈ R̃+ − R̃0}.
We also set

k0 = {X ∈ k | [X,H] = 0 (H ∈ a)},
and define

kλ = k ∩ (gλ + g−λ), mλ = m ∩ (gλ + g−λ)
for λ ∈ R+. Under these notations, we have the following lemma whose statements
are simple consequences of results of Chapters VI and VII in Helgason’s book [6].

Lemma 2.1. (1) We have orthogonal direct sum decompositions

k = k0 +
∑

λ∈R+

kλ, m = a +
∑

λ∈R+

mλ.

(2) If H ∈ a and 〈λ,H〉 6= 0, then ad(H) gives a linear isomorphism between
mλ and kλ.
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We define a subset D of a by

D =
⋃

λ∈R

{H ∈ a | 〈λ,H〉 = 0}.

A connected component of a − D is a Weyl chamber. We set

C = {H ∈ a | 〈λ,H〉 > 0 (λ ∈ F )}.

Then C is an open convex subset of a and the closure of C is given by

C̄ = {H ∈ a | 〈λ,H〉 ≥ 0 (λ ∈ F )}.

For a subset ∆ ⊂ F , we define

C∆ = {H ∈ C̄ | 〈λ,H〉 > 0 (λ ∈ ∆), 〈µ, H〉 = 0 (µ ∈ F − ∆)}.

Lemma 2.2. (1) For ∆1 ⊂ F , the decomposition

C∆1 =
⋃

∆⊂∆1

C∆

is a disjoint union. In particular, C̄ =
⋃

∆⊂F

C∆ is a disjoint union.

(2) For ∆1, ∆2 ⊂ F , ∆1 ⊂ ∆2 if and only if C∆1 ⊂ C∆2 .

For each λ ∈ F , we take Hλ ∈ a such that

〈Hλ, µ〉 =
{

1 (µ = λ),
0 (µ 6= λ) (µ ∈ F ).

Then, for ∆ ⊂ F , we have

C∆ =

{ ∑
λ∈∆

tλHλ

∣∣∣∣∣ tλ > 0

}
.

We set
R∆ = R ∩ (F − ∆)Z, R∆

+ = R∆ ∩ R+.

Under these notations, we have the following lemma.

Lemma 2.3 ([7]). Fix a subset ∆ ⊂ F . For H ∈ C∆ we have the following:
(1) R∆ = {µ ∈ R | 〈µ,H〉 = 0},
(2) R∆

+ = {µ ∈ R+ | 〈µ, H〉 = 0}.

Now we shall study an orbit Ad(K)H of the linear isotropy representation of
(G,K) through H ∈ m. We set

ZH
K = {k ∈ K | Ad(k)H = H}.

Then ZH
K is a closed subgroup of K and the orbit Ad(K)H is diffeomorphic to the

coset manifold K/ZH
K . The Lie algebra zH

K of ZH
K is given by

zH
K = {X ∈ k | [H,X] = 0}.

An orbit Ad(K)H is a submanifold of the hypersphere S of radius ‖H‖ in m. From
[7], Ad(K)H is connected. Since

m =
⋃

k∈K

Ad(k)C̄,
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without loss of generality we may assume H ∈ C̄. Moreover, from Lemma 2.2,
there exists ∆ ⊂ F such that H ∈ C∆. From Lemma 2.1 we have the following
lemma.

Lemma 2.4 ([9]). For ∆ ⊂ F and H ∈ C∆, the tangent space TH(Ad(K)H) of
the orbit Ad(K)H at H and the normal space T⊥

H (Ad(K)H) in the hypersphere can
be expressed as

TH(Ad(K)H) =
∑

µ∈R+−R∆
+

mµ,(2.3)

T⊥
H (Ad(K)H) = a ∩ H⊥ +

∑
ν∈R∆

+

mν = Ad((ZH
K )0)(a ∩ H⊥),(2.4)

where (ZH
K )0 is the identity component of the stabilizer ZH

K of H in K.

Proposition 2.5. If the orbit Ad(K)H through H ∈ a is tangentially degenerate,
then H is a constant multiple of a restricted root.

Proof. First we note that

Aξ = Ad(k)−1AAd(k)ξAd(k)

for any ξ ∈ a ∩ H⊥ and k ∈ (ZH
K )0. From this we have⋂

ξ∈T⊥
H (Ad(K)H)

kerAξ =
⋂

ξ∈Ad((ZH
K )0)(a∩H⊥)

ker Aξ

=
⋂

ξ∈a∩H⊥

k∈(ZH
K

)0

ker AAd(k)ξ

=
⋂

ξ∈a∩H⊥

k∈(ZH
K

)0

ker(Ad(k)AξAd(k)−1)

=
⋂

ξ∈a∩H⊥

k∈(ZH
K

)0

ker(AξAd(k)−1)

=
⋂

ξ∈a∩H⊥

k∈(ZH
K

)0

Ad(k) kerAξ

=
⋂

k∈(ZH
K )0

Ad(k)
⋂

ξ∈a∩H⊥

kerAξ.

For ξ ∈ a ∩ H⊥ the set of eigenvalues of Aξ is given by{
− 〈λ, ξ〉
〈λ,H〉

∣∣∣∣∣ λ ∈ R+ − R∆
+

}
,

and the eigenspace associated with eigenvalue −〈λ, ξ〉/〈λ,H〉 is given by∑
− 〈µ,ξ〉

〈µ,H〉=− 〈λ,ξ〉
〈λ,H〉

mµ.
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See [9] for details. The space ker Aξ is nothing but the eigenspace associated with
0-eigenvalue. Thus

ker Aξ =
∑

〈µ,ξ〉=0

mµ.

Therefore we have ⋂
ξ∈a∩H⊥

kerAξ =
⋂

ξ∈a∩H⊥

∑
〈µ,ξ〉=0

mµ =
∑
µ//H

mµ,

where µ // H means that µ and H are parallel. Hence

(2.5)
⋂

ξ∈T⊥
H (Ad(K)H)

kerAξ =
⋂

k∈(ZH
K )0

Ad(k)
∑
µ//H

mµ ⊂
∑
µ//H

mµ.

Consequently, if Ad(K)H is tangentially degenerate, then H must be a constant
multiple of a restricted root. ¤

3. Proof of Theorem 1.1 (Sufficiency for tangential degeneracy)

We retain the notation in Section 2. Let (G, K) be an irreducible compact
symmetric pair. By the conjugacy of a maximal abelian subspace a of m under
the action of K, every Ad(K)-orbit in m intersects with a. The restricted root
system R is the root system of g with respect to a. Since we are concerned with
the tangential degeneracy of Ad(K)-orbit, by Proposition 2.5 we can restrict our
attention to Ad(K)-orbit through roots in R. Since the tangentially degeneracy
of the orbit is invariant under scalar multiples on the vector space m, we do not
discriminate the difference of the length of a vector H. When (G,K) is of rank 1,
K acts on the sphere in m transitively. Therefore we only consider a symmetric
pair whose rank is greater than or equal to 2. In this section we prove that Ad(K)λ
is tangentially degenerate, if either one of (1) and (2) in the Theorem 1.1 is valid.

