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1. Introduction

This article is based on the collaboration with Tadashi Nagano.
In the first part of this article we briefly review basic notions of

our geometric theory of symmetric spaces developping in the series of
papers [7], [8], [9], [10] and [11].

And in the next part we introduce a regular triplet in a symmetric
space M . A triplet {o, p, q} of three points o, p and q in M is called a
regular triplet if the composite of the point-symmetries at each point
is the identity map. If M has no pole, M has a regular triplet {o, p, q}
if and only if M has a polar M+

(p:o) which is isomorphic with the merid-

ian to it (Theorem 3.8). And then o, p and q are vertices of“a right
regular triangle” each of which sides is isomorphic with M+

(o,p). We also
proved that if M without pole has a regular triplet, there is a subspace
in M which is isomorphic with RP 2 and contains the regular triplet
(Theorem 3.10).

2. Preliminaries

We define the category of symmetric spaces as the following: (i)
the category of symmetric spaces is a subcategory of that of smooth
manifolds, (ii) for every point x in a symmetric space M there is the
point-symmetry sx : M → M , that is, sx is involutive and x is an
isolated fixed point of sx, (iii) a map f : M → N from a symmetric
space M into another symmetric space N is a morphism if it satisfies
f ◦ sx = sf(x) ◦ f for every point x in M , (iv) every point-symmetry is
a morphism.

This definition of a symmetric space and a morphism are essentially
the same as that of O. Loos in [6]. By using this definition of symmetric
spaces we can take disconnected symmetric spaces into consideration.
For example, we can consider a finite set as a trivial symmetric space,
that is, a symmetric space whose point-symmetry is the identity map
at every point. We make use of it to define the 2-numbers of symmetric
spaces in [4].

We can prove that there exists a unique affine connection which is
invariant under every point-symmetry. Thus our definition of a sym-
metric space is the same as usual one (for example in [5]). Since it
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follows that every invariant tensor of odd degrees is identically zero,
the invariant affine connection is torsion-free and its curvature tensor
is parallel. Since a morphism is an affine map with respect to this
invariant connection, a smooth map f : M → N is a morphism if
and only if f is totally geodesic, if M is connected. Every morphism
f : M → N is a composite of a epimorphism and a monomorphism.
Especially the image f(M) is also a symmetric space and we call it a
subspace of N . For example, for an automorphism σ of a symmetric
space M , the fixed point set of σ is a subspace of M .

From now on, we consider in the category of Riemannian symmetric
spaces unless otherwise stated, that is, we assume that a symmet-
ric space is equipped with a Riemannian metric and every morphism
satisfies the isometry condition, more precisely, it is isometric on the
orthogonal complement to the kernel of the differential at each point.
In particular, every symmetry preserves the Riemannian metric. Here-
after we study compact symmetric spaces only.

Let M = G/K be a connected symmetric space, here G is the identity
component of the automorphism group of M and K is the isotropy
subgroup of G at a point o in M . Each connected component of the
fixed point set of so is called a polar of o in M and denoted by M+

(p) or

M+
(p:o) if it contains a point p. The connected component of the fixed

point set of sp ◦ so which contains p is called the meridian to M+
(p) at p,

denoted by M−
(p) or M−

(o,p). By the definition, we can easily see that M+
(p)

and M−
(p) are c-orthogonal to each other, that is, the tangent spaces of

M+
(p) and M−

(p) at p are the orthogonal complements to each other in
that of M . Each polar is a K-orbit and the meridians to the same
polar are all G-congruent with each other. A polar and a meridian are
subspaces in M naturally.

For example, if M is a compact Lie group with bi-invariant metric,
the symmetry at x ∈ M is defined by sx(y) = xy−1x for every element
y in M . Thus the polars of the identity element in M coincide with the
conjugate classes of involutive elements of M . In the case of M = U(n),
we have M+

(p) = Gk(C
n), the complex Grassmannian manifold of the

k-dimensional subspaces in Cn, and M−
(p) = U(k) × U(n − k) where

0 ≤ k ≤ n.

Polars of M deeply relate to the topology of M , for instance, M
is orientable if and only if every polar has even dimension: the Euler
number χM of M is equal to the sum of those of all the polars of M
unless χM = 0. On the other hand, each meridian M−

(p) has the same
rank as that of M . So we can find that the natural homomorphism
π1(M

−
(p)) → π1(M) is surjective.
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When a polar M+
(p) consists of a single point p, p is called a pole of o

in M if p is not o. A pole does not necessarily exist. And if it does, it
is not unique. For example, a torus T r has 2r − 1 poles and a simple
Lie group Spin(4n), n ≥ 2 has three poles.

When there is a pole p of o in M , we have a double covering morphism
π : M → N onto another symmetric space N , satisfying π(o) = π(p).
Under this situation, let C(o, p) denote a set of the midpoints of the ge-
odesic arcs between o and p, which is a subspace of M . Each connected
component of C(o, p) is called a centriole for the pair (o, p) in M . The
image of every centriole under π is a polar of π(o) in N . Conversely,
every polar of π(o) in N is a image of a polar of o or a centriole for
(o, p) in M under π. Moreover, M and N are locally isomorphic and
there is a unique symmetric space M% in a local isomorphism class of
M which is not a covering space on any other symmetric spaces if M
is semisimple. This M% is called the bottom space of M . The bot-
tom space has no pole but the converse is not true: M = SU(n) with
n = odd have no pole and M% = SU(n)/Zn.

For example, n-dimensional sphere M = Sn has a pole and the
centriole is the equator Sn−1. The bottom space of Sn is a projective
space RP n and its polar RP n−1 is the image of the centriole Sn−1

under the double covering morphism.
By the classification of polars and meridians ([3], [4], for example),

we can find that every polar of M is a pole if and only if M is a
Riemannian product of spheres and a torus.

