ON THE GEOMETRY OF ORBITS OF PATH GROUP ACTIONS INDUCED BY HERMANN ACTIONS

MASAHIRO MORIMOTO

INTRODUCTION

Let M = G/K be a Riemannian symmetric space of compact type and K' a closed subgroup of G. Then K' acts on M isometrically by

(1)
$$b \cdot (aK) := (ba)K, \quad b \in K', \ aK \in M.$$

Then the subgroup $K' \times K$ of $G \times G$ acts on G isometrically by

$$(b,c) \cdot a := bac^{-1}, \qquad (b,c) \in K' \times K, \ a \in G.$$

Moreover this action induces a path group action on a path space. More precisely we consider the path group $\mathcal{G} := H^1([0,1],G)$ of all Sobolev H^1 -paths from [0,1] to G and the path space $V_{\mathfrak{g}} = L^2([0,1],\mathfrak{g})$ of all L^2 -paths from [0,1] to the Lie algebra \mathfrak{g} of G. Then \mathcal{G} is a Hilbert Lie group and $V_{\mathfrak{g}}$ a separable Hilbert space. \mathcal{G} acts on $V_{\mathfrak{g}}$ isometrically via the gauge transformations:

$$g * u := gug^{-1} - \dot{g}g^{-1}, \qquad g \in \mathcal{G}, \ u \in V_{\mathfrak{g}},$$

where \dot{g} denotes the weak derivative of g with respect to the parameter $t \in [0, 1]$. Then the subgroup

$$P(G,K'\times K):=\{g\in \mathcal{G}\mid (g(0),g(1))\in K'\times K\}$$

acts on $V_{\mathfrak{g}}$ by the same formula. It is known that the $P(G, K' \times K)$ -action is a proper Fredholm (PF) action on a Hilbert space ([14]). Thus orbits of $P(G, K' \times K)$ -actions are examples of homogeneous proper Fredholm (PF) submanifolds in Hilbert spaces ([12], [13]). Moreover the $P(G, K' \times K)$ -action is also a tool to study the K'-action on M; a problem of K'-actions can be reduced to a problem of $P(G, K' \times K)$ -actions due to linearity of the Hilbert space $V_{\mathfrak{g}}$ (e.g. [1]).

In this report¹ supposing that K' is a symmetric subgroup of G, that is, the K'-action is a Hermann action ([5]), we introduce our recent results on the submanifold geometry of orbits of $P(G, K' \times K)$ -actions ([10]).

1. Submanifold geometry of orbits of Hermann actions

In this section we review the submanifold geometry of orbits of Hermann actions. For details, see Ohno [11] (see also Goertsches-Thorbergsson [2]).

Let G be a connected compact semisimple Lie group and K a closed subgroup of G. Suppose that K is a symmetric subgroup of G, that is, there exists an involution θ of G satisfying $G_0^{\theta} \subset K \subset G^{\theta}$, where G^{θ} denotes the fixed point subgroup of G and G_0^{θ} the identity component. We write \mathfrak{g} and \mathfrak{k} for the Lie algebras of G and K

The author was partly supported by the Grant-in-Aid for Research Activity Start-up (No.20K22309) and by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

¹This is a report on the author's talk given at Submanifolds Online 2020 (December 26, 2020).

M. MORIMOTO

respectively. The differential of θ induces an involution of \mathfrak{g} , which is also denoted by θ . The direct sum decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ into the ± 1 -eigenspaces of θ is called the *canonical decomposition* associated to the pair $(\mathfrak{g}, \mathfrak{k})$. We fix an Ad(G)invariant inner product $\langle \cdot, \cdot \rangle$ of \mathfrak{g} which is a negative multiple of the Killing form of \mathfrak{g} . We equip the corresponding bi-invariant Riemannian metric with G and the Ginvariant Riemannian metric with the homogeneous space G/K. Then M := G/Kis a Riemannian symmetric space of compact type and the projection $\pi : G \to M$ is a Riemannian submersion with totally geodesic fiber.