We put H = λ ∈ R+ and

∆ = {µ ∈ F | 〈µ, λ〉 > 0}.

Then we have λ ∈ C∆. If 2λ /∈ R+, then k0 + kλ is a Lie subalgebra of k. We denote
by K(λ) the analytic subgroup of K which corresponds to k0 + kλ.

Lemma 3.1. If λ ∈ R+ satisfies

(a) 2λ /∈ R+,
(b) λ + ν /∈ R and λ − ν /∈ R for all ν ∈ R∆

+ ,

then Ad(K)λ is tangentially degenerate.

Proof. Since the tangent space of the orbit Ad(K)λ at λ is given as in (2.3), the
image of λ by the Gauss map γ is

γ(λ) = Rλ +
∑

µ∈R+−R∆
+

mµ,

and its orthogonal complement in m is

γ(λ)⊥ = a ∩ λ⊥ +
∑

ν∈R∆
+

mν .
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From a rule of the bracket product of root spaces and the assumption (b), we havek0, a ∩ λ⊥ +
∑

ν∈R∆
+

mν

 ⊂
∑

ν∈R∆
+

mν ,

kλ, a ∩ λ⊥ +
∑

ν∈R∆
+

mν

 = {0}.

Therefore k0 + kλ, a ∩ λ⊥ +
∑

ν∈R∆
+

mν

 ⊂ a ∩ λ⊥ +
∑

ν∈R∆
+

mν .

This yields

Ad(K(λ))

a ∩ λ⊥ +
∑

ν∈R∆
+

mν

 = a ∩ λ⊥ +
∑

ν∈R∆
+

mν .

Hence

Ad(K(λ)) · γ(λ) = γ(λ).

Since γ is K-equivariant, we have

γ(Ad(k)λ) = Ad(k)γ(λ) = γ(λ)

for any k ∈ K(λ). This means that γ is constant on Ad(K(λ))λ. It is clear that
Ad(K(λ))λ is not a point, since Tλ(Ad(K(λ))λ) = mλ. Consequently Ad(K)λ is
tangentially degenerate. ¤

We denote by δ ∈ R+ the highest root of R.

Lemma 3.2 ([16]). For λ ∈ R+,

〈λ, δ〉
‖δ‖2

=

 0 (when λ ⊥ δ),
1 (when λ = δ),
1/2 (otherwise).

When 〈λ, δ〉/‖δ‖2 = 0, then λ− δ is not a root. When 〈λ, δ〉/‖δ‖2 = 1/2, then λ− δ
is a root.

Wolf [16] showed this lemma in the case where R is the root system of a simple
Lie algebra. The proof of Lemma 3.2 is similar, so we omit its proof.

The following corollaries 4.3 and 4.4 show that the orbit is tangentially degen-
erate ‘if’ either one of (1) and (2) in Theorem 4.1 is valid.

From Lemmas 3.1 and 3.2 we have the following corollaries.

Corollary 3.3. The orbit Ad(K)λ through a longest root λ of R is tangentially
degenerate.

Corollary 3.4. The orbit through a short root in a restricted root system of type
G2 is tangentially degenerate.

Proof. If α and β in a restricted root system R of type G2 are orthogonal, then
α±β /∈ R. In particular, a short root in R satisfies the condition (b) of Lemma 3.1.
It also satisfies (a) of Lemma 3.1 and its orbit is tangentially degenerate. ¤
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4. Spaces of relative nullity

If the orbit Ad(K)H through H ∈ a is tangentially degenerate, then H is a
constant multiple of a restricted root because of Proposition 2.5. We describe the
spaces of relative nullity of the orbits of restricted roots and prove the last assertion
of Theorem 1.1 in this section. In order to determine the spaces of relative nullity
of these orbits we give the following criterion for an orbit of an s-representation to
be tangentially degenerate.

Proposition 4.1. The orbit Ad(K)λ through a restricted root λ ∈ R is tangentially
degenerate if and only if there exists a non-zero subspace of

∑
µ//λ mµ which is

invariant under ad(zλ
K). More precisely, the following equality is valid:

(4.6) ker(dγ)λ =
⋂

k∈(Zλ
K)0

Ad(k)
∑
µ//λ

mµ

and ker(dγ)λ is the maximal subspace of
∑

µ//λ mµ which is invariant under ad(zλ
K).

Proof. From (2.5) we have (4.6) immediately. Thus the orbit Ad(K)λ is tangentially
degenerate if and only if the right-hand side of (4.6) is a non-zero vector space.

If there exists a non-zero subspace V of
∑

µ//λ mµ which is invariant under
Ad((Zλ

K)0), then ⋂
k∈(Zλ

K)0

Ad(k)
∑
µ//λ

mµ ⊃
⋂

k∈(Zλ
K)0

Ad(k)V = V 6= {0}.

Hence Ad(K)λ is tangentially degenerate. Conversely, we assume that Ad(K)λ is
tangentially degenerate. Then⋂

k∈(Zλ
K)0

Ad(k)
∑
µ//λ

mµ ⊂
∑
µ//λ

mµ

is a non-zero subspace, and we denote it by V . Then for any g ∈ (Zλ
K)0 we have

Ad(g)V = Ad(g)
⋂

k∈(Zλ
K)0

Ad(k)
∑
µ//λ

mµ

=
⋂

k∈(Zλ
K)0

Ad(gk)
∑
µ//λ

mµ = V.

Thus V is invariant under Ad((Zλ
K)0). Consequently, the orbit Ad(K)λ is tan-

gentially degenerate if and only if there exists a non-zero subspace of
∑

µ//λ mµ

invariant under Ad((Zλ
K)0). Since zλ

K is the Lie algebra of a connected Lie group
(Zλ

K)0, we obtain the assertion. ¤

In particular, for an orbit of the adjoint representation of a compact Lie group
we have the following corollary.

Corollary 4.2. An adjoint orbit of a compact, connected semisimple Lie group
through a root α is tangentially degenerate if and only if there exists a non-zero
subspace of

g ∩ (gα ⊕ g−α)

which is invariant under ad(zα
G).
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Lemma 4.3. Let λ be a root and V a non-zero subspace of mλ. Then V is invariant
under ad(zλ

K) if and only if V is invariant under ad(k0) and satisfies ∑
ν∈R∆

+

kν , V

 = {0}.

In addition, if the action of k0 on mλ is irreducible then V = mλ.

Proof. Since
zλ
K = {X ∈ k | [X,λ] = 0} = k0 ⊕

∑
ν∈R∆

+

kν ,

V is invariant under ad(zλ
K) if and only if V is invariant under ad(k0) and ∑

ν∈R∆
+

kν , V

 ⊂ V ⊂ mλ.

On the other hand, ∑
ν∈R∆

+

kν , V

 ⊂

 ∑
ν∈R∆

+

kν , mλ

 ⊂
∑

ν∈R∆
+

(mλ+ν ⊕ mλ−ν).

Hence we have ∑
ν∈R∆

+

kν , V

 ⊂

mλ ∩
∑

ν∈R∆
+

(mλ+ν ⊕ mλ−ν)

 = {0}.

¤

Lemma 4.4. The root space mλ corresponds to a longest root λ is a subspace of∑
µ//λ mµ invariant under ad(zλ

K).

