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1. Preliminaries

L4 is the Minkowski 4-space with the inner product 〈·, ·〉 of signature (−, +, +, +).
The hyperbolic 3-space H3 is the upper half component of the two-sheeted hyper-
boloid in L4 with the metric induced by the inner product 〈·, ·〉. Identifying L4 with
the set of 2× 2-hermitian matrices Herm(2) via

L4 3 (x0, x1, x2, x3) ↔
(

x0 + x3 x1 +
√−1x2

x1 −
√−1x2 x0 − x3

)
∈ Herm(2),

H3 is represented as

H3 = {x = (x0, x1, x2, x3) ∈ L4 ; 〈x, x〉 = −1, x0 > 0}
= {X ∈ Herm(2) ; det X = 1, traceX > 0}
= {aa∗ ; a ∈ SL(2, C)} = SL(2, C)/SU(2).

A flat front f from a Riemann surface with local coordinate z to H3 can be con-
structed from two complex analytic one-forms ω = ω̂dz and θ = θ̂dz on the Riemann
surface as follows:

f = EĒ t = EE∗ , where E =

(
A B
C D

)
solves dE = E

(
0 θ
ω 0

)
.

Here we are identifying Hermitian matrices with determinant 1 with points (x0, x1, x2, x3)
in the Minkowski model for H3 via

EE∗ =

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
.
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Figure 1.1. Flat fronts of revolution in H3

(a) cylinder (b) snowman (c) hourglass

We define g =
∫

ω and g∗ =
∫

θ and the Hopf differential Q = Q̂dz2 = ωθ. Then the
hyperbolic Gauss maps are

G = A
C

, G∗ = B
D

.

Because det E = 1, we have

dG =
−ω

C2
, dG∗ =

θ

D2
, G−G∗ = (CD)−1 ,

so

Q = −(CD)2dGdG∗ =
−dGdG∗
(G−G∗)2

.

Another computation gives

G′′

G′ −
2G′

G−G∗
=

ω̂′

ω̂
,

G′′
∗

G′∗
− 2G′

∗
G∗ −G

=
θ̂′

θ̂
.

Defining

S(G) = {G, z} =

(
G′′

G′

)′
− 1

2

(
G′′

G′

)2

as the Schwarzian derivative, and defining s(ω̂) = (ω̂′/ω̂)′ − (1/2)(ω̂′/ω̂)2, we have

S(g)− S(G) = 2Q iff s(ω̂)− {G, z} = 2Q̂ ,

S(g∗)− S(G∗) = 2Q iff s(θ̂)− {G∗, z} = 2Q̂ .

We know that S(g)− S(G) = 2Q and S(g∗)− S(G∗) = 2Q hold, by using

G′′

G′ =
ω̂′

ω̂
− 2Dω̂

C
,

G′′
∗

G′∗
=

θ̂′

θ̂
− 2Cθ̂

D
.

Changing E to

E ·
(

eiγ/2 0
0 e−iγ/2

)

does not change the surface if γ ∈ R, but does change θ and ω to eiγθ and e−iγω. So
θ and ω have a U(1)-ambiguity.

General isometric motions of f are described by the transformation

E →
(

a11 a12

a21 a22

)
· E ,
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Figure 1.2. Peach front in H3

where (aij) is a general matrix in SL2(C). Under this transformation, G changes as
follows:

G → a11G + a12

a21G + a22

.

A point (x0, x1, x2, x3) ∈ H3 in the Minkowski model becomes

(x1, x2, x3)

1 + x0

in the Poincare model.

Remark 1.1. It was shown in [KUY1] that one has the Small-type formula

E =

(
A dA/ω
C dC/ω

)
,

where A = CG and C = i
√

ω
dG

.

2. Results

The first result gives criteria for cuspidal edge and swallowtail singularities.

Theorem 2.1. Let f : M2 → H3 be a flat front with canonical forms (ω = ω̂ dz, θ =

θ̂ dz), where z is a local complex coordinate.