Let K' be a symmetric subgroup of G with involution θ' . Denote by \mathfrak{k}' the Lie algebra of K' and $\mathfrak{g} = \mathfrak{k}' + \mathfrak{m}'$ the canonical decomposition associated to the pair $(\mathfrak{g}, \mathfrak{k}')$. Then K' acts on M isometrically by the formula (1). This action is called a *Hermann action* ([5]). We know that a Hermann action is *hyperpolar* ([4]), that is, there exists a (totally geodesic) closed connected submanifold Σ of M satisfying the conditions that Σ meets every K'-orbit orthogonally and that Σ is flat with respect to the induced metric. Such a Σ is called a *section*. In fact, if we take a maximal abelian subalgebra \mathfrak{t} of $\mathfrak{m} \cap \mathfrak{m}'$ then $\exp \mathfrak{t}$ is a torus subgroup of G and thus $\Sigma := \pi(\exp \mathfrak{t})$ is a section of the Hermann action.

Take a maximal abelian subalgebra \mathfrak{t} of $\mathfrak{m}\cap\mathfrak{m}'$ and consider the root space decomposition

$$\begin{split} \mathfrak{g}^{\mathbb{C}} &= \mathfrak{g}(0) + \sum_{\alpha \in \Delta} \mathfrak{g}(\alpha) = \mathfrak{g}(0) + \sum_{\alpha \in \Delta^+} (\mathfrak{g}(\alpha) + \mathfrak{g}(-\alpha)), \\ \mathfrak{g}(0) &= \{ z \in \mathfrak{g}^{\mathbb{C}} \mid \forall \eta \in \mathfrak{t}, \ \mathrm{ad}(\eta) z = 0 \}, \\ \mathfrak{g}(\alpha) &= \{ z \in \mathfrak{g}^{\mathbb{C}} \mid \forall \eta \in \mathfrak{t}, \ \mathrm{ad}(\eta) z = \sqrt{-1} \langle \alpha, \eta \rangle z \}. \end{split}$$

The real form is

$$\mathfrak{g} = \mathfrak{g}_0 + \sum_{lpha \in \Delta^+} \mathfrak{g}_lpha$$

$$\mathfrak{g}_0 = \{ x \in \mathfrak{g} \mid \forall \eta \in \mathfrak{t}, \ \mathrm{ad}(\eta) x = 0 \},\\ \mathfrak{g}_\alpha = \{ x \in \mathfrak{g} \mid \forall \eta \in \mathfrak{t}, \ \mathrm{ad}(\eta)^2 x = -\langle \alpha, \eta \rangle^2 x \}.$$

Since θ commutes with $ad(\eta)^2$ for all $\eta \in \mathfrak{t}$ we have

$$\mathfrak{k} = \mathfrak{k}_0 + \sum_{lpha \in \Delta^+} \mathfrak{k}_lpha, \qquad \mathfrak{m} = \mathfrak{m}_0 + \sum_{lpha \in \Delta^+} \mathfrak{m}_lpha,$$
 $\mathfrak{k}_0 = \mathfrak{g}_0 \cap \mathfrak{k}, \qquad \mathfrak{k}_lpha = \mathfrak{g}_lpha \cap \mathfrak{k},$
 $\mathfrak{m}_0 = \mathfrak{g}_0 \cap \mathfrak{m}, \qquad \mathfrak{m}_lpha = \mathfrak{g}_lpha \cap \mathfrak{m}.$

Consider the composition

 $\theta \circ \theta': \mathfrak{g} \to \mathfrak{g}$

and the eigenspace decomposition

$$\begin{split} \mathfrak{g}^{\mathbb{C}} &= \sum_{\epsilon \in U(1)} \mathfrak{g}(\epsilon), \\ \mathfrak{g}(\epsilon) &= \{ z \in \mathfrak{g}^{\mathbb{C}} \mid (\theta \circ \theta')(z) = \epsilon z \} \end{split}$$