Proof. We can suppose that λ is the highest root δ by the action of the Weyl group.
The Lie algebra zδ

K of Zδ
K is given by

zδ
K = {X ∈ k | [X, δ] = 0} = k0 ⊕

∑
〈ν,δ〉=0

kν .

From Lemma 3.2, we have δ ± ν 6∈ R for any ν ∈ R+ which is perpendicular to δ.
Hence from Lemma 4.3, mδ is invariant under ad(zδ

K). ¤

From this lemma, we have the following theorem. Four cases in the following
theorem are equivalent with two cases in Theorem 1.1. Hence the following theorem
shows the last assertion of Theorem 1.1.

Theorem 4.5. Let (G,K) be a compact symmetric pair. If λ in R is one of the
following list, then ker(dγ)λ = mλ.

(1) a long root except in the case where R is of type BC,
(2) any root in the case where R is of type G2,
(3) a longest root in the case where (G,K) is a Hermitian symmetric pair with

restricted root system of type BCp and p ≥ 2,
(4) a long root in the case where (G,K) = (Sp(2p+n), Sp(p)×Sp(p+n)) (p ≥

2, n ≥ 1).
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Proof. We divide the proof into the four cases.
(1) The conclusion follows directly from Proposition 4.1 and Lemma 4.4.
(2) For any root λ ∈ R and ν ∈ R which satisfies 〈ν, λ〉 = 0, we have λ ± ν /∈ R,
because R is of type G2. Hence ker(dγ)λ = mλ by Proposition 4.1.

Before treating the cases (3) and (4), we recall the restricted root system of type
BCp. In this case we can put

R = {±2ei | 1 ≤ i ≤ p} ∪ {±ei | 1 ≤ i ≤ p} ∪ {±ei ± ej | 1 ≤ i < j ≤ p},
λ = 2e1.

We already know that the space of relative nullity Nλ of Ad(K)λ satisfies

m2e1 ⊂ Nλ ⊂ m2e1 + me1

and invariant under ad(zλ
K). Since

R∆
+ = {µ ∈ R+ | 〈λ, µ〉 = 0}

= {2ei | 2 ≤ i ≤ p} ∪ {ei | 2 ≤ i ≤ p} ∪ {ei ± ej | 2 ≤ i < j ≤ p},

we have

zλ
K = k0 +

∑
µ∈R∆

+

kµ = k0 +
∑

2≤i≤p

k2ei +
∑

2≤i≤p

kei +
∑

2≤i<j≤p

kei±ej .

(3) In order to prove the assertion in this case, we recall the following two lemmas.

Lemma 4.6 ([14] Lemma 2.3). For a Hermitian symmetric space, the complex
structure J translates restricted root spaces as following:

Jmei±ej = mei∓ej , Jmei = mei , Ja =
p∑

i=1

m2ei .

We denote the Hopf fibration by π : S2n+1 −→ CPn.

Lemma 4.7 ([11] Lemma 2.2). Let M ⊂ CPn be a complex submanifold of complex
dimension k. Then π−1(M) is a submanifold of dimension 2k + 1 with degenerate
Gauss map of S2n+1 . Moreover, if M is compact and not a complex projective
subspace, then the rank of Gauss map is equal to 2k.

Without loss of generality we can put λ = 2e1, and we consider the orbit Ad(K)λ
through λ. The tangent space of Ad(K)λ at λ is given by

Tλ(Ad(K)λ) =
∑

µ∈R+−R∆
+

mµ = m2e1 + me1 +
∑

2≤i≤p

me1±ei .

We denote by π : S −→ CPn the Hopf fibration from the hypersphere S in m to
the complex projective space. Then the image π(Ad(K)λ) of the orbit Ad(K)λ is
a submanifold of CPn, and its tangent space at π(λ) is given by

Tπ(λ)(π(Ad(K)λ)) = me1 +
∑

2≤i≤p

me1±ei .

Therefore from Lemma 4.6, π(Ad(K)λ) is a complex submanifold of CPn. Obvi-
ously π(Ad(K)λ) is not a complex projective subspace when p ≥ 2. Thus from
Lemma 4.7 the index of the relative nullity of Ad(K)λ ⊂ S is equal to 1. Hence
Nλ = m2e1 .
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(4) We shall give the restricted root space decomposition of (G,K) = (Sp(2p +
n), Sp(p) × Sp(p + n)). We express g as

g = sp(2p + n) = {X ∈ M2p+n(H) | tX̄ + X = 0}.

We define an involutive automorphism θ on g by

θ : g −→ g; X 7−→
[

Ip

−Ip+n

]
X

[
Ip

−Ip+n

]
,

where Ir denotes the r × r identity matrix. Then the eigenspaces k and m of θ
associated to eigenvalues ±1 are given by

k =
{[

X
Y

] ∣∣∣∣ X ∈ sp(p), Y ∈ sp(p + n)
}

,

m =
{[

X
−tX̄

] ∣∣∣∣ X ∈ Mp,p+n(H)
}

.

We take a maximal abelian subspace a of m by

a =


 T

−T

 ∣∣∣∣∣ T = t1E11 + · · · + tpEpp, ti ∈ R

 ,

where Eij denotes a matrix whose (i, j) element is 1 and all other elements are 0.
We define ei ∈ a by

ei =

 Eii

−Eii

 .

Then the restricted root system of (g, k) is of type BCp. We note that, when n = 0,
the restricted root system is of type Cp.

In the case of type BC, the restricted root spaces kei and mei which correspond
to ei are given by

mei =


n∑

j=1

(xjEi,2p+j − x̄jE2p+j,i)
∣∣∣∣ xj ∈ H

 ,

kei
=


n∑

j=1

(yjEp+i,2p+j − ȳjE2p+j,p+i)
∣∣∣∣ yj ∈ H

 .

In order to prove the assertion in this case, we will show that Nλ does not contain
me1 -component. We take X ∈ me1 arbitrarily. Then [ke2 , X] ⊂ me1+e2 + me1−e2 .
Since Nλ is invariant under ad(zλ

K), we have that if X ∈ Nλ then [ke2 , X] ⊂ Nλ ⊂
m2e1 + me1 . Therefore, if X ∈ Nλ then [ke2 , X] = {0}. We can express X =∑n

j=1(xjE1,2p+j − x̄jE2p+j,1) ∈ me1 . Then

[ke2 , X] =


 n∑

j=1

xj ȳj

E1,p+2 −

 n∑
j=1

yj x̄j

Ep+2,1

∣∣∣∣ yj ∈ H

 .

This yields X = 0. Thus Nλ does not contain me1-component. Hence Nλ = mλ.
¤
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5. Proof of Theorem 1.1 (Necessity for tangential degeneracy)

In this section we prove that Ad(K)λ is tangentially degenerate, “only if” either
one of (1) and (2) in Theorem 1.1 is valid. We divide the proof into six cases which
are treated in the following six subsections. Before beginning the subsections we
prepare the following lemma.

Lemma 5.1. If the restricted root system R is not of type G2, then for any short
root λ there exists a root µ which is orthogonal to λ and λ ± µ ∈ R.