(1) A point p ∈ M2 is a singular point if and only if |ω̂(p)| = |θ̂(p)| holds.
(2) The image of f around a singular point p is locally diffeomorphic to a cuspidal

edge if and only if

ω̂′θ̂ − θ̂′ω̂ 6= 0 and Im

(
(θ̂′/θ̂)− (ω̂′/ω̂)√

ω̂θ̂

)
6= 0

hold at p, where ′ = d/dz.
(3) The image of f around a singular point p is locally diffeomorphic to a swal-

lowtail if and only if

ω̂′θ̂ − θ̂ω̂′ 6= 0, Im

(
(θ̂′/θ̂)− (ω̂′/ω̂)√

ω̂θ̂

)
= 0

and Re

(
s(θ̂)− s(ω̂)

ω̂θ̂

)
6= 0
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Figure 2.1. 3-noids.

Figure 2.2. Caustics of 3-noids and 4-noids, and of the front with
G = z, G∗ = z2.

The caustic of a 3-noid The caustic of a 4-noid

(G, G∗) = (z, z2) (G,G∗) = (z, z2) (half cut) (G,G∗) = (z, z2) (caustic)



v

Figure 2.3. A genus 1 complete front with 5 embedded ends (left),
with its caustic (center). Also, a genus 2 flat front with 10 em-

bedded ends (right), where the Riemann surface is M
2

= {(z, w) ∈
(C ∪ {∞})2 ; w2 = z(z2 − 1)(z2 − 9/4)} with 10 points removed, and
G = w, G∗ = (5w − 2z(dw/dz))/5.

Figure 2.4. A p-front that is not globally a caustic, and the caus-
tic with dihedral cross Z2 symmetry for G = z3 and G∗ = z−5 and
Riemann surface C \ {z ; z8 = 1}.

hold at p, where s(ω̂) is the Schwarzian derivative {h, z} of the function
h(z) :=

∫ z

z0
ω with respect to z, that is,

(2.1) s(ω̂) = {h, z} =

(
h′′

h′

)′
− 1

2

(
h′′

h′

)2

=

(
ω̂′

ω̂

)′
− 1

2

(
ω̂′

ω̂

)2

.

The next result is about the rarity of singularities other than cuspidal edges and
swallowtails.

Definition 2.2. A front f : M2 → H3 is called complete if there exist a compact set
C ⊂ M2 and a symmetric 2-tensor T on M2 such that T is identically 0 outside C and
ds2 + T is a complete Riemannian metric of M2, where ds2 is the first fundamental
form of f .

Theorem 2.3. Let f : M2 → H3 be a complete flat front which is not a covering of
an hourglass (hourglasses are rotationally symmetric), and let {ft} be the family of
parallel fronts of f . Then, except for only finitely many values of t, all the singular
points of ft are locally diffeomorphic to cuspidal edges or swallowtails.
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Figure 2.5. Various cycloid curves

The next result relates completeness, weak completeness, the finite type property
and the finite topology property.

Definition 2.4. We say that f is weakly complete if ds2
1,1 = |ω|2 + |θ|2 is complete

and Riemannian on M2.

Definition 2.5. We say that a flat front f is of finite type if ds2
1,1 has finite total

curvature.

Theorem 2.6. A complete flat front is weakly complete and of finite type. Conversely,
if f : M2 → H3 is a weakly complete flat front of finite type, then there exists a finite
set of real numbers t1, . . . , tn such that ft : M2 → H3 is a complete flat front for all
t ∈ R \ {t1, . . . , tn}.

The following theorem is an important property of flat surfaces in H3, because
there do in fact exist flat Möbius bands in R3 and S3. For S3 this is a deep fact,
since such a front in S3 can be of class C∞, but is never Cω, see a work of Gálvez
and Mira.

Theorem 2.7. Any flat p-front is orientable.

The following result relates finite topology and weak completeness to properties of
the corresponding caustic.

Theorem 2.8. For a flat front f : M2 → H3, the following assertions are equivalent:

(1) M2 is biholomorphic to M
2 \ {p1, . . . , pn} for some compact Riemann surface

M
2
containing the points pj, and f is a weakly complete flat front, all of whose

ends are regular.
(2) The caustic Cf is a weakly complete p-front of finite type, all of whose ends

are regular.

Finally, we note that caustics can have ends with cross sections that asymptotically
are cycloids, as will be shown in [KRUY2].