The theoretical significance of the notion of polars and the meridians
lies in the following fact.

Theorem 2.1 (1.15 in [8]). Every compact connected symmetric space
is globally determined by any one pair of a polar and the meridian to
it.

3. Regular triplets

Let M be a compact connected symmetric space, and o, p and q three
points in M . A triplet {o, p, q} is called a regular triplet in M if they
satisfy so ◦ sp ◦ sq = idM . For example, the real, complex, quaternion,
or Cayley projective plane has a regular triplet. In fact, the polar M+

(p)

of a point o in M is a projective line (hence a sphere or a circle) and
by taking q, the pole of p in M+

(p), we have a regular triplet {o, p, q}.
Then o, p and q are vertices of “a right regular triangle” each of which
sides is a projective line.

Remark As we will see later, every symmetric space which admits a
regular triplet has such “a right regular triangle”.
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Since every point-symmetry is involutive, the next lemma follows
immediately.

Lemma 3.1. If {o, p, q} is a regular triplet, we have so ◦ sp = sq, sp ◦
sq = so and so ◦ sq = so.

Since the composite of two point-symmetries is an inner involution,
we have the following consequence.

Corollary 3.2. If M has a regular triplet, M is of inner type.

Remark. A simple symmetric space M = G/K is of inner type if and
only if one of the following conditions holds: (i) the rank of K is the
same as that of G and (ii) the Euler number χM of M is positive.

The following lemmas which we can prove easily describe some of
fundamental properties of regular triplets and we use them to prove
the main theorem (Theorem 3.8).

Lemma 3.3. Let {o, p, q} be a regular triplet. Then the group gener-

ated by {so, sp, sq} is isomorphic with that generated by

{(
±1 0
0 ±1

)}
and its automorphism group is isomorphic with the symmetric group of
degree 3.

Lemma 3.4. If {o, p, q} is a regular triplet, so, sp and sq are commu-
tative with each other.

Lemma 3.5. Assume that M has no pole and let {o, p, q} be a regular
triplet in M , then {so, sp, sq} acts trivially on {o, p, q}.
Lemma 3.6. Assume that M has no pole and let {o, p, q} be a regular
triplet in M and m the midpoint of a minimal geodesic arc between p
and q, then we have sm(o) = o.

Lemma 3.7. Assume that M has no pole and let {o, p, q} be a regular
triplet in M , then M+

(p:o) coincides with M+
(q:o).

Theorem 3.8. If M has no pole, then the following three conditions
are equivalent: (i) M has a regular triplet; (ii) there is a polar in M
which is congruent with the meridian to it; and (iii) there is a polar in
M which has a pole in it.

Remark. A simple M has no pole if and only if M is (i)the bottom
space M%; or (ii) the root system of M is of type A2r or type E6. This
condition is relating with the fundamental group of M%.

Now we consider the case when M admits a pole. Let p be a pole
of o in M and π the double covering morphism from M onto N which
maps o and p onto the same point.

Theorem 3.9. M has a regular triplet if and only if N = π(M) has a
regular triplet.
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Since the complete list of (M+,M−) is known ([3], [4], for example),
we can find all M with no pole which has a regular triplet by Theorem
3.8.

In [10] we investigated the relation between self-intersections and
regular triplets on the sequence of symmetric spaces: RP 2 ⊂ CP 2 ⊂
HP 2 ⊂ FII ⊂ EIII ⊂ EV I ⊂ EV III. Here we use the notation
of symmetric spaces in [5]. There is another sequence of quaternion
Kähler symmetric spaces of exceptional type: GI ⊂ FI ⊂ EII ⊂
EV I ⊂ EIX, where each of these spaces has a regular triplet. Thus
we know that every inner symmetric space of exceptional type has a
regular triplet. And every Kähler symmetric space with a pole (that is,
whose root system is of type Cr) has a regular triplet. In fact, each of
them contains a symmetric R-space as a centriole, which is isomorphic
with its c-orthogonal space.

Remark. K. Atsuyama studied the bottom spaces which have a reg-
ular triplet from the view point of “projective geometry in a wider
sense” in [1]. B. Y. Chen studied regular triplets in [2], where he call
them antipodal subset and he proved in it the equivalence between the
conditions (i) and (ii) in Theorem 3.8 and Theorem 3.9.

Assume that M = G/K has a regular triplet {o, p, q} but no pole.
The Lie algebra g of G has an orthogonal directsum decomposition
g = k + m, where k and m are eigenspaces of dso with respect to
the eigenvalues 1 and −1 respectively. And furthermore, we have the
following decomposition since so and sp are commutative: g = k++k−+
m+ +m− , where dsp = id on k+ and m+ and dsp = −id on k− and m−.
m− can be ientified with the tangent space ToM

−
(p:o) of the meridian

M−
(p:o), k− with TpM

+
(p:o) and m+ with ToM

−
(q:o). By the assumption we

have M+
(p:o)

∼= M−
(p:o)

∼= M−
(q:o), hence k− ∼= m− ∼= m+ as k+-modules.

Moreover, we have [k−,m±] = m∓ and [m+, m−] = k−. And there is
an automorphism of g which maps these three spaces cyclicly. This
property is something related with the triality of Spin(8). In fact, if
M is one of the following spaces: FII ⊂ EIII ⊂ EV I ⊂ EV III, the
isotropy subgroup contains a spin group as a normal subgroup.

By the above-mentioned facts we obtain the following.

Theorem 3.10. Let M have a regular triplet but no pole. Then there
is a subspace in M which is isomorphic with RP 2 and contains the
regular triplet.
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