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1. PRELIMINARIES

L* is the Minkowski 4-space with the inner product (-,-) of signature (—, +, +, +).
The hyperbolic 3-space H? is the upper half component of the two-sheeted hyper-
boloid in L* with the metric induced by the inner product (-,-). Identifying L* with
the set of 2 x 2-hermitian matrices Herm(2) via

4 To + X3 1+ vV —1x9
L* 5 (wo, v1, 29, 23) < ( 1 — /Ty o — s € Herm(2),

H? is represented as
H? = {x = (w0, 21,29, 73) € L*; (v,2) = —1, 39 > 0}
={X € Herm(2); det X =1, traceX > 0}
={aa";a € SL(2,C)} = SL(2,C)/SU(2).
A flat front f from a Riemann surface with local coordinate z to H® can be con-

structed from two complex analytic one-forms w = wdz and 0 = 6dz on the Riemann
surface as follows:

f=EE" =EE*, where &= <é g) solves d€ =& (g g) .

Here we are identifying Hermitian matrices with determinant 1 with points (xg, 21, 9, 3)
in the Minkowski model for H? via

£E* — ($0+£L’3 Q31+i$2> .

T — ixg o — I3
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(c) hourglass

(b) snowman

(a) cylinder

We define g = [w and g. = [ and the Hopf differential Q = Qdz? = wf. Then the

Slw

hyperbolic Gauss maps are
G= % , G, =

Because det £ = 1, we have
—Ww 0 1
—dGdG,

Q = —(CD)*dGdG, = et

SO

>

Another computation gives
G" 2G’ o' GY 2G!
o G G.—-G

G G-G,
Definin

s G / 1/G" 2
s =¢- (%) -3 (%)

as the Schwarzian derivative, and defining s(&) = (&'/@)" — (1/2)(&'/©)?, we have
S(g) — S(G) =2Q iff s(@) —{G,z} =2Q,
S(9.) = S(G) =2Q iff 5(0) —{G, 2} =2Q .

%>|

We know that S(g) — S(G) = 2Q and S(g.) — S(G.) = 2@Q hold, by using
200

G" & 2Dy G' @
G @ c ' G § D
Changing & to
e/ 0
& ( 0 e‘”ﬂ)

does not change the surface if v € R, but does change 6 and w to 70 and e"“w. So

6 and w have a U(1)-ambiguity.
General isometric motions of f are described by the transformation
£ <Cll1 a12> £,
Qo1 A22
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FIGURE 1.2. Pg_ach front in H3
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where (a;;) is a general matrix in SLy(C). Under this transformation, G changes as

follows:
a11G + aqp

anG +as
A point (zg, z1, T2, 23) € H? in the Minkowski model becomes

G —

(l'la X2, x3)
1 —|—ZL‘0

in the Poincare model.

Remark 1.1. It was shown in [KUY1] that one has the Small-type formula

e= (e i)

where A = CG and C =1 %.

2. RESULTS
The first result gives criteria for cuspidal edge and swallowtail singularities.
Theorem 2.1. Let f: M? — H? be a flat front with canonical forms (w = & dz,0 =
0dz), where z is a local complez coordinate.

(1) A point p € M? is a singular point if and only if |&(p)| = |0(p)| holds.
(2) The image of f around a singular point p is locally diffeomorphic to a cuspidal
edge if and only if

WO—0o+40 and Im <(él/é) — (d’,/@)) £ 0

o
hold at p, where' = d/dz.

(3) The image of f around a singular point p is locally diffeomorphic to a swal-
lowtail if and only if

Si 0520, Im ((9’/9> - w//w)) 0

~

wl



FIGURE 2.1. 3-noids.

FiGUure 2.2. Caustics of 3-noids and 4-noids, and of the front with
G=z G, =2

X

The caustic of a 3-noid The caustic of a 4-noid

(G,Gy) = (2,2%)

(G, G) = (2, 2) (half cut) (GG = (2, 22) (caustic)



FIGURE 2.3. A genus 1 complete front with 5 embedded ends (left),
with its caustic (center). Also, a genus 2 flat front with 10 em-
bedded ends (right), where the Riemann surface is M = {(z,w) €
(C U {oo})?; w? = 2(2* — 1)(2% — 9/4)} with 10 points removed, and
G=w, G,

FIGURE 2.4. A p-front that is not globally a caustic, and the caus-
tic with dihedral cross Z? symmetry for G = 2% and G, = z° and
Riemann surface C \ {z; 2% = 1}.

hold at p, where s(w) is the Schwarzian derivative {h,z} of the function
h(z) := f; w with respect to z, that is,

o womua- ()4 - ()16

The next result is about the rarity of singularities other than cuspidal edges and
swallowtails.

Definition 2.2. A front f: M? — H? is called complete if there exist a compact set
C C M? and a symmetric 2-tensor T on M? such that T is identically O outside C' and
ds?> + T is a complete Riemannian metric of M?, where ds? is the first fundamental

form of f.

Theorem 2.3. Let f: M? — H? be a complete flat front which is not a covering of
an hourglass (hourglasses are rotationally symmetric), and let {f;} be the family of
parallel fronts of f. Then, except for only finitely many values of t, all the singular
points of f; are locally diffeomorphic to cuspidal edges or swallowtails.
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F1GURE 2.5. Various cycloid curves
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The next result relates completeness, weak completeness, the finite type property
and the finite topology property.

Definition 2.4. We say that f is weakly complete if dsi, = |w|* + |0]* is complete
and Riemannian on M?.

Definition 2.5. We say that a flat front f is of finite type if alsi1 has finite total
curvature.

Theorem 2.6. A complete flat front is weakly complete and of finite type. Conversely,
if f1 M?* — H3 is a weakly complete flat front of finite type, then there exists a finite
set of real numbers ty,...,t, such that f;: M? — H3 is a complete flat front for all
te R\ {ty,...,t,}.

The following theorem is an important property of flat surfaces in H?, because
there do in fact exist flat Mobius bands in R® and S®. For S® this is a deep fact,
since such a front in S% can be of class C*, but is never C¥, see a work of Gélvez
and Mira.

Theorem 2.7. Any flat p-front is orientable.

The following result relates finite topology and weak completeness to properties of
the corresponding caustic.

Theorem 2.8. For a flat front f: M* — H?3, the following assertions are equivalent:

(1) M? is biholomorphic to M \ {p1,...,pn} for some compact Riemann surface

M containing the points p;, and f is a weakly complete flat front, all of whose
ends are reqular.

(2) The caustic Cy is a weakly complete p-front of finite type, all of whose ends
are reqular.

Finally, we note that caustics can have ends with cross sections that asymptotically
are cycloids, as will be shown in [KRUY2].