Proof. We will follow the notations of root systems in [2].
In the case of type B, the restricted root system is given by

R = {±ei | 1 ≤ i ≤ p} ∪ {±ei ± ej | 1 ≤ i < j ≤ p}.
If we add ±ej to a short root ±ei (i 6= j), then it becomes a root again.

In the case of type C, the restricted root system is given by

R = {±2ei | 1 ≤ i ≤ p} ∪ {±ei ± ej | 1 ≤ i < j ≤ p}.
Short roots are ±ei ± ej . By the action of the Weyl group, it suffices to consider a
short root e1 + e2. The set of roots which are perpendicular to e1 + e2 is

{±(e1 − e2)} ∪ {±2ei | 3 ≤ i ≤ p} ∪ {±ei ± ej | 3 ≤ i < j ≤ p}
and

(e1 + e2) + (e1 − e2) = 2e1 ∈ R, (e1 + e2) − (e1 − e2) = 2e2 ∈ R.

In the case of type BC, the restricted root system is given by

R = {±2ei,±ei | 1 ≤ i ≤ p} ∪ {±ei ± ej | 1 ≤ i < j ≤ p}.
We can see that short roots ±ei, ±ei ± ej satisfy the condition mentioned in the
lemma by a similar way in the case of types B and C.

The root system of F4 contains a root system of type B2 as a sub-system. Then
a short root of type F4 can be regarded as a short root of type B2. Thus in this
case a short root satisfies the condition mentioned in the lemma. ¤

5.1. The symmetric spaces with R of types G2 and A,D,E6, E7, E8. We
have already proved that in this case Ad(K)λ is tangentially degenerate, only if (2)
in Theorem 1.1 is valid, by Proposition 2.5.

5.2. Group manifolds of type B,C, F4. Group manifolds of the other types has
been already treated in the previous subsection. The following proposition shows
that in this case Ad(K)λ is tangentially degenerate, only if (1) in Theorem 1.1 is
valid.

Proposition 5.2. Let G be a compact connected simple Lie group which is not of
type G2. The adjoint orbit of G through a short root is not tangentially degenerate.

Proof. We show that the orbit Ad(G)α through a short root α ∈ R+ is not tan-
gentially degenerate. Assume that V is a subspace of g ∩ (gα ⊕ g−α) invariant
under ad(zα

G). Then the complexification V C ⊂ gα ⊕ g−α of V is a complex
vector space which is invariant under ad(zα

G). We take v ∈ V C and express as
v = Xα + X−α (X±α ∈ g±α). In this case, from Lemma 5.1, there exists β ∈ R+

which satisfies 〈β, α〉 = 0 and α±β ∈ R. We take a non-zero vector Xβ ∈ gβ . Then

[Xβ , v] = [Xβ , Xα] + [Xβ , X−α] ∈ (gβ+α ⊕ gβ−α) ∩ V C = {0}.
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This shows X±α = 0, since [gβ , g±α] = gβ±α. Thus we obtain V = {0}. Hence
from Corollary 4.2, Ad(G)α is not tangentially degenerate. ¤

5.3. Hermitian symmetric spaces.

Proposition 5.3. Let (G,K) be a Hermitian symmetric pair. (Then the restricted
root system of (G,K) is of type C or BC.) The orbit Ad(K)λ through a short root
λ is not tangentially degenerate.

Proof. Without loss of generality we can put λ = e1 + e2. It is sufficient to prove
that if X ∈ me1+e2 satisfies [ke1−e2 , X] = {0}, then X = 0. From the assumption,

0 = J [ke1−e2 , X] = [ke1−e2 , JX].

Therefore we have

0 = 〈a, [ke1−e2 , JX]〉 = 〈[a, ke1−e2 ], JX〉 = 〈me1−e2 , JX〉.

From Lemma 4.6 we have JX ∈ me1−e2 . This implies JX = 0, hence X = 0. ¤

5.4. Normal real forms of type B,C, F4. We recall some definitions. A real
form g of a semisimple Lie algebra l over C is called normal if in each Cartan
decomposition g = k + m the space m contains a maximal abelian subalgebra of g.
It is known that there exists a normal real form for each semisimple Lie algebra
over C, moreover that is unique up to isomorphism ([6, Ch. IX, Theorem 5.10]).

A compact symmetric pair (G,K) is called a compact symmetric pair correspond-
ing to a normal real form if the dual (g∗, k) of the orthogonal symmetric Lie algebra
(g, k) of (G,K) is a normal real form of the complexification gC of g. Those of type
B are (SO(2p+1), SO(p)×SO(p+1)), those of type C are (Sp(p), U(p)), and that
of type F4 is (F4, SU(2) · Sp(3)).

Proposition 5.4. Let (G,K) be a compact symmetric pair which corresponds to a
normal real form with a restricted root system of type B, C, or F4. Then the orbit
through a short root is not tangentially degenerate.

Proof. Since (G,K) is a compact symmetric pair which corresponds to a normal
real form, k and m can be expressed as

k =
∑

α∈R+

RFα, m = t ⊕
∑

α∈R+

RGα, kα = RFα, mα = RGα,

where Fα = (Eα−E−α)/
√

2 and Gα =
√
−1(Eα+E−α)/

√
2. Here Eα ∈ gα satisfies

that, for α, β ∈ R, if α + β ∈ R then [Eα, Eβ ] = Nα,βEα+β and Nα,β is non-zero
real number which satisfies Nα,β = −N−α,−β .

When α is a short root, from Lemma 5.1, there exists β ∈ R+ such that α ⊥ β
and α ± β ∈ R. Then we have

[kβ , mα] = R(Nα,βGα+β − N−α,βGα−β) 6= {0}.

Thus, from Lemma 4.3, the orbit Ad(K)α through α is not tangentially degenerate.
¤
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5.5. Real and quaternionic Grassmannians.

Proposition 5.5. In the cases of (G,K) = (SO(2p+n), S(O(p)×O(p+n))) (p ≥
2, n ≥ 1) and (Sp(2p + n), Sp(p) × Sp(p + n)) (p ≥ 2, n ≥ 0), the orbit through a
root which is not longest are not tangentially degenerate.

Proof. We first consider the case of the real Grassmannians. In this case the re-
stricted root system R of (G, K) is of type Bp, that is R = {±ei | 1 ≤ i ≤
p} ∪ {±ei ± ej | 1 ≤ i < j ≤ p}. Without loss of generality we can put λ = e1.
The action of k0 = o(n) on mλ = Rn is irreducible, thus mλ is the only non-zero
subspace of mλ invariant under k0. Restricted root spaces mei , kei (1 ≤ i ≤ p) are
given by

mei =


 X

−tX

 ∣∣∣∣∣∣ X = x1Ei1 + · · · + xnEin, xj ∈ R

 ,

kei
=


 −X

tX

 ∣∣∣∣∣∣ X = x1Ei1 + · · · + xnEin, xj ∈ R

 .

Therefore, when i ≥ 2, we have that ei is perpendicular to e1 and

[kei
, me1 ] = R

 −E1i

Ei1

 ⊂ me1−ei
⊕ me1+ei

.

