Horocyclic surfaces in hyperbolic 3-space

Kazumi Tsukada Department of Mathematics, Ochanomizu University

This talk is based on the joint work [3] with C.Takizawa.

§1 Introduction

Horocyclic surfaces in hyperbolic 3-space are defined analogously to ruled surfaces in the Euclidean space \mathbb{R}^3 :

		foliated by
ruled surfaces in \mathbb{R}^3	•••	lines
horocyclic surfaces in H^3		horocycles

The notion of horocyclic surfaces was introduced by S.Izumiya, K.Saji and M.Takahashi ([1]) as one of important objects in their **horospherical geometry**.

In this talk I explain

- to construct horocyclic surfaces associated with spacelike curves in the lightcone
- to describe geometric properties of horocyclic surfaces in terms of invariants (curvatures and torsions) of corresponding spacelike curves in the lightcone
- in particular to classify singularities of horocyclic surfaces constructed above

§2 Curves and surfaces in hyperbolic 3-space

 \langle The standard Lorentzian model of hyperbolic 3-space \rangle Let \mathbb{R}^4_1 be a 4-dimensional vector space \mathbb{R}^4 with the inner product \langle,\rangle defined by

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = -x_0 y_0 + \sum_{i=1}^3 x_i y_i \text{ for } \boldsymbol{x} = (x_0, x_1, x_2, x_3), \boldsymbol{y} = (y_0, y_1, y_2, y_3) \in \mathbb{R}^4.$$

We say that a non-zero vector $\boldsymbol{v} \in \mathbb{R}_1^4$ is *spacelike*, *lightlike*, or *timelike* if $\langle \boldsymbol{v}, \boldsymbol{v} \rangle > 0$, $\langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0$ or $\langle \boldsymbol{v}, \boldsymbol{v} \rangle < 0$, respectively.

We define

$$\begin{aligned} H_{+}^{3} &= \{ \boldsymbol{x} \in \mathbb{R}_{1}^{4} \mid \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1, \text{ and } \boldsymbol{x}_{0} \geq 0 \} : \text{ the hyperbolic 3-space} \\ LC_{+} &= \{ \boldsymbol{x} \in \mathbb{R}_{1}^{4} \mid \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0 \text{ and } \boldsymbol{x}_{0} > 0 \} : \text{ the future light cone} \\ S_{1}^{3} &= \{ \boldsymbol{x} \in \mathbb{R}_{1}^{4} \mid \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 1 \} : \text{ the de Sitter space} \end{aligned}$$

Then H^3_+ is a complete Riemannian manifold of constant sectional curvature -1.

 $\langle \text{Curves in } H^3_+ \rangle \text{Let } \gamma : I \to H^3_+ \text{ be a unit speed curve defined on an open interval } I \text{ of } \mathbb{R}.$ We use $\mathbf{t}(s)$ for the tangent vector $\gamma'(s)$ with $\|\mathbf{t}(s)\| = 1$. The vector $\mathbf{t}'(s) - \gamma(s)$ is orthogonal to $\gamma(s)$ and $\mathbf{t}(s)$. We assume that $\mathbf{t}'(s) - \gamma(s)$ is not zero. Then we have a unit vector $\mathbf{n}(s) = (\mathbf{t}'(s) - \gamma(s))/\|\mathbf{t}'(s) - \gamma(s)\|$. Moreover we define $\mathbf{e}(t)$ such that $\{\gamma(s), \mathbf{t}(s), \mathbf{n}(s), \mathbf{e}(s)\}$ is a positive orthonormal basis. Then the following formula (Frene-Seret formula) holds:

$$\begin{pmatrix} \gamma'(s) \\ t'(s) \\ n'(s) \\ e'(s) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & \kappa_h(s) & 0 \\ 0 & -\kappa_h(s) & 0 & \tau_h(s) \\ 0 & 0 & -\tau_h(s) & 0 \end{pmatrix} \begin{pmatrix} \gamma(s) \\ t(s) \\ n(s) \\ e(s) \end{pmatrix}.$$

A curve γ in H^3_+ is called *a horocycle* if $\kappa_h(s) \equiv 1$ and $\tau_h(s) \equiv 0$.