For each $\epsilon \in U(1)$ we denote by $\arg \epsilon$ its argument satisfying $-\pi \leq \arg \epsilon \leq \pi$. Since $\theta \circ \theta'$ commutes with $\operatorname{ad}(\eta)$ for all $\eta \in \mathfrak{t}$ we have

$$\begin{split} \mathfrak{g}^{\mathbb{C}} &= \sum_{\epsilon \in U(1)} \mathfrak{g}(0, \epsilon) + \sum_{\alpha \in \Delta} \sum_{\epsilon \in U(1)} \mathfrak{g}(\alpha, \epsilon), \\ \mathfrak{g}(0, \epsilon) &= \mathfrak{g}(0) \cap \mathfrak{g}(\epsilon), \qquad \mathfrak{g}(\alpha, \epsilon) = \mathfrak{g}(\alpha) \cap \mathfrak{g}(\epsilon) \end{split}$$

The real form is

(2) $\mathfrak{g} = \sum_{\epsilon \in U(1)_{\geq 0}} \mathfrak{g}_{0,\epsilon} + \sum_{\alpha \in \Delta^+} \sum_{\epsilon \in U(1)} \mathfrak{g}_{\alpha,\epsilon}, \\
U(1)_{\geq 0} = \{\epsilon \in U(1) \mid \operatorname{Im}(\epsilon) \geq 0\}, \\
\mathfrak{g}_{0,\epsilon} = (\mathfrak{g}(0,\epsilon) + \mathfrak{g}(0,\epsilon^{-1}) \cap \mathfrak{g}, \\
\mathfrak{g}_{\alpha,\epsilon} = (\mathfrak{g}(\alpha,\epsilon) + \mathfrak{g}(-\alpha,\epsilon^{-1})) \cap \mathfrak{g}.$

Since $\mathfrak{g}_{0,\epsilon}$ and $\mathfrak{g}_{\alpha,\epsilon}$ are invariant under θ we have

(3)
$$\mathfrak{k} = \sum_{\epsilon \in U(1)_{\geq 0}} \mathfrak{k}_{0,\epsilon} + \sum_{\alpha \in \Delta^+} \sum_{\epsilon \in U(1)} \mathfrak{k}_{\alpha,\epsilon},$$

(4)
$$\mathfrak{m} = \sum_{\epsilon \in U(1)_{>0}} \mathfrak{m}_{0,\epsilon} + \sum_{\alpha \in \Delta^+} \sum_{\epsilon \in U(1)} \mathfrak{m}_{\alpha,\epsilon},$$

$$\mathfrak{k}_{0,\epsilon} = \mathfrak{g}_{0,\epsilon} \cap \mathfrak{k}, \qquad \mathfrak{k}_{\alpha,\epsilon} = \mathfrak{g}_{\alpha,\epsilon} \cap \mathfrak{k}, \\ \mathfrak{m}_{0,\epsilon} = \mathfrak{g}_{0,\epsilon} \cap \mathfrak{m}, \qquad \mathfrak{m}_{\alpha,\epsilon} = \mathfrak{g}_{\alpha,\epsilon} \cap \mathfrak{m}$$

We now take $w \in \mathfrak{t}$ and set $a := \exp w$. Then the tangent space and the normal space of the orbit $N := K' \cdot aK$ through aK are described as follows:

Proposition 1.1 (Ohno [11]).