Hence, from Lemma 4.3, the orbit Ad(K)λ is not tangentially degenerate.
We next consider the quaternionic Grassmannians. Without loss of generality

we can put λ = e1 + e2. When n ≥ 1, the restricted root system of (G,K) is of
type BCp. And when n = 0, the restricted root system is of type Cp. However, we
shall consider both cases uniformly. In order to prove the proposition, it suffices to
show that {0} is the only subspace of me1+e2 invariant under ad(zλ

K).
Let V be a subspace of me1+e2 invariant under ad(zλ

K). We take X ∈ V arbitrar-
ily. Then [ke1−e2 , X] ⊂ V ⊂ me1+e2 . On the other hand, [ke1−e2 , X] ⊂ m2e1 ⊕m2e2 .
Therefore we have [ke1−e2 , X] = {0}.

Under the notation of the proof of Theorem 4.5 (4), restricted root spaces mei+ej

and kei−ej are given by

mei+ej = {x(Ei,p+j + Ep+i,j) − x̄(Ep+j,i + Ej,p+i) | x ∈ H},
kei−ej = {y(Eij + Ep+i,p+j) − ȳ(Eji + Ep+j,p+i) | y ∈ H}.

We put X = x(E1,p+2 + Ep+1,2) − x̄(Ep+2,1 + E2,p+1) ∈ V . Then

[ke1−e2 , X] = {(xȳ − yx̄)(E1,p+1 + Ep+1,1) + (x̄y − ȳx)(E2,p+2 + Ep+2,2) | y ∈ H}.
Therefore x must be zero for the right-hand side to be {0}. Hence V = {0}.
Consequently we have that {0} is the only subspace of me1+e2 invariant under
ad(zλ

K). ¤
5.6. Quaternionic symmetric spaces EII,EV I,EIX. In this subsection we
shall show when

(G,K) = (E6, SU(2) · SU(6)), (E7, SU(2) · SO(12)), (E8, SU(2) · E7),

the orbit through a short root λ is not tangentially degenerate. In these cases, G/K
is a compact quaternionic symmetric space whose restricted root system is of type
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F4. See Section 6 in detail. From Lemmas 4.3 and 6.7, it is sufficient to prove that
the condition (B) in Lemma 6.7 holds for the short root λ.

We shall prove the above claim for each of the three cases.

Proposition 5.6. In the case of (G,K) = (E6, SU(2) · SU(6)), the orbit Ad(K)λ
through a short root λ is not tangentially degenerate.

Proof. We may put λ = π(Φ(α1)). Then λ is a short root, and

(πΦ)−1(λ) = {α ∈ R̃ | π(Φ(α)) = λ} = {α1, α6}.
We set ν = π(Φ(α3 + α4 + α5 + α6)). Then ν is a short root perpendicular to λ,
and

(πΦ)−1(ν) = {α3 + α4 + α5 + α6, α1 + α3 + α4 + α5}.
Now we assume that

Y = x1Eα1 + y1E−α1 + x2Eα6 + y2E−α6 ∈
∑

α∈R̃,π(Φ(α))=λ

(gα ⊕ g−α)

satisfies the condition [Y,Ων ] = 0. We note that the set of roots of the form
α3 + α4 + α5 + α6 ± α where α ∈ (πΦ)−1(λ) is

{(α3 + α4 + α5 + α6) + α1, (α3 + α4 + α5 + α6) − α6}.
Therefore we have

[Eα3+α4+α5+α6 , Y ]
= x1Nα3+α4+α5+α6,α1Eα1+α3+α4+α5+α6 + y2Nα3+α4+α5+α6,−α6Eα3+α4+α5 .

This shows that the condition [Eα3+α4+α5+α6 , Y ] = 0 yields x1 = y2 = 0. Similarly
the condition [E−(α3+α4+α5+α6), Y ] = 0 yields y1 = x2 = 0. Hence we obtain
Y = 0. ¤

The following two propositions can be proved in a similar way to the proof of
Proposition 5.6. So we write only the essentials of their proofs.

Proposition 5.7. In the case of (G,K) = (E7, SU(2) ·SO(12)), the orbit Ad(K)λ
through a short root λ is not tangentially degenerate.

Proof. We may put λ = π(Φ(α4)). Then λ is a short root, and

(πΦ)−1(λ) = {α4, α4 + α5, α2 + α4, α2 + α4 + α5}.
We set ν = π(Φ(α3 + α4)). Then ν is a short root perpendicular to λ, and

(πΦ)−1(ν) = {α3 + α4, α3 + α4 + α5, α2 + α3 + α4, α2 + α3 + α4 + α5}.
We get the assertion from the following: The set of roots of the form α3 +α4±α

where α ∈ (πΦ)−1(λ) is

{(α3 + α4) − α4, (α3 + α4) + (α2 + α4 + α5)}.
The set of roots of the form α3+α4+α5±α where α ∈ (πΦ)−1(λ)−{α4, α2+α4+α5}
is

{(α3 + α4 + α5) − (α4 + α5), (α3 + α4 + α5) + (α2 + α4)}.
¤

Proposition 5.8. In the case of (G,K) = (E8, SU(2) · E7), the orbit Ad(K)λ
through a short root λ is not tangentially degenerate.
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Proof. We may put λ = π(Φ(α1)). Then λ is a short root, and

(πΦ)−1(λ) =

 α1, α1 + α3, α1 + α3 + α4, α1 + α2 + α3 + α4,
α1 + α3 + α4 + α5, α1 + α2 + α3 + α4 + α5,
α1 + α2 + α3 + 2α4 + α5, α1 + α2 + 2α3 + 2α4 + α5

 .

We set ν = π(Φ(α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + α7)). Then ν is a short root
perpendicular to λ, and

(πΦ)−1(ν) =



α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + α7,
α1 + α2 + 2α3 + 2α4 + 2α5 + 2α6 + α7,
α1 + α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7,
α1 + 2α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7,
α1 + α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7,
α1 + 2α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7,
α1 + 2α2 + 2α3 + 4α4 + 3α5 + 2α6 + α7,
α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7


.

We get the assertion from the following: The set of roots of the form α1 + α2 +
α3 + 2α4 + 2α5 + 2α6 + α7 ± α where α ∈ (πΦ)−1(λ) is{

(α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + α7) − α1,
(α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + α7) + (α1 + α2 + 2α3 + 2α4 + α5)

}
.

The set of roots of the form α1 + α2 + 2α3 + 2α4 + 2α5 + 2α6 + α7 ± α where

α ∈ (πΦ)−1(λ) − {α1, α1 + α2 + 2α3 + 2α4 + α5}

is {
(α1 + α2 + 2α3 + 2α4 + 2α5 + 2α6 + α7) − (α1 + α3),
(α1 + α2 + 2α3 + 2α4 + 2α5 + 2α6 + α7) + (α1 + α2 + α3 + 2α4 + α5)

}
.

The set of roots of the form α1 + α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7 ± α where

α ∈ (πΦ)−1(λ) −
{

α1, α1 + α2 + 2α3 + 2α4 + α5,
α1 + α3, α1 + α2 + α3 + 2α4 + α5

}
is {

(α1 + α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7) − (α1 + α3 + α4),
(α1 + α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7) + (α1 + α2 + α3 + α4 + α5)

}
.

