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Introduction

LetM = G/K be a Riemannian symmetric space of compact type andK ′ a closed
subgroup of G. Then K ′ acts on M isometrically by

(1) b · (aK) := (ba)K, b ∈ K ′, aK ∈ M.

Then the subgroup K ′ ×K of G×G acts on G isometrically by

(b, c) · a := bac−1, (b, c) ∈ K ′ ×K, a ∈ G.

Moreover this action induces a path group action on a path space. More precisely
we consider the path group G := H1([0, 1], G) of all Sobolev H1-paths from [0, 1] to
G and the path space Vg = L2([0, 1], g) of all L2-paths from [0, 1] to the Lie algebra
g of G. Then G is a Hilbert Lie group and Vg a separable Hilbert space. G acts on
Vg isometrically via the gauge transformations:

g ∗ u := gug−1 − ġg−1, g ∈ G, u ∈ Vg,

where ġ denotes the weak derivative of g with respect to the parameter t ∈ [0, 1].
Then the subgroup

P (G,K ′ ×K) := {g ∈ G | (g(0), g(1)) ∈ K ′ ×K}
acts on Vg by the same formula. It is known that the P (G,K ′×K)-action is a proper
Fredholm (PF) action on a Hilbert space ([14]). Thus orbits of P (G,K ′×K)-actions
are examples of homogeneous proper Fredholm (PF) submanifolds in Hilbert spaces
([12], [13]). Moreover the P (G,K ′ ×K)-action is also a tool to study the K ′-action
on M ; a problem of K ′-actions can be reduced to a problem of P (G,K ′×K)-actions
due to linearity of the Hilbert space Vg (e.g. [1]).

In this report1 supposing that K ′ is a symmetric subgroup of G, that is, the K ′-
action is a Hermann action ([5]), we introduce our recent results on the submanifold
geometry of orbits of P (G,K ′ ×K)-actions ([10]).

1. Submanifold geometry of orbits of Hermann actions

In this section we review the submanifold geometry of orbits of Hermann actions.
For details, see Ohno [11] (see also Goertsches-Thorbergsson [2]).

Let G be a connected compact semisimple Lie group and K a closed subgroup of
G. Suppose that K is a symmetric subgroup of G, that is, there exists an involution
θ of G satisfying Gθ

0 ⊂ K ⊂ Gθ, where Gθ denotes the fixed point subgroup of G
and Gθ

0 the identity component. We write g and k for the Lie algebras of G and K
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respectively. The differential of θ induces an involution of g, which is also denoted
by θ. The direct sum decomposition g = k + m into the ±1-eigenspaces of θ is
called the canonical decomposition associated to the pair (g, k). We fix an Ad(G)-
invariant inner product ⟨·, ·⟩ of g which is a negative multiple of the Killing form of
g. We equip the corresponding bi-invariant Riemannian metric with G and the G-
invariant Riemannian metric with the homogeneous space G/K. Then M := G/K
is a Riemannian symmetric space of compact type and the projection π : G → M
is a Riemannian submersion with totally geodesic fiber.

Let K ′ be a symmetric subgroup of G with involution θ′. Denote by k′ the Lie
algebra of K ′ and g = k′ + m′ the canonical decomposition associated to the pair
(g, k′). Then K ′ acts on M isometrically by the formula (1). This action is called
a Hermann action ([5]). We know that a Hermann action is hyperpolar ([4]), that
is, there exists a (totally geodesic) closed connected submanifold Σ of M satisfying
the conditions that Σ meets every K ′-orbit orthogonally and that Σ is flat with
respect to the induced metric. Such a Σ is called a section. In fact, if we take a
maximal abelian subalgebra t of m∩m′ then exp t is a torus subgroup of G and thus
Σ := π(exp t) is a section of the Hermann action.

Take a maximal abelian subalgebra t of m ∩ m′ and consider the root space de-
composition

gC = g(0) +
∑
α∈∆

g(α) = g(0) +
∑
α∈∆+

(g(α) + g(−α)),

g(0) = {z ∈ gC | ∀η ∈ t, ad(η)z = 0},
g(α) = {z ∈ gC | ∀η ∈ t, ad(η)z =

√
−1⟨α, η⟩z}.

The real form is

g = g0 +
∑
α∈∆+

gα,

g0 = {x ∈ g | ∀η ∈ t, ad(η)x = 0},
gα = {x ∈ g | ∀η ∈ t, ad(η)2x = −⟨α, η⟩2x}.

