$3 \nightharpoonup$

1 Introduction

There are many closed surfaces in the unit sphere *S* ³ which admit nontrivial isometric deformations. For example, every flat torus in *S* ³ with nonconstant mean curvature admits nontrivial isometric deformations ([3]). In this note we show that each flat torus in $S³$ conserves its total mean curvature during any isometric deformation.

Let *M* be an oriented flat torus, and let $I(M, S^3)$ denote the set of all isometric immersions $f: M \to S^3$. For each $f \in I(M, S^3)$, the total mean curvature of f is given by

$$
\tau(f) = \int_M H \, dA,
$$

where *H* denotes the mean curvature of *f*. Furthermore, we set

$$
\tau(M) = \{\tau(f) : f \in I(M, S^3)\}.
$$

By using a method for constructing the flat tori in S^3 , we investigate the set $\tau(M)$ and obtain the following result.

Theorem 1 Let G be a lattice of \mathbb{R}^2 such that M is isometric to \mathbb{R}^2/G . Then $\tau(M) \subset X(G)$ *, where* $X(G)$ *is a countable set defined by*

$$
X(G) = \left\{ \frac{1}{2n} \langle \vec{\alpha}, \vec{\beta} \rangle : n \in \mathbb{N}, \ \vec{\alpha}, \vec{\beta} \in G \right\}.
$$

In particular, the set $\tau(M)$ *is at most countable.*

As an immediate consequence of Theorem 1, we obtain

Theorem 2 Let *M* be an oriented flat torus, and let $f_t : M \to S^3$, $t \in \mathbb{R}$, be a *smooth one-parameter family of isometric immersions. Then* $\tau(f_t) = \tau(f_0)$ *for all* $t \in \mathbb{R}$.

2 Periodic admissible pairs and flat tori in *S* 3

In this section we give an ontline of a method for constructing all the flat tori isometrically immersed in *S* 3 . For details, see [1, 2, 3]

Definition *A periodic admissible pair (p.a.p.) is a pair of periodic regular curves* $\gamma_1 : \mathbb{R} \to S^2$ *and* $\gamma_2 : \mathbb{R} \to S^2$ *such that (a)* $k_1(s_1) > k_2(s_2)$ *for all* $s_1, s_2 \in \mathbb{R}$ *,* (ϕ) $|\gamma'_i(s)|\sqrt{1+k_i(s)^2} = 2$ $(i = 1, 2)$ *, where* $k_i(s)$ *denotes the geodesic curvature of* $\gamma_i(s)$ *.*

We first explain that each p.a.p. $\Gamma = (\gamma_1, \gamma_2)$ induces a flat torus M_{Γ} isometrically immersed in S^3 . Let $\mathbb H$ denote the set of all quaternions, and let $\mathbb R^4$ be the 4-dimensional Euclidean space identified with H as follows:

$$
(x_1, x_2, x_3, x_4) \longleftrightarrow x_1 + x_2\mathbf{i} + x_3\mathbf{j} + x_4\mathbf{k}.
$$

The unit spheres S^2 and S^3 are given by

$$
S^2 = \{x \in \text{Im }\mathbb{H} : |x| = 1\}, \quad S^3 = \{x \in \mathbb{H} : |x| = 1\}.
$$

Note that the unit sphere $S³$ has a group structure induced by the multiplicative structure of \mathbb{H} . The unit tangent bundle of S^2 , denoted by US^2 , is identified with a subset of $S^2 \times S^2$ as follows:

$$
US^{2} = \{(x, v) \in S^{2} \times S^{2} : \langle x, v \rangle = 0\},\
$$

where the canonical projection $p_1 : US^2 \to S^2$ is given by $p_1(x, v) = x$. Furthermore, we define a double covering map $p_2 : S^3 \to US^2$ by

$$
p_2(a) = (aia^{-1}, aja^{-1}).
$$

Consider a curve $\hat{\gamma}_i : \mathbb{R} \to US^2$ given by

$$
\hat{\gamma}_i(s) = (\gamma_i(s), \gamma'_i(s)/|\gamma'_i(s)|),
$$

and denote by $I(\gamma_i)$ the element of the homology group $H_1(US^2)$ represented by the closed curve $\hat{\gamma}_i : [0, l_i] \to US^2$, where l_i denotes the period of γ_i . . Let $c_i : \mathbb{R} \to S^3$ be a lift of the curve $\hat{\gamma}_i : \mathbb{R} \to US^2$ with respect to the covering p_2 . Since $H_1(US^2) \cong \mathbb{Z}_2$ and the double covering p_2 satisfies the relation $p_2(-a) = p_2(a)$, we see that

$$
c_i(s+l_i) = \begin{cases} c_i(s) & I(\gamma_i) = 0, \\ -c_i(s) & I(\gamma_i) = 1. \end{cases}
$$

Using the group structure of S^3 , we define a map $F_\Gamma : \mathbb{R}^2 \to S^3$ by

$$
F_{\Gamma}(s_1, s_2) = c_1(s_1)c_2(s_2)^{-1}.
$$

Then it follows that the map F_{Γ} is a doubly periodic immersion and induces a flat Riemannian metric g_r on \mathbb{R}^2 . We now consider the group

$$
G(\Gamma) = \{ \varphi \in \text{Diff}(\mathbb{R}^2) : F_{\Gamma} \circ \varphi = F_{\Gamma} \}.
$$