The set of roots of the form α1 + 2α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7 ± α where

α ∈ (πΦ)−1(λ) −

 α1, α1 + α2 + 2α3 + 2α4 + α5,
α1 + α3, α1 + α2 + α3 + 2α4 + α5,
α1 + α3 + α4, α1 + α2 + α3 + α4 + α5


is {

(α1 + 2α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7) − (α1 + α2 + α3 + α4),
(α1 + 2α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7) + (α1 + α3 + α4 + α5)

}
.

¤

According to the classification of irreducible compact symmetric pairs, we have
proved the ‘only if’ part of Theorem 1.1.



18 OSAMU IKAWA, TAKASHI SAKAI, AND HIROYUKI TASAKI

5.7. List of tangential degeneracy. At the end of this section, we give the list
of all irreducible compact symmetric pairs whose ranks are equal or greater than
2 such that the orbits of their s-representations have degenerate Gauss maps. All
of them are orbits through long roots except the case of type G2. In the case of
type G2 both of orbits through a long root and a short root have degenerate Gauss
maps, and both of them have the same dimension and the same rank of Gauss map.
In Table 1, we denote the dimension of the orbit by l and the rank of Gauss map
by r. Then tangentially degeneracy is equal to l − r.

When (G,K) is of rank 2, the results above were studied by Ishikawa, Kimura
and Miyaoka [11].

type rank g k l r l − r
A p su(p + 1) so(p + 1) 2p − 1 2p − 2 1

p su(p + 1)2 su(p + 1) 2(2p − 1) 2(2p − 2) 2
p su(2(p + 1)) sp(p + 1) 4(2p − 1) 4(2p − 2) 4
2 e6 f4 24 16 8

B p so(2p + 1)2 so(2p + 1) 8p − 10 8p − 12 2
p so(2p + n) so(p) ⊕ so(p + n) 4p + 2n − 7 4p + 2n − 8 1

C p sp(p) u(p) 2p − 1 2p − 2 1
p sp(p)2 sp(p) 4p − 2 4p − 4 2
p sp(2p) sp(p) ⊕ sp(p) 8p − 5 8p − 8 3
p su(2p) su(p) ⊕ su(p) ⊕ R 4p − 3 4p − 4 1
p so(4p) u(2p) 8p − 7 8p − 8 1
3 e7 e6 ⊕ R 33 32 1

D p so(2p) so(p) ⊕ so(p) 4p − 7 4p − 8 1
p so(2p)2 so(2p) 2(4p − 7) 2(4p − 8) 2

E6 6 e6 sp(4) 21 20 1
6 e6 ⊕ e6 e6 42 40 2

E7 7 e7 su(8) 33 32 1
7 e7 ⊕ e7 e7 66 64 2

E8 8 e8 so(16) 57 56 1
8 e8 ⊕ e8 e8 114 112 2

F4 4 f4 su(2) ⊕ sp(3) 15 14 1
4 f4 ⊕ f4 f4 30 28 2
4 e6 su(2) ⊕ su(6) 21 20 1
4 e7 su(2) ⊕ so(12) 33 32 1
4 e8 su(2) ⊕ e7 57 56 1

G2 2 g2 so(4) 5 4 1
2 g2 ⊕ g2 g2 10 8 2

BC p su(2p + n) su(p) ⊕ su(p + n) ⊕ R 4p + 2n − 3 4p + 2n − 4 1
p so(4p + 2) u(2p + 1) 8p − 3 8p − 4 1
p sp(2p + n) sp(p) ⊕ sp(p + n) 8p + 4n − 5 8p + 4n − 8 3
2 e6 so(10) ⊕ R 21 20 1

Table 1
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6. Lemmas on quaternionic symmetric spaces

A 4n-dimensional Riemannian manifold is called quaternion-Kähler if its holo-
nomy group is contained in Sp(n) · Sp(1). A quaternion-Kähler manifold is called
quaternionic symmetric if it is a Riemannian symmetric space ([1, p. 396]).

We will review a construction of a quaternionic symmetric space from a compact
simple Lie algebra g whose rank is greater than or equal to 2 (see [16] in detail).
Set G = Int(g), which is a compact connected semisimple Lie group. We denote
by 〈 , 〉 a biinvariant Riemannian metric on G. Take a maximal torus T in G and
denote its Lie algebra by t. For α ∈ t we set g̃α as (2.1), and define root system R̃
by (2.2). We have then

gC = tC +
∑
α∈R̃

g̃α.

For α ∈ R̃ we can take Eα ∈ g̃α such that

Eα − E−α ∈ g,
√
−1(Eα + E−α) ∈ g, [Eα, E−α] = −

√
−1α,∥∥∥∥ 1√

2
(Eα − E−α)

∥∥∥∥ =
∥∥∥∥√−1√

2
(Eα + E−α)

∥∥∥∥ = 1,

and that if we define Nα,β by [Eα, Eβ ] = Nα,βEα+β , then Nα,β = −N−α,−β where
we put Nα,β = 0 if α + β 6∈ R̃. Let F̃ be a fundamental system of R̃ and denote by
R̃+ the set of positive roots with respect to F̃ . For α ∈ R̃+ set

Fα =
1√
2
(Eα − E−α), Gα =

√
−1√
2

(Eα + E−α),

then we have

(6.1) g = t +
∑

α∈R̃+

(RFα + RGα), ‖Fα‖ = ‖Gα‖ = 1, [Fα, Gα] = α.

For each α ∈ R̃+, we define a subalgebra g(α) of g by

g(α) = Rα + g ∩ (g̃α + g̃−α) = Rα + RFα + RGα,

which is isomorphic to su(2). We denote the highest root by δ ∈ R̃+. By Lemma
3.2,

s = exp ad
(

2π

‖δ‖2
δ

)
is an involutive automorphism of g. The fixed points set k of s in g is given by

k = t + RFδ + RGδ +
∑
α⊥δ

(RFα + RGα)

= g(δ) + t ∩ δ⊥ +
∑
α⊥δ

(RFα + RGα).

The subalgebras g(δ) and t ∩ δ⊥ +
∑

α⊥δ(RFα + RGα) are ideals of k. The (−1)-
eigenspace m of s is given by

m =
∑

α∈R̃m
+

(RFα + RGα) where R̃m
+ =

{
α ∈ R̃+

∣∣∣∣ 〈α, δ〉
‖δ‖2

=
1
2

}
.



20 OSAMU IKAWA, TAKASHI SAKAI, AND HIROYUKI TASAKI

Since there exists a subset R̃+(δ) in R̃m
+ such that

(6.2) m =
∑

α∈R̃+(δ)

(RFα + RGα + RFδ−α + RGδ−α),

the dimension of m is a multiple of 4.
We also denote by s the involutive automorphism of G induced from s. Since

the fixed point set of s in G is closed and G is compact, the identity component K
of the fixed points set is also compact. The Lie algebra of K coincides with k and
(G,K) is a compact symmetric pair. Hence the coset manifold G/K is a compact
Riemannian symmetric space. Moreover G/K is a quaternionic symmetric space
since (6.2) defines a quaternionic structure. Conversely it is known that every
compact quaternionic symmetric space is obtained in this way. We omit its proof.
See [16] in detail.