(5)
$$T_{aK}N = dL_a (\sum_{\substack{\epsilon \in U(1) \ge 0\\ \epsilon \neq 1}} \mathfrak{m}_{0,\epsilon} + \sum_{\alpha \in \Delta^+} \sum_{\substack{\epsilon \in U(1)\\ \langle \alpha, w \rangle + \frac{1}{2} \arg \epsilon \notin \pi \mathbb{Z}}} \mathfrak{m}_{\alpha,\epsilon}),$$

(6)
$$T_{aK}^{\perp}N = dL_a(\qquad \mathfrak{t} \qquad + \sum_{\alpha \in \Delta^+} \sum_{\substack{\epsilon \in U(1) \\ \langle \alpha, w \rangle + \frac{1}{2} \arg \epsilon \in \pi \mathbb{Z}}} \mathfrak{m}_{\alpha, \epsilon})$$

Moreover the decomposition (5) is just the simultaneous eigenspace decomposition of the family shape operators $\{A_{\xi}^{N}\}_{\xi \in \mathfrak{t}}$. In fact

 $dL_a(\mathfrak{m}_{0,\epsilon})$: the eigenspace of eigenvalue 0,

 $dL_a(\mathfrak{m}_{\alpha,\epsilon})$: the eigenspace of eigenvalue $-\langle \alpha, \xi \rangle \cot(\langle \alpha, w \rangle + \frac{1}{2} \arg \epsilon)$.

If involutions θ and θ' commute then $\epsilon = \pm 1$ and thus we have:

Corollary 1.2 (Goertsches-Thorbergsson [2]). Suppose that $\theta \circ \theta' = \theta' \circ \theta$. Then

$$T_{aK}N = dL_{a}(\mathfrak{m}_{0} \cap \mathfrak{k}' + \sum_{\substack{\alpha \in \Delta^{+} \\ \langle \alpha, w \rangle \notin \pi \mathbb{Z}}} \mathfrak{m}_{\alpha} \cap \mathfrak{m}' + \sum_{\substack{\alpha \in \Delta^{+} \\ \langle \alpha, w \rangle + \pi/2 \notin \pi \mathbb{Z}}} \mathfrak{m}_{\alpha} \cap \mathfrak{k}'),$$

$$T_{aK}^{\perp}N = dL_{a}(\mathfrak{t} + \sum_{\substack{\alpha \in \Delta^{+} \\ \langle \alpha, w \rangle \in \pi \mathbb{Z}}} \mathfrak{m}_{\alpha} \cap \mathfrak{m}' + \sum_{\substack{\alpha \in \Delta^{+} \\ \langle \alpha, w \rangle + \pi/2 \in \pi \mathbb{Z}}} \mathfrak{m}_{\alpha} \cap \mathfrak{k}'),$$

M. MORIMOTO

 $dL_{a}(\mathfrak{m}_{0} \cap \mathfrak{k}') \quad : \quad the \ eigenspace \ of \ eigenvalue \ 0,$ $dL_{a}(\mathfrak{m}_{\alpha} \cap \mathfrak{m}') \quad : \quad the \ eigenspace \ of \ eigenvalue \ -\langle \alpha, \xi \rangle \cot\langle \alpha, w \rangle,$ $dL_{a}(\mathfrak{m}_{\alpha} \cap \mathfrak{k}') \quad : \quad the \ eigenspace \ of \ eigenvalue \ \langle \alpha, \xi \rangle \tan\langle \alpha, w \rangle.$

2. Submanifold geometry of orbits of $P(G, K' \times K)$ -actions

In this section we consider orbits of the $P(G, K' \times K)$ -action, where M = G/Kis a Riemannian symmetric space of compact type and K' a symmetric subgroup of G. Note that the $P(G, K' \times K)$ -action is hyperpolar because the Hermann action $K' \curvearrowright M$ is hyperpolar ([14], [4], [1]). In fact, if we take a maximal abelian subalgebra \mathfrak{t} of $\mathfrak{m} \cap \mathfrak{m}'$ then the space of constant paths $\hat{\mathfrak{t}} := \{\hat{x} \in V_{\mathfrak{g}} \mid x \in \mathfrak{t}\}$, where \hat{x} denotes a constant path with value x, is a section of the $P(G, K' \times K)$ -action. The second fundamental form and the shape operator of $P(G, K' \times K)$ -orbits were computed in [8]. The principal curvatures of $P(G, K' \times K)$ -orbits are described as follows.

