3次元球面内の平坦トーラスの全平均曲率

北川 義久 (宇都宮大学教育学部)

1 Introduction

There are many closed surfaces in the unit sphere S^3 which admit nontrivial isometric deformations. For example, every flat torus in S^3 with nonconstant mean curvature admits nontrivial isometric deformations ([3]). In this note we show that each flat torus in S^3 conserves its total mean curvature during any isometric deformation.

Let M be an oriented flat torus, and let $I(M, S^3)$ denote the set of all isometric immersions $f: M \to S^3$. For each $f \in I(M, S^3)$, the total mean curvature of f is given by

$$\tau(f) = \int_M H \, dA,$$

where H denotes the mean curvature of f. Furthermore, we set

$$\tau(M) = \{\tau(f) : f \in I(M, S^3)\}.$$

By using a method for constructing the flat tori in S^3 , we investigate the set $\tau(M)$ and obtain the following result.

Theorem 1 Let G be a lattice of \mathbb{R}^2 such that M is isometric to \mathbb{R}^2/G . Then $\tau(M) \subset X(G)$, where X(G) is a countable set defined by

$$X(G) = \left\{ \frac{1}{2n} \langle \vec{\alpha}, \vec{\beta} \rangle : n \in \mathbb{N}, \ \vec{\alpha}, \vec{\beta} \in G \right\}.$$

In particular, the set $\tau(M)$ is at most countable.

As an immediate consequence of Theorem 1, we obtain

Theorem 2 Let M be an oriented flat torus, and let $f_t : M \to S^3$, $t \in \mathbb{R}$, be a smooth one-parameter family of isometric immersions. Then $\tau(f_t) = \tau(f_0)$ for all $t \in \mathbb{R}$.

2 Periodic admissible pairs and flat tori in S^3

In this section we give an ontline of a method for constructing all the flat tori isometrically immersed in S^3 . For details, see [1, 2, 3]

Definition A periodic admissible pair (p.a.p.) is a pair of periodic regular curves $\gamma_1 : \mathbb{R} \to S^2 \text{ and } \gamma_2 : \mathbb{R} \to S^2 \text{ such that}$ (a) $k_1(s_1) > k_2(s_2) \text{ for all } s_1, s_2 \in \mathbb{R},$ (b) $|\gamma'_i(s)| \sqrt{1 + k_i(s)^2} = 2$ (i = 1, 2), where $k_i(s)$ denotes the geodesic curvature of $\gamma_i(s)$.

We first explain that each p.a.p. $\Gamma = (\gamma_1, \gamma_2)$ induces a flat torus M_{Γ} isometrically immersed in S^3 . Let \mathbb{H} denote the set of all quaternions, and let \mathbb{R}^4 be the 4-dimensional Euclidean space identified with \mathbb{H} as follows:

$$(x_1, x_2, x_3, x_4) \longleftrightarrow x_1 + x_2 \mathbf{i} + x_3 \mathbf{j} + x_4 \mathbf{k}.$$

The unit spheres S^2 and S^3 are given by

$$S^{2} = \{x \in \operatorname{Im} \mathbb{H} : |x| = 1\}, \quad S^{3} = \{x \in \mathbb{H} : |x| = 1\}.$$

Note that the unit sphere S^3 has a group structure induced by the multiplicative structure of \mathbb{H} . The unit tangent bundle of S^2 , denoted by US^2 , is identified with a subset of $S^2 \times S^2$ as follows:

$$US^{2} = \{(x, v) \in S^{2} \times S^{2} : \langle x, v \rangle = 0\},\$$

where the canonical projection $p_1: US^2 \to S^2$ is given by $p_1(x, v) = x$. Furthermore, we define a double covering map $p_2: S^3 \to US^2$ by

$$p_2(a) = (a\mathbf{i}a^{-1}, a\mathbf{j}a^{-1}).$$

Consider a curve $\hat{\gamma}_i : \mathbb{R} \to US^2$ given by

$$\hat{\gamma}_i(s) = (\gamma_i(s), \gamma'_i(s)/|\gamma'_i(s)|),$$

and denote by $I(\gamma_i)$ the element of the homology group $H_1(US^2)$ represented by the closed curve $\hat{\gamma}_i : [0, l_i] \to US^2$, where l_i denotes the period of γ_i . Let $c_i : \mathbb{R} \to S^3$ be a lift of the curve $\hat{\gamma}_i : \mathbb{R} \to US^2$ with respect to the covering p_2 . Since $H_1(US^2) \cong \mathbb{Z}_2$ and the double covering p_2 satisfies the relation $p_2(-a) = p_2(a)$, we see that

$$c_i(s+l_i) = \begin{cases} c_i(s) & I(\gamma_i) = 0, \\ -c_i(s) & I(\gamma_i) = 1. \end{cases}$$

Using the group structure of S^3 , we define a map $F_{\Gamma} : \mathbb{R}^2 \to S^3$ by

$$F_{\Gamma}(s_1, s_2) = c_1(s_1)c_2(s_2)^{-1}$$

Then it follows that the map F_{Γ} is a doubly periodic immersion and induces a flat Riemannian metric g_{Γ} on \mathbb{R}^2 . We now consider the group

$$G(\Gamma) = \{ \varphi \in \operatorname{Diff}(\mathbb{R}^2) : F_{\Gamma} \circ \varphi = F_{\Gamma} \}.$$