Since θ commutes with ad(η)2 for all η ∈ t we have

k = k0 +
∑
α∈∆+

kα, m = m0 +
∑
α∈∆+

mα,

k0 = g0 ∩ k, kα = gα ∩ k,

m0 = g0 ∩m, mα = gα ∩m.

Consider the composition

θ ◦ θ′ : g → g

and the eigenspace decomposition

gC =
∑

ϵ∈U(1)

g(ϵ),

g(ϵ) = {z ∈ gC | (θ ◦ θ′)(z) = ϵz}.
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For each ϵ ∈ U(1) we denote by arg ϵ its argument satisfying −π ≤ arg ϵ ≤ π. Since
θ ◦ θ′ commutes with ad(η) for all η ∈ t we have

gC =
∑

ϵ∈U(1)

g(0, ϵ) +
∑
α∈∆

∑
ϵ∈U(1)

g(α, ϵ),

g(0, ϵ) = g(0) ∩ g(ϵ), g(α, ϵ) = g(α) ∩ g(ϵ).

The real form is

(2) g =
∑

ϵ∈U(1)≥0

g0,ϵ +
∑
α∈∆+

∑
ϵ∈U(1)

gα,ϵ,

U(1)≥0 = {ϵ ∈ U(1) | Im(ϵ) ≥ 0},

g0,ϵ = (g(0, ϵ) + g(0, ϵ−1) ∩ g,

gα,ϵ = (g(α, ϵ) + g(−α, ϵ−1)) ∩ g.

Since g0,ϵ and gα,ϵ are invariant under θ we have

k =
∑

ϵ∈U(1)≥0

k0,ϵ +
∑
α∈∆+

∑
ϵ∈U(1)

kα,ϵ,(3)

m =
∑

ϵ∈U(1)≥0

m0,ϵ +
∑
α∈∆+

∑
ϵ∈U(1)

mα,ϵ,(4)

k0,ϵ = g0,ϵ ∩ k, kα,ϵ = gα,ϵ ∩ k,

m0,ϵ = g0,ϵ ∩m, mα,ϵ = gα,ϵ ∩m.

We now take w ∈ t and set a := expw. Then the tangent space and the normal
space of the orbit N := K ′ · aK through aK are described as follows:

Proposition 1.1 (Ohno [11]).

TaKN = dLa(
∑

ϵ∈U(1)≥0

ϵ̸=1

m0,ϵ +
∑
α∈∆+

∑
ϵ∈U(1)

⟨α,w⟩+ 1
2
arg ϵ/∈πZ

mα,ϵ ),(5)

T⊥
aKN = dLa( t +

∑
α∈∆+

∑
ϵ∈U(1)

⟨α,w⟩+ 1
2
arg ϵ∈πZ

mα,ϵ ).(6)

Moreover the decomposition (5) is just the simultaneous eigenspace decomposition
of the family shape operators {AN

ξ }ξ∈t. In fact

dLa(m0,ϵ) : the eigenspace of eigenvalue 0,

dLa(mα,ϵ) : the eigenspace of eigenvalue −⟨α, ξ⟩ cot(⟨α,w⟩+ 1
2
arg ϵ).

If involutions θ and θ′ commute then ϵ = ±1 and thus we have:

Corollary 1.2 (Goertsches-Thorbergsson [2]). Suppose that θ ◦ θ′ = θ′ ◦ θ. Then

TaKN = dLa( m0 ∩ k′ +
∑
α∈∆+

⟨α,w⟩/∈πZ

mα ∩m′ +
∑
α∈∆+

⟨α,w⟩+π/2/∈πZ

mα ∩ k′ ),

T⊥
aKN = dLa( t +

∑
α∈∆+

⟨α,w⟩∈πZ

mα ∩m′ +
∑
α∈∆+

⟨α,w⟩+π/2∈πZ

mα ∩ k′ ),
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dLa(m0 ∩ k′) : the eigenspace of eigenvalue 0,

dLa(mα ∩m′) : the eigenspace of eigenvalue −⟨α, ξ⟩ cot⟨α,w⟩,
dLa(mα ∩ k′) : the eigenspace of eigenvalue ⟨α, ξ⟩ tan⟨α,w⟩.

