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1 Introduction

There are many closed surfaces in the unit sphere S3 which admit nontrivial iso-

metric deformations. For example, every flat torus in S3 with nonconstant mean

curvature admits nontrivial isometric deformations ([3]). In this note we show that

each flat torus in S3 conserves its total mean curvature during any isometric defor-

mation.

Let M be an oriented flat torus, and let I(M, S3) denote the set of all isometric

immersions f : M → S3. For each f ∈ I(M, S3), the total mean curvature of f is

given by

τ(f) =
∫

M
H dA,

where H denotes the mean curvature of f . Furthermore, we set

τ(M) = {τ(f) : f ∈ I(M,S3)}.

By using a method for constructing the flat tori in S3, we investigate the set τ(M)

and obtain the following result.

Theorem 1 Let G be a lattice of R2 such that M is isometric to R2/G. Then

τ(M) ⊂ X(G), where X(G) is a countable set defined by

X(G) =
{

1

2n
〈~α, ~β〉 : n ∈ N, ~α, ~β ∈ G

}
.

In particular, the set τ(M) is at most countable.

As an immediate consequence of Theorem 1, we obtain

Theorem 2 Let M be an oriented flat torus, and let ft : M → S3, t ∈ R, be a

smooth one-parameter family of isometric immersions. Then τ(ft) = τ(f0) for all

t ∈ R.
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2 Periodic admissible pairs and flat tori in S3

In this section we give an ontline of a method for constructing all the flat tori

isometrically immersed in S3. For details, see [1, 2, 3]

Definition A periodic admissible pair (p.a.p.) is a pair of periodic regular curves

γ1 : R → S2 and γ2 : R → S2 such that

(a) k1(s1) > k2(s2) for all s1, s2 ∈ R,

(b) |γ ′
i(s)|

√
1 + ki(s)2 = 2 (i = 1, 2),

where ki(s) denotes the geodesic curvature of γi(s).

We first explain that each p.a.p. Γ = (γ1, γ2) induces a flat torus MΓ isomet-

rically immersed in S3. Let H denote the set of all quaternions, and let R4 be the

4-dimensional Euclidean space identified with H as follows:

(x1, x2, x3, x4) ←→ x1 + x2i + x3j + x4k.

The unit spheres S2 and S3 are given by

S2 = {x ∈ Im H : |x| = 1}, S3 = {x ∈ H : |x| = 1}.

Note that the unit sphere S3 has a group structure induced by the multiplicative

structure of H. The unit tangent bundle of S2, denoted by US2, is identified with a

subset of S2 × S2 as follows:

US2 = {(x, v) ∈ S2 × S2 : 〈x, v〉 = 0},

where the canonical projection p1 : US2 → S2 is given by p1(x, v) = x. Furthermore,

we define a double covering map p2 : S3 → US2 by

p2(a) = (aia−1, aja−1).

Consider a curve γ̂i : R → US2 given by

γ̂i(s) = (γi(s), γ
′

i(s)/|γ
′

i(s)|),

and denote by I(γi) the element of the homology group H1(US2) represented by the

closed curve γ̂i : [0, li] → US2, where li denotes the period of γi. . Let ci : R → S3 be

a lift of the curve γ̂i : R → US2 with respect to the covering p2. Since H1(US2) ∼= Z2

and the double covering p2 satisfies the relation p2(−a) = p2(a), we see that

ci(s + li) =





ci(s) I(γi) = 0,

−ci(s) I(γi) = 1.
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Using the group structure of S3, we define a map FΓ : R2 → S3 by

FΓ (s1, s2) = c1(s1)c2(s2)
−1.

Then it follows that the map FΓ is a doubly periodic immersion and induces a flat

Riemannian metric g
Γ

on R2. We now consider the group

G(Γ ) = {ϕ ∈ Diff(R2) : FΓ ◦ ϕ = FΓ}.

Since each element of G(Γ ) is a parallel translation of R2, we obtain a flat torus

MΓ = (R2, g
Γ
)/G(Γ ), and an isometric immersion

fΓ : MΓ → S3

satisfying the relation fΓ ◦ πΓ = FΓ , where πΓ : R2 → MΓ denotes the canonical

projection. Furthermore, it follows that all the flat tori isometrically immersed in S3

are constructed by using this procedure. In fact, modifying the proof of [2, Theorem

3.1], we obtain

Proposition 1 Let f : M → S3 be an isometric immersion of a flat torus M into

the unit sphere S3. Then there exist a p.a.p. Γ and a covering map ρ : M → MΓ

such that A ◦ f = fΓ ◦ ρ for some isometry A : S3 → S3.

We now explain that the Riemannian structure of MΓ and the total mean cur-

vature of fΓ can be written in terms of geometric data of Γ = (γ1, γ2). Let

~vi =
1

2
(Ki, Li), Li =

∫ li

0
|γ′

i(s)|ds, Ki =
∫ li

0
ki(s)|γ

′

i(s)|ds,

and define W (Γ ) to be a lattice of R2 generated by the following vectors




~v1, ~v2 if I(Γ ) = (0, 0),

2~v1, ~v2 if I(Γ ) = (1, 0),

~v1, 2~v2 if I(Γ ) = (0, 1),

~v1 + ~v2, ~v1 − ~v2 if I(Γ ) = (1, 1),

where I(Γ ) = (I(γ1), I(γ2)). Then we obtain

Proposition 2 ([3], Theorem 4.1) For each p.a.p. Γ = (γ1, γ2), the flat torus

MΓ is isometric to R2/W (Γ ).

Proposition 3 ([3], Theorem 5.3) For each p.a.p. Γ = (γ1, γ2),

τ(fΓ ) =





〈~v1, ~v2〉 if I(Γ ) = (0, 0),

2〈~v1, ~v2〉 if I(Γ ) 6= (0, 0).
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3 Proof of Theorem 1

Let G be a lattice of R2 such that the flat torus M is isometric to R2/G, and

let f ∈ I(M, S3). Then it follows from Proposition 1 that there exist a p.a.p.

Γ = (γ1, γ2) and a Riemannian covering ρ : M → MΓ such that

A ◦ f = fΓ ◦ ρ,

where A denotes an isometry of S3. Furthermore, Proposition 2 implies that the flat

torus MΓ is isometric to R2/W (Γ ). So, there exists a linear isometry T : R2 → R2

satisfying

T (G) ⊂ W (Γ ).

Let {~ξ1, ~ξ2} be a generator of the lattice G, and let {~η1, ~η2} be a generator of the

lattice W (Γ ). Then there exist integers cij such that




T (~ξ1) = c11~η1 + c12~η2,

T (~ξ2) = c21~η1 + c22~η2.

This implies that

τ(f) = nτ(fΓ ), n = |c11c22 − c12c21|.
On the other hand, it follows from Proposition 3 that

τ(fΓ ) =
1

2
〈~a,~b〉, ~a,~b ∈ W (Γ ).

Since n~ηi ∈ T (G), there exist ~α, ~β ∈ G such that

n~a = T (~α), n~b = T (~β).

Hence

τ(f) =
1

2n
〈T (~α), T (~β)〉 =

1

2n
〈~α, ~β〉 ∈ X(G).

This completes the proof.
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