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1 Introduction

There are many closed surfaces in the unit sphere S® which admit nontrivial iso-
metric deformations. For example, every flat torus in S® with nonconstant mean
curvature admits nontrivial isometric deformations ([3]). In this note we show that
each flat torus in S® conserves its total mean curvature during any isometric defor-
mation.

Let M be an oriented flat torus, and let (M, S?) denote the set of all isometric
immersions f : M — S3. For each f € I(M,S?), the total mean curvature of f is
given by

()= [ H aa,
M

where H denotes the mean curvature of f. Furthermore, we set
T(M) ={7(f) : f € I(M, $%)}.

By using a method for constructing the flat tori in S, we investigate the set 7(M)
and obtain the following result.

Theorem 1 Let G be a lattice of R? such that M is isometric to R?*/G. Then
T(M) C X(G), where X(G) is a countable set defined by

X(G):{an(o‘z,ﬁ):neN, a.fc G}.

In particular, the set T(M) is at most countable.

As an immediate consequence of Theorem 1, we obtain

Theorem 2 Let M be an oriented flat torus, and let f, : M — S®, t € R, be a
smooth one-parameter family of isometric immersions. Then 7(f;) = 7(fo) for all
teR.



2 Periodic admissible pairs and flat tori in S°

In this section we give an ontline of a method for constructing all the flat tori
isometrically immersed in S3. For details, see [1, 2, 3]

Definition A periodic admissible pair (p.a.p.) is a pair of periodic reqular curves
v iR — 5% and v, : R — S? such that
(a) ki(s1) > ka(s2) for all s1, 89 € R,

(b) |7 (8)]y/1 4+ ki(s (1=1,2),

where k;(s) denotes the geodeszc curvature of v;(s).

We first explain that each p.a.p. I' = (71,72) induces a flat torus M isomet-
rically immersed in S®. Let H denote the set of all quaternions, and let R* be the
4-dimensional Euclidean space identified with H as follows:

(71, T2, T3, T4) «— 1 + Toi + 3j + T4k
The unit spheres S? and S? are given by
={reImH:|z|=1}, S*={rcH:|z|=1}.

Note that the unit sphere S3 has a group structure induced by the multiplicative
structure of H. The unit tangent bundle of S%, denoted by US?, is identified with a
subset of S? x S? as follows:

US? = {(x,v) € S* x §? : (z,v) = 0},

where the canonical projection p; : US? — S? is given by p; (x,v) = z. Furthermore,
we define a double covering map p, : S® — US? by

po(a) = (aia_l,aja_l).

Consider a curve 4; : R — US? given by

Fi(s) = (n(s), % (s)/ 1 (s)]),

and denote by I(7;) the element of the homology group H;(US?) represented by the
closed curve 4; : [0,1;] — US?, where [; denotes the period of ;. . Let ¢; : R — S® be
a lift of the curve 4; : R — US? with respect to the covering py. Since Hy(US?) 2 Z
and the double covering ps satisfies the relation pe(—a) = pa(a), we see that

CZ‘(S + lz) =



Using the group structure of S?, we define a map Fr : R? — S? by

Fr(s1,s2) = c1(s1)ca(s2) "

Then it follows that the map Fr is a doubly periodic immersion and induces a flat
Riemannian metric g, on R?. We now consider the group

G(I') = {¢ € Diff(R?) : Frop = Fr}.
Since each element of G(I') is a parallel translation of R? we obtain a flat torus
Mr = (R?, g,)/G(I'), and an isometric immersion
fp . Mp — 53

satisfying the relation fr o mp = Fp, where 7y : R?> — M denotes the canonical
projection. Furthermore, it follows that all the flat tori isometrically immersed in S3
are constructed by using this procedure. In fact, modifying the proof of [2, Theorem
3.1], we obtain

Proposition 1 Let f : M — S? be an isometric immersion of a flat torus M into
the unit sphere S®. Then there exist a p.a.p. I' and a covering map p : M — My
such that Ao f = frop for some isometry A : S® — S3.

We now explain that the Riemannian structure of M and the total mean cur-
vature of fr can be written in terms of geometric data of I" = (1, 72). Let

o
U = i(Kza LZ)’ / h/z( >|d8 K / h/z |d8

and define W (I') to be a lattice of R? generated by the following vectors

T, U if I(I') = (0, 0),
2, Ty if I(I') = (1, 0),
T, 205 if I(I') = (0, 1),
T4, Oy — T if ()= (1, 1),

where I(I") = (I(71), I(72)). Then we obtain

Proposition 2 ([3], Theorem 4.1) For each p.a.p. I' = (y1,72), the flat torus
Mr is isometric to R? /W (I').

Proposition 3 ([3], Theorem 5.3) For each p.a.p. I' = (71,7%2),

(01,0)  if I(I") = (0,0),

DS amm) if 1) £ 0.0)



3 Proof of Theorem 1

Let G be a lattice of R? such that the flat torus M is isometric to R?*/G, and
let f € I(M,S3). Then it follows from Proposition 1 that there exist a p.a.p.
I' = (71, 72) and a Riemannian covering p : M — My such that

Ao f=frop,
where A denotes an isometry of S®. Furthermore, Proposition 2 implies that the flat
torus M is isometric to R?/W (I'). So, there exists a linear isometry T : R? — R?
satisfying

T(G) c W(I).
Let {51,52} be a generator of the lattice G, and let {7,772} be a generator of the
lattice W(I"). Then there exist integers c;; such that

T(gl) = i1 + ciafe,
T(é) = Co17]1 + Coaja.
This implies that
T(f) =n7(fr), n=lccen — cacal.
On the other hand, it follows from Proposition 3 that
1, - -
7(fr) = 3{@b), a@beW(I).
Since nij, € T(@), there exist @, § € G such that
nd =T(&), nb=T(3).

Hence
T(f) = o
This completes the proof.
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