Quaternionic symmetric spaces have a similar property with Hermitian symmet-
ric spaces as we shall mention below: Two roots γ1, γ2 ∈ R̃+(δ) are said to be
strongly orthogonal if γ1 ± γ2 6∈ R̃.

Proposition 6.1. Let G/K be a compact quaternionic symmetric space of rank
p. Then there exist R̃+(δ) which satisfies (6.2) and a subset {γi}1≤i≤p of R̃+(δ)
consisting of strongly orthogonal roots such that

a =
p∑

i=1

RFγi

is a maximal abelian subspace of m.

We can prove this proposition in a way similar to the proof of Proposition 7.4
in Helgason’s book [6] (p.385) by using Lemma 6.4.

Lemma 6.2. If α, β ∈ R̃m
+ and α + β ∈ R̃, then α + β = δ.

Proof. Since α, β ∈ R̃m
+, we have

〈α + β, δ〉
‖δ‖2

= 1.

Using Lemma 3.2, α + β ∈ R̃ implies α + β = δ. ¤

Corollary 6.3. [g̃α, g̃β ] ⊂ g̃δ for α, β ∈ R̃m
+.

Proof. If α +β ∈ R̃, Lemma 6.2 implies [g̃α, g̃β ] = g̃δ. If α +β 6∈ R̃, then [g̃α, g̃β ] =
{0}. ¤

If Q is any subset of R̃m
+, let

mQ =
∑
α∈Q

(g̃α + g̃−α).

Remark that mR̃m
+

= mC. For the lowest root γ in Q, put

Q(γ) = {β ∈ Q − {γ} | β ± γ /∈ R̃}.

Then β ± γ /∈ R̃ ∪ {0} for β ∈ Q(γ).
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Lemma 6.4. We denote by zmQ
(Eγ + E−γ) the centralizer of Eγ + E−γ in mQ.

Then
zmQ

(Eγ + E−γ) = mQ(γ) + C(Eγ + E−γ).

We can prove this lemma in a way similar to the proof of Lemma 7.5 in Helgason’s
book [6] (p.385) by using Corollary 6.3, so we omit it.

Hence m is given by the following:

m = a +
p∑

i=1

(RGγi + RFδ−γi + RGδ−γi)

+
∑

α∈R̃+(δ)−{γ1,··· ,γp}

(RFα + RGα + RFδ−α + RGδ−α)

When the root system of G is not of type G2, then ‖γ1‖ = · · · = ‖γp‖. Set

b = t ∩ {γ1, · · · , γp}⊥, t′ = a + b,

then t′ is a maximal abelian subalgebra of g containing a. We define the Cayley
transform Φ by

Φ = exp
π

2
ad

 p∑
j=1

Gγj

‖γj‖

 ∈ Aut(g),

and set λi = ‖γi‖Fγi
, then

Φ(γi) = λi, Φ(H) = H (H ∈ b).

Hence the Cayley transform Φ maps t onto t′. We denote by R the restricted root
system of (G,K) with respect to a. Let π : t′ = a + b → a be the orthogonal
projection, then R = π(Φ(R̃)). Since

α ≡
p∑

i=1

〈α, γi〉
‖γi‖2

γi mod b for α ∈ R̃,

we have

Φ(α) ≡
p∑

i=1

〈α, γi〉
‖γi‖2

λi mod b,

which implies that

(6.3) π(Φ(α)) =
p∑

i=1

〈α, γi〉
‖γi‖2

λi.

In particular

{λ1, · · · , λp} ⊂ R =

{
p∑

i=1

〈α, γi〉
‖γi‖2

λi

∣∣∣∣∣ α ∈ R̃

}
.

The multiplicity m(λ) of λ = π(Φ(α)) ∈ Σ (α ∈ R̃) is given by

m(λ) = #{β ∈ R̃ | 〈α, γi〉 = 〈β, γi〉}.

By (6.3), we have

‖π(Φ(α))‖2 =
p∑

i=1

〈
α,

γi

‖γi‖

〉2

≤ ‖α‖2,
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and the equality holds if and only if α ∈ span{γ1, · · · , γp}. Hence ‖π(Φ(α))‖2 =
‖α‖2 for any α ∈ R̃ if and only if p = rank(G).

Lemma 6.5. RGγi ⊂ mλi , Rγi ⊂ kλi .

Proof. For H =
∑

xjλj ∈ a, we have

[H,Gγi ] =
∑

xj [‖γj‖Fγj , Gγi ] = xi‖γi‖[Fγi , Gγi ]

= xi‖γi‖2 γi

‖γi‖
= 〈H,λi〉

γi

‖γi‖
,[

H,
γi

‖γi‖

]
=

∑
xj‖γj‖

[
Fγj ,

γi

‖γi‖

]
= −xi‖γj‖2Gγj

= −〈H,λi〉Gγj ,

where we used (6.1). ¤

Lemma 6.6. For any restricted root λ ∈ R

kλ + mλ = Φ

 ∑
α∈R̃,π(Φ(α))=λ

(RFα + RGα)

 .

Proof. Since

kλ + mλ = {X ∈ g | [H, [H,X]] = −〈λ,H〉2X (H ∈ a)},
RFα + RGα = g ∩ (g̃α + g̃−α)

= {X ∈ g | [H, [H,X]] = −〈α,H〉2X (H ∈ t)},
we have

Φ

 ∑
α∈R̃,π(Φ(α))=λ

(RFα + RGα)


= Φ

 ∑
α∈R̃,π(Φ(α))=λ

{X ∈ g | [H, [H,X]] = −〈α,H〉2X (H ∈ t)}


=

∑
α∈R̃,π(Φ(α))=λ

{Y ∈ g | [Φ(H), [Φ(H), Y ]] = −〈Φ(α), Φ(H)〉2Y (H ∈ t)}

=
∑

α∈R̃,π(Φ(α))=λ

{Y ∈ g | [H, [H,Y ]] = −〈Φ(α),H〉2Y (H ∈ t′)}

⊂
∑

α∈R̃,π(Φ(α))=λ

{Y ∈ g | [H, [H,Y ]] = −〈π(Φ(α)),H〉2Y (H ∈ a)}

= kλ + mλ.

Here dim(kλ + mλ) = 2m(λ). Since Φ is a linear isomorphism, we have

dimΦ

 ∑
α∈R̃,π(Φ(α))=λ

(RFα + RGα)

 = dim
∑

α∈R̃,π(Φ(α))=λ

(RFα + RGα)

= 2#{α ∈ R̃ | π(Φ(α)) = λ}
= 2m(λ).



LIE-ALGEBRAIC CHARACTERIZATION OF TANGENTIALLY DEGENERATE ORBITS 23

Hence we get the assertion. ¤

Lemma 6.7. Let (g, k) be a compact quaternionic symmetric pair and let λ, ν ∈ R+

with λ ⊥ ν. We denote Ωλ :=
∑

α∈R̃,π(Φ(α))=λ

(gα+g−α). Let us consider the following

two conditions:
(A) Let X ∈ mλ. Then [kν , X] = 0 implies X = 0.
(B) Let Y ∈ Ωλ. Then [Y,Ων ] = 0 implies Y = 0.