Theorem 2.1 ([10]). Let $K' \curvearrowright M$ be a Hermann action. Fix a maximal abelian subalgebra \mathfrak{t} of $\mathfrak{m} \cap \mathfrak{m}'$. Take $w \in \mathfrak{t}$ and consider the orbit $P(G, K' \times K) * \hat{w}$ through $\hat{w} \in \hat{\mathfrak{t}}$. Then for each $\xi \in \mathfrak{t}$ the principal curvatures of $P(G, K' \times K) * \hat{w}$ in the direction of $\hat{\xi} \in \hat{\mathfrak{t}}$ are given by

$$\{0\} \cup \left\{ \frac{-\langle \alpha, \xi \rangle}{\langle \alpha, w \rangle + \frac{1}{2} \arg \epsilon + m\pi} \middle| \alpha \in \Delta^+, \ \epsilon \in U(1), \ \langle \alpha, w \rangle + \frac{1}{2} \arg \epsilon \notin \pi\mathbb{Z}, \ m \in \mathbb{Z} \right\} \\ \cup \left\{ \frac{\langle \alpha, \xi \rangle}{n\pi} \middle| \alpha \in \Delta^+, \ \epsilon \in U(1), \ \langle \alpha, w \rangle + \frac{1}{2} \arg \epsilon \in \pi\mathbb{Z}, \ n \in \mathbb{Z} \setminus \{0\} \right\}.$$

The multiplicities are respectively given by

$$\infty, \qquad \dim \mathfrak{m}_{\alpha,\epsilon}, \qquad \sum_{\epsilon} \dim \mathfrak{m}_{\alpha,\epsilon}.$$

In particular, if $w \in \mathfrak{t}$ is a regular point of the Hermann action then $\frac{\langle \alpha, \xi \rangle}{n\pi}$ vanishes.

In the proof of Theorem 2.1 we essentially use a formula for principal curvatures of PF submanifolds obtained from curvature adapted submanifolds in compact symmetric spaces through the parallel transport map ([7], [9]).

If $\theta \circ \theta' = \theta' \circ \theta$ then $\epsilon = \pm 1$ and thus we have the following corollary:

Corollary 2.2 ([10]). Suppose that involutions θ and θ' commute. Then the principal curvatures of the orbit $P(G, K' \times K) * \hat{w}$ in the direction of $\hat{\xi} \in \hat{\mathfrak{t}}$ are given by

$$\{0\} \cup \left\{ \frac{-\langle \alpha, \xi \rangle}{\langle \alpha, w \rangle + m\pi} \middle| \alpha \in \Delta^+, \langle \alpha, w \rangle \notin \pi\mathbb{Z}, m \in \mathbb{Z} \right\} \\ \cup \left\{ \frac{-\langle \alpha, \xi \rangle}{\langle \alpha, w \rangle + (m + \frac{1}{2})\pi} \middle| \alpha \in \Delta^+, \langle \alpha, w \rangle + \frac{\pi}{2} \notin \pi\mathbb{Z}, m \in \mathbb{Z} \right\} \\ \cup \left\{ \frac{\langle \alpha, \xi \rangle}{n\pi} \middle| \alpha \in \Delta^+, \langle \alpha, w \rangle \in \pi\mathbb{Z} \text{ or } \langle \alpha, w \rangle + \frac{\pi}{2} \in \pi\mathbb{Z}, n \in \mathbb{Z} \setminus \{0\} \right\}.$$