Since each element of $G(\Gamma)$ is a parallel translation of \mathbb{R}^2 , we obtain a flat torus $M_{\Gamma} = (\mathbb{R}^2, g_{\Gamma})/G(\Gamma)$, and an isometric immersion

$$f_{\Gamma}: M_{\Gamma} \to S^3$$

satisfying the relation $f_{\Gamma} \circ \pi_{\Gamma} = F_{\Gamma}$, where $\pi_{\Gamma} : \mathbb{R}^2 \to M_{\Gamma}$ denotes the canonical projection. Furthermore, it follows that all the flat tori isometrically immersed in S^3 are constructed by using this procedure. In fact, modifying the proof of [2, Theorem 3.1], we obtain

Proposition 1 Let $f: M \to S^3$ be an isometric immersion of a flat torus M into the unit sphere S^3 . Then there exist a p.a.p. Γ and a covering map $\rho: M \to M_{\Gamma}$ such that $A \circ f = f_{\Gamma} \circ \rho$ for some isometry $A: S^3 \to S^3$.

We now explain that the Riemannian structure of M_{Γ} and the total mean curvature of f_{Γ} can be written in terms of geometric data of $\Gamma = (\gamma_1, \gamma_2)$. Let

$$\vec{v}_i = \frac{1}{2}(K_i, L_i), \quad L_i = \int_0^{l_i} |\gamma'_i(s)| ds, \quad K_i = \int_0^{l_i} k_i(s) |\gamma'_i(s)| ds,$$

and define $W(\Gamma)$ to be a lattice of \mathbb{R}^2 generated by the following vectors

$$\begin{cases} \vec{v}_1, \ \vec{v}_2 & \text{if} \quad I(\Gamma) = (0, \ 0), \\ 2\vec{v}_1, \ \vec{v}_2 & \text{if} \quad I(\Gamma) = (1, \ 0), \\ \vec{v}_1, \ 2\vec{v}_2 & \text{if} \quad I(\Gamma) = (0, \ 1), \\ \vec{v}_1 + \vec{v}_2, \ \vec{v}_1 - \vec{v}_2 & \text{if} \quad I(\Gamma) = (1, \ 1), \end{cases}$$

where $I(\Gamma) = (I(\gamma_1), I(\gamma_2))$. Then we obtain

Proposition 2 ([3], Theorem 4.1) For each p.a.p. $\Gamma = (\gamma_1, \gamma_2)$, the flat torus M_{Γ} is isometric to $\mathbb{R}^2/W(\Gamma)$.

Proposition 3 ([3], Theorem 5.3) For each p.a.p. $\Gamma = (\gamma_1, \gamma_2)$,

$$\tau(f_{\Gamma}) = \begin{cases} \langle \vec{v}_1, \vec{v}_2 \rangle & if \quad I(\Gamma) = (0, 0), \\ 2 \langle \vec{v}_1, \vec{v}_2 \rangle & if \quad I(\Gamma) \neq (0, 0). \end{cases}$$

3 Proof of Theorem 1

Let G be a lattice of \mathbb{R}^2 such that the flat torus M is isometric to \mathbb{R}^2/G , and let $f \in I(M, S^3)$. Then it follows from Proposition 1 that there exist a p.a.p. $\Gamma = (\gamma_1, \gamma_2)$ and a Riemannian covering $\rho : M \to M_{\Gamma}$ such that

$$A \circ f = f_{\Gamma} \circ \rho,$$

where A denotes an isometry of S^3 . Furthermore, Proposition 2 implies that the flat torus M_{Γ} is isometric to $\mathbb{R}^2/W(\Gamma)$. So, there exists a linear isometry $T : \mathbb{R}^2 \to \mathbb{R}^2$ satisfying

$$T(G) \subset W(\Gamma).$$

Let $\{\vec{\xi_1}, \vec{\xi_2}\}$ be a generator of the lattice G, and let $\{\vec{\eta_1}, \vec{\eta_2}\}$ be a generator of the lattice $W(\Gamma)$. Then there exist integers c_{ij} such that

$$\begin{cases} T(\vec{\xi_1}) = c_{11}\vec{\eta_1} + c_{12}\vec{\eta_2}, \\ T(\vec{\xi_2}) = c_{21}\vec{\eta_1} + c_{22}\vec{\eta_2}. \end{cases}$$

This implies that

$$\tau(f) = n\tau(f_{\Gamma}), \quad n = |c_{11}c_{22} - c_{12}c_{21}|$$

On the other hand, it follows from Proposition 3 that

$$\tau(f_{\Gamma}) = \frac{1}{2} \langle \vec{a}, \vec{b} \rangle, \quad \vec{a}, \vec{b} \in W(\Gamma).$$

Since $n\vec{\eta}_i \in T(G)$, there exist $\vec{\alpha}, \ \vec{\beta} \in G$ such that

$$n\vec{a} = T(\vec{\alpha}), \quad n\vec{b} = T(\vec{\beta}).$$

Hence

$$\tau(f) = \frac{1}{2n} \langle T(\vec{\alpha}), \ T(\vec{\beta}) \rangle = \frac{1}{2n} \langle \vec{\alpha}, \ \vec{\beta} \rangle \in X(G).$$

This completes the proof.

References

- Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in S³, J. Math. Soc. Japan, 40 (1988), 457-476.
- [2] Y. Kitagawa, Embedded flat tori in the unit 3-sphere, J. Math. Soc. Japan, 47 (1995), 275-296.
- [3] Y. Kitagawa, Isometric deformations of flat tori in the 3-sphere with nonconstant mean curvature, Tohoku Math. J., 52 (2000), 283 - 298.