Since each element of $G(\Gamma)$ is a parallel translation of \mathbb{R}^2 , we obtain a flat torus $M_{\Gamma} = (\mathbb{R}^2, g_{\Gamma})/G(\Gamma)$, and an isometric immersion

$$
f_{\Gamma}:M_{\Gamma}\to S^3
$$

satisfying the relation $f_{\Gamma} \circ \pi_{\Gamma} = F_{\Gamma}$, where $\pi_{\Gamma} : \mathbb{R}^2 \to M_{\Gamma}$ denotes the canonical projection. Furthermore, it follows that all the flat tori isometrically immersed in *S* 3 are constructed by using this procedure. In fact, modifying the proof of [2, Theorem 3.1], we obtain

Proposition 1 *Let* $f : M \to S^3$ *be an isometric immersion of a flat torus* M *into the unit sphere* S^3 . Then there exist a p.a.p. Γ and a covering map $\rho : M \to M_I$ *such that* $A \circ f = f \circ \rho$ *for some isometry* $A : S^3 \to S^3$ *.*

We now explain that the Riemannian structure of M_{Γ} and the total mean curvature of f_Γ can be written in terms of geometric data of $\Gamma = (\gamma_1, \gamma_2)$. Let

$$
\vec{v}_i = \frac{1}{2}(K_i, L_i), \quad L_i = \int_0^{l_i} |\gamma_i'(s)| ds, \quad K_i = \int_0^{l_i} k_i(s) |\gamma_i'(s)| ds,
$$

and define $W(\Gamma)$ to be a lattice of \mathbb{R}^2 generated by the following vectors

$$
\begin{cases}\n\vec{v}_1, \ \vec{v}_2 & \text{if } I(\Gamma) = (0, 0), \\
2\vec{v}_1, \ \vec{v}_2 & \text{if } I(\Gamma) = (1, 0), \\
\vec{v}_1, \ 2\vec{v}_2 & \text{if } I(\Gamma) = (0, 1), \\
\vec{v}_1 + \vec{v}_2, \ \vec{v}_1 - \vec{v}_2 & \text{if } I(\Gamma) = (1, 1),\n\end{cases}
$$

where $I(\Gamma) = (I(\gamma_1), I(\gamma_2))$. Then we obtain

Proposition 2 ([3], Theorem 4.1) *For each p.a.p.* $\Gamma = (\gamma_1, \gamma_2)$ *, the flat torus* M_{Γ} *is isometric to* $\mathbb{R}^2/W(\Gamma)$ *.*

Proposition 3 ([3], Theorem 5.3) *For each p.a.p.* $\Gamma = (\gamma_1, \gamma_2)$ *,*

$$
\tau(f_{\Gamma}) = \begin{cases} \langle \vec{v_1}, \vec{v_2} \rangle & \text{if} \quad I(\Gamma) = (0,0), \\ 2\langle \vec{v_1}, \vec{v_2} \rangle & \text{if} \quad I(\Gamma) \neq (0,0). \end{cases}
$$

3 Proof of Theorem 1

Let *G* be a lattice of \mathbb{R}^2 such that the flat torus *M* is isometric to \mathbb{R}^2/G , and let $f \in I(M, S^3)$. Then it follows from Proposition 1 that there exist a p.a.p. *Γ* = (γ_1 , γ_2) and a Riemannian covering $\rho : M \to M_r$ such that

$$
A\circ f=f_{\Gamma}\circ\rho,
$$

where A denotes an isometry of S^3 . Furthermore, Proposition 2 implies that the flat torus M_{Γ} is isometric to $\mathbb{R}^2/W(\Gamma)$. So, there exists a linear isometry $T : \mathbb{R}^2 \to \mathbb{R}^2$ satisfying

$$
T(G) \subset W(\Gamma).
$$

Let $\{\vec{\xi}_1, \vec{\xi}_2\}$ be a generator of the lattice *G*, and let $\{\vec{\eta}_1, \vec{\eta}_2\}$ be a generator of the lattice $W(\Gamma)$. Then there exist integers c_{ij} such that

$$
\begin{cases}\nT(\vec{\xi_1}) = c_{11}\vec{\eta_1} + c_{12}\vec{\eta_2}, \\
T(\vec{\xi_2}) = c_{21}\vec{\eta_1} + c_{22}\vec{\eta_2}.\n\end{cases}
$$

This implies that

$$
\tau(f) = n\tau(f_{\Gamma}), \quad n = |c_{11}c_{22} - c_{12}c_{21}|.
$$

On the other hand, it follows from Proposition 3 that

$$
\tau(f_{\Gamma}) = \frac{1}{2} \langle \vec{a}, \vec{b} \rangle, \quad \vec{a}, \vec{b} \in W(\Gamma).
$$

Since $n\vec{\eta}_i \in T(G)$, there exist $\vec{\alpha}, \ \vec{\beta} \in G$ such that

$$
n\vec{a} = T(\vec{\alpha}), \quad n\vec{b} = T(\vec{\beta}).
$$

Hence

$$
\tau(f) = \frac{1}{2n} \langle T(\vec{\alpha}), T(\vec{\beta}) \rangle = \frac{1}{2n} \langle \vec{\alpha}, \vec{\beta} \rangle \in X(G).
$$

This completes the proof.

References

- [1] Y. Kitagawa, *Periodicity of the asymptotic curves on flat tori in S* 3 , J. Math. Soc. Japan, **40** (1988), 457-476.
- [2] Y. Kitagawa, *Embedded flat tori in the unit 3-sphere*, J. Math. Soc. Japan, **47** (1995), 275-296.
- [3] Y. Kitagawa, *Isometric deformations of flat tori in the 3-sphere with nonconstant mean curvature*, Tohoku Math. J., **52** (2000), 283 - 298.