The multiplicities are respectively given by

 ∞ , $\dim(\mathfrak{m}_{\alpha} \cap \mathfrak{m}')$, $\dim(\mathfrak{m}_{\alpha} \cap \mathfrak{t}')$, $\dim(\mathfrak{m}_{\alpha} \cap \mathfrak{m}') + \dim(\mathfrak{m}_{\alpha} \cap \mathfrak{t}')$. In particular, if $w \in \mathfrak{t}$ is a regular point of the Hermann action then $\frac{\langle \alpha, \xi \rangle}{n\pi}$ vanishes. Using these results we finally consider the austere property of $P(G, K' \times K)$ -orbits. Recall that a submanifold N of a Riemannian manifold M is called *austere* if for each normal vector ξ at each point of N the set of eigenvalues with multiplicities of the shape operator A_{ξ}^{N} is invariant under the multiplication by (-1). This notion was originally introduced in the study of calibrated geometry ([3]). Similarly we can also define austere PF submanifolds in Hilbert spaces ([8], [9]).

The following theorem shows that under some (technical) conditions we can obtain austere $P(G, K' \times K)$ -orbits from austere K'-orbits.

Theorem 2.3 ([10]). Let $K' \curvearrowright M$ be a Hermann action. Suppose that involutions θ and θ' commute and that G is simple. If an orbit $K' \cdot (\exp w)K$ through $\exp w \in G/K$ for $w \in \mathfrak{t}$ is an austere submanifold of G/K then the orbit $P(G, K' \times K) * \hat{w}$ through $\hat{w} \in \hat{w}$ is an austere PF submanifold of the Hilbert space $V_{\mathfrak{g}}$.

Ikawa [6] classified austere orbits of Hermann actions under such conditions. Thus applying above theorem to his result we can obtain examples of homogeneous austere PF submanifolds in Hilbert spaces.

Acknowledgements

The author would like to thank Professors Hiroyuki Tasaki and Takashi Sakai for their interests in his work and their organization of this online workshop.

References

- C. Gorodski, G. Thorbergsson, Variationally complete actions on compact symmetric spaces J. Differential Geom. 62 (2002), no. 1, 39-48.
- [2] O. Goertsches, G. Thorbergsson, On the geometry of the orbits of Hermann actions, Geom. Dedicata 129 (2007), 101–118.
- [3] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math., 148 (1982), 47-157.
- [4] E. Heintze, R. Palais, C.-L. Terng, G. Thorbergsson, Hyperpolar actions on symmetric spaces, Geometry, topology, & physics, 214-245, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995.
- [5] R. Hermann, Variational completeness for compact symmetric spaces. Proc. Amer. Math. Soc. 11 (1960), 544-546.
- [6] O. Ikawa, The geometry of symmetric triad and orbit spaces of Hermann actions, J. Math. Soc. Japan 63 (2011), no. 1, 79-136.
- [7] N. Koike, On proper Fredholm submanifolds in a Hilbert space arising from submanifolds in a symmetric space, Japan. J. Math. (N.S.) 28 (2002), no. 1, 61-80.
- [8] M. Morimoto, On weakly reflective PF submanifolds in Hilbert spaces, to appear in Tokyo J. Math.
- M. Morimoto, Austere and arid properties for PF submanifolds in Hilbert spaces, Differential Geom. Appl., Vol. 69 (2020) 101613.
- [10] M. Morimoto, Curvatures and austere property of orbits of path group actions induced by Hermann actions, in preparation.
- [11] S. Ohno, Geometric properties of orbits of Hermann actions, arXiv:2101.00765.
- [12] R. S. Palais, C.-L. Terng, Critical Point Theory and Submanifold Geometry, Lecture Notes in Math., vol 1353, Springer-Verlag, Berlin and New York, 1988.
- [13] C.-L. Terng, Proper Fredholm submanifolds of Hilbert space. J. Differential Geom. 29 (1989), no. 1, 9-47.
- [14] C.-L. Terng, Polar actions on Hilbert space. J. Geom. Anal. 5 (1995), no. 1, 129-150.

(M. Morimoto) Osaka City University Advanced Mathematical Institute. 3-3-138 Sugimoto, Sumyoshi-ku, Osaka, 558-8585, Japan.

Email address: mmasahiro0408@gmail.com