2. Submanifold geometry of orbits of P (G,K ′ ×K)-actions

In this section we consider orbits of the P (G,K ′ ×K)-action, where M = G/K
is a Riemannian symmetric space of compact type and K ′ a symmetric subgroup of
G. Note that the P (G,K ′ ×K)-action is hyperpolar because the Hermann action
K ′ ↷ M is hyperpolar ([14], [4], [1]). In fact, if we take a maximal abelian subalgebra
t of m ∩m′ then the space of constant paths t̂ := {x̂ ∈ Vg | x ∈ t}, where x̂ denotes
a constant path with value x, is a section of the P (G,K ′ ×K)-action. The second
fundamental form and the shape operator of P (G,K ′×K)-orbits were computed in
[8]. The principal curvatures of P (G,K ′ ×K)-orbits are described as follows.

Theorem 2.1 ([10]). Let K ′ ↷ M be a Hermann action. Fix a maximal abelian
subalgebra t of m∩m′. Take w ∈ t and consider the orbit P (G,K ′ ×K) ∗ ŵ through
ŵ ∈ t̂. Then for each ξ ∈ t the principal curvatures of P (G,K ′ × K) ∗ ŵ in the

direction of ξ̂ ∈ t̂ are given by

{0}∪
{

−⟨α, ξ⟩
⟨α,w⟩+ 1

2
arg ϵ+mπ

∣∣∣∣ α ∈ ∆+, ϵ ∈ U(1), ⟨α,w⟩+ 1

2
arg ϵ /∈ πZ, m ∈ Z

}
∪
{
⟨α, ξ⟩
nπ

∣∣∣∣ α ∈ ∆+, ϵ ∈ U(1), ⟨α,w⟩+ 1

2
arg ϵ ∈ πZ, n ∈ Z\{0}

}
.

The multiplicities are respectively given by

∞, dimmα,ϵ,
∑
ϵ

dimmα,ϵ.

In particular, if w ∈ t is a regular point of the Hermann action then ⟨α,ξ⟩
nπ

vanishes.

In the proof of Theorem 2.1 we essentially use a formula for principal curvatures
of PF submanifolds obtained from curvature adapted submanifolds in compact sym-
metric spaces through the parallel transport map ([7], [9]).

If θ ◦ θ′ = θ′ ◦ θ then ϵ = ±1 and thus we have the following corollary:

Corollary 2.2 ([10]). Suppose that involutions θ and θ′ commute. Then the prin-

cipal curvatures of the orbit P (G,K ′ × K) ∗ ŵ in the direction of ξ̂ ∈ t̂ are given
by

{0} ∪
{

−⟨α, ξ⟩
⟨α,w⟩+mπ

∣∣∣∣ α ∈ ∆+, ⟨α,w⟩ /∈ πZ, m ∈ Z
}

∪
{

−⟨α, ξ⟩
⟨α,w⟩+ (m+ 1

2
)π

∣∣∣∣ α ∈ ∆+, ⟨α,w⟩+ π

2
/∈ πZ, m ∈ Z

}
∪
{
⟨α, ξ⟩
nπ

∣∣∣∣ α ∈ ∆+, ⟨α,w⟩ ∈ πZ or ⟨α,w⟩+ π

2
∈ πZ, n ∈ Z\{0}

}
.

The multiplicities are respectively given by

∞, dim(mα ∩m′), dim(mα ∩ k′), dim(mα ∩m′) + dim(mα ∩ k′).

In particular, if w ∈ t is a regular point of the Hermann action then ⟨α,ξ⟩
nπ

vanishes.



ORBITS OF PATH GROUP ACTIONS INDUCED BY HERMANN ACTIONS 5

Using these results we finally consider the austere property of P (G,K ′×K)-orbits.
Recall that a submanifold N of a Riemannian manifold M is called austere if for
each normal vector ξ at each point of N the set of eigenvalues with multiplicities of
the shape operator AN

ξ is invariant under the multiplication by (−1). This notion
was originally introduced in the study of calibrated geometry ([3]). Similarly we can
also define austere PF submanifolds in Hilbert spaces ([8], [9]).

The following theorem shows that under some (technical) conditions we can obtain
austere P (G,K ′ ×K)-orbits from austere K ′-orbits.

Theorem 2.3 ([10]). Let K ′ ↷ M be a Hermann action. Suppose that involutions θ
and θ′ commute and that G is simple. If an orbit K ′·(expw)K through expw ∈ G/K
for w ∈ t is an austere submanifold of G/K then the orbit P (G,K ′×K)∗ ŵ through
ŵ ∈ ŵ is an austere PF submanifold of the Hilbert space Vg.

Ikawa [6] classified austere orbits of Hermann actions under such conditions. Thus
applying above theorem to his result we can obtain examples of homogeneous austere
PF submanifolds in Hilbert spaces.
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