Then the condition (B) implies (A).

Proof. Let ν be in R+ such that ν ⊥ λ. Note that [ν, mλ] = {0}. We take X ∈ mλ

arbitrarily. We prove the condition (A) holds. Now we assume that [kν , X] = 0.
Then, from the Jacobi identity and (2) of Lemma 2.1, we have

0 = [ν, [kν , X]] = [[ν, kν ], X] + [kν , [ν,X]] = [mν , X].

Hence [kν + mν , X] = 0. Applying the inverse Φ−1 of the Cayley transform to the
equality above, we have ∑

α∈R̃,π(Φ(α))=ν

(RFα + RGα), Φ−1(X)

 = 0.

Here we used Lemma 6.6. Since ∑
α∈R̃,π(Φ(α))=ν

(RFα + RGα)

C

= Ων ,

we have [Ων , Φ−1(X)] = 0. Using Lemma 6.6 again, we have

Φ−1(X) ∈ Φ−1(mλ) ⊂ Φ−1(kλ + mλ) =
∑

α∈R̃,π(Φ(α))=λ

(RFα + RGα) ⊂ Ωλ.

Hence the condition (B) implies Φ−1(X) = 0 and X = 0. ¤

7. Ferus equalities

Let f : M −→ Sn be an immersion of a compact, connected manifold M of
dimension l. We denote by r the maximal rank of the Gauss map γ of f . Ferus
[5] showed that there exists a number F (l), which only depends on the dimension
l of M , such that the inequality r < F (l) implies r = 0. Then f(M) must be an
l-dimensional great sphere in Sn. Here the number F (l) is called the Ferus number
and defined by

F (l) = min{k | A(k) + k ≥ l},
where A(k) is the Adams number, that is the maximal number of linearly inde-
pendent vector fields at each point on the (k − 1)-dimensional sphere Sk−1. Any
positive integer k can be written as (2s + 1)2t by some non-negative integers s and
t. We write t = c + 4d by some 0 ≤ c ≤ 3 and 0 ≤ d. In this situation the Adams
number A(k) can be calculated by

A(k) = 2c + 8d − 1.

Regarding the Ferus inequality, Ishikawa, Kimura and Miyaoka posed the fol-
lowing problem:
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Problem 7.1 ([11]). (1) Is the inequality r < F (l) best possible for the impli-
cation r = 0? Do there exist tangentially degenerate immersions M l → Sn

with r = F (l)?
(2) If the above problem is true, classify tangentially degenerate immersions

M l → Sn with r = F (l).

In the list of Section 5.7, we can find many new orbits which satisfy the equality
r = F (l). In order to observe this we state some properties of the Ferus number.
The definition of the Ferus number immediately implies F (l) ≤ l.

Lemma 7.2. F (l) ≤ F (l + 1).

Proof. The relation {k | A(k) + k ≥ l + 1} ⊂ {k | A(k) + k ≥ l} implies

F (l + 1) = min{k | A(k) + k ≥ l + 1} ≥ min{k | A(k) + k ≥ l} = F (l).

¤

Lemma 7.3. F (2q) = 2q.

Proof. It is sufficient to show A(k)+k < 2q for k < 2q. We write k = 2q−(2s+1)2t

by some non-negative integers s and t, and t = c+4d by some 0 ≤ c ≤ 3 and d ≥ 0.
Then t < q and we get

A(k) = A(2q − 2t(2s + 1)) = A(2t(2q−t − (2s + 1))) = 2c + 8d − 1.

Thus
A(k) + k = 2q − {2c+4d(2s + 1) − 2c − 8d + 1}.

Here

2c+4d(2s + 1) − 2c − 8d + 1 ≥ 2c+4d − 2c − 8d + 1

= 2c(24d − 1) − 8d + 1

≥ 24d − 8d ≥ 1.

Therefore we obtain A(k) + k < 2q. ¤

Proposition 7.4. Assume q ≥ 1 and write q = c + 4d (0 ≤ c ≤ 3, d ≥ 0). Then

F (2q + a) = 2q

holds for any 0 ≤ a ≤ 2c + 8d − 1.

Proof. Since q ≥ 1, we have c ≥ 1 or d ≥ 1. Thus A(2q) = 2c + 8d − 1 ≥ 1. This
shows A(2q) + 2q = 2q + 2c + 8d − 1. From Lemmas 7.2 and 7.3 we get

2q ≥ F (2q + 2c + 8d − 1) ≥ F (2q) = 2q.

¤

The above proposition shows the following equalities:

F (2q + 1) = 2q (q ≥ 1),
F (2q + 2) = 2q (q ≥ 2),
F (2q + 3) = 2q (q ≥ 2),
F (2q + 4) = 2q (q ≥ 3).

By the use of the above equalities, we have many new orbits of the s-representations
which satisfy the Ferus equality F (l) = r in Table 1. For example, the orbits of
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the s-representations of the following symmetric pairs through a long root satisfy
F (l) = r:

(su(2q−1 + 2), so(2q−1 + 2)) (q ≥ 1),
(su(2q−2 + 2)2, su(2q−2 + 2)) (q ≥ 2),
(su(2(2q−3 + 2)), sp(2q−3 + 2)) (q ≥ 3),
(e6, f4),
(so(2p + n), so(p) ⊕ so(p + n)) (4p + 2n − 7 = 2q + 1, p ≥ 2, n ≥ 1, q ≥ 1),
(sp(2q−1 + 1), u(2q−1 + 1)) (q ≥ 1),
(sp(2q−2 + 1)2, sp(2q−2 + 1)) (q ≥ 2),
(sp(2(2q−3 + 1)), sp(2q−3 + 1) ⊕ sp(2q−3 + 1)) (q ≥ 3),
(su(2(2q−2 + 1)), su(2q−2 + 1) ⊕ su(2q−2 + 1) ⊕ R) (q ≥ 2),
(so(4(2q−3 + 1)), u(2(2q−3 + 1))) (q ≥ 3),
(e7, e6 ⊕ R),
(so(2(2q−2 + 2)), so(2q−2 + 2) ⊕ so(2q−2 + 2)) (q ≥ 2),
(so(2(2q−3 + 2))2, so(2(2q−3 + 2))) (q ≥ 3),
(e6 ⊕ e6, e6),
(e7, su(8)),
(e7 ⊕ e7, e7),
(e8, so(16)),
(e8 ⊕ e8, e8),
(e7, su(2) ⊕ so(12)),
(e8, su(2) ⊕ e7),
(su(2p + n), su(p) ⊕ su(p + n) ⊕ R) (4p + 2n − 3 = 2q + 1, p ≥ 2, n ≥ 1, q ≥ 1),
(sp(2p + n), sp(p) ⊕ sp(p + n)) (8p + 4n − 5 = 2q + 3, p ≥ 2, n ≥ 1, q ≥ 2).

Furthermore the orbits of s-representations of symmetric pairs

(g2, so(4)) and (g2 ⊕ g2, g(2))

through a long root or a short root satisfy the Ferus equality F (5) = 4 or F (10) = 8.
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