Proposition 2.1 (1) Let $\gamma : I \to H^3_+$ be a horocycle. Then $\gamma(s) + \mathbf{n}(s)$ is a constant lightlike vector which is denoted by l_0 and called to be *the polar vector* of a horocycle γ . Moreover we have

$$\gamma(s) = \gamma(s_0) + (s - s_0)t(s_0) + \frac{1}{2}(s - s_0)^2 l_0$$
 for some fixed $s_0 \in I$.

(2) For vectors $l_0 \in LC_+$ and $\omega_0 \in S_1^3$ with $\langle l_0, \omega_0 \rangle = 0$, $\{ \boldsymbol{x} \in H_+^3 \mid \langle \boldsymbol{x}, l_0 \rangle + 1 = 0, \langle \boldsymbol{x}, \omega_0 \rangle = 0 \}$ is a horocycle of H_+^3 whose polar vector is given by l_0 .

 \langle Surfaces in H^3_+ \rangle Let M be a 2-dimensional connected oriented manifold and $f:M\to H^3_+$ an immersion.

We define two kinds of "Gauss maps":

Gauss map
Lightcone Gauss map

$$\mathbb{E}: M \to S_1^3$$
 a unit normal vector field in H^3_+
 $\mathbb{L}^{\pm} = f \pm \mathbb{E}: M \to LC_+$

and define associated shape operators at each point $p \in M$:

Shape operator
$$A_p: T_pM \to T_pM$$
 defined by $d\mathbb{E} = -df(A_p)$ Hyperbolic shape operator $S_p^{\pm} = -1_{T_pM} \pm A_p$ where $d\mathbb{L}^{\pm} = df_p \pm d\mathbb{E}_p = -df_p(S_p^{\pm})$

We denote the eigenvalues of A_p by $\kappa_i(p)$ and those of S_p^{\pm} by $\bar{\kappa}_i^{\pm}(p)$ (i = 1, 2), respectively. Evidently, A_p and S_p^{\pm} have same eigenvectors and the relation $\bar{\kappa}_i^{\pm}(p) = -1 \pm \kappa_i(p)$. We call $\kappa_i(p)$ principal curvatures and $\bar{\kappa}_i^{\pm}(p)$ hyperbolic principal curvatures of (M, f) at $p \in M$, respectively. The Gauss curvature of M at p is given by $K(p) = -1 + \det A_p = -1 + \kappa_1(p)\kappa_2(p)$ and similarly the hyperbolic Gauss curvature K_h^{\pm} is defined by $K_h^{\pm}(p) = \det S_p^{\pm} = \bar{\kappa}_1^{\pm}(p)\bar{\kappa}_2^{\pm}(p)$.

Now we recall the geometry of horospheres. For a non-zero vector $\boldsymbol{v} \in \mathbb{R}_1^4$ and a real number $c \in \mathbb{R}$, we define the hyperplane by $HP(\boldsymbol{v},c) = \{\boldsymbol{x} \in \mathbb{R}_1^4 \mid \langle \boldsymbol{x}, \boldsymbol{v} \rangle = c\}$. Then the intersections $M = H_+^3 \cap HP(\boldsymbol{v},c)$ (if not empty) are totally umbilical surfaces of H_+^3 with $\kappa^2 = \frac{c^2}{\langle \boldsymbol{v}, \boldsymbol{v} \rangle + c^2}$, where κ denotes the principal curvature . In particular for $\boldsymbol{v} \in LC_+$ and c < 0, $M = H_+^3 \cap HP(\boldsymbol{v},c)$ has the constant principal curvature 1 or -1 and hence its Gauss curvature vanishes. It is called a horosphere. Let $M = H_+^3 \cap HP(\boldsymbol{v},-1)$ with $\boldsymbol{v} \in LC_+$ be a horosphere. We consider an inclusion map $\iota : M \to H_+^3$. For $\boldsymbol{x} \in M$, $\mathbb{E}(\boldsymbol{x}) = \boldsymbol{v} - \boldsymbol{x}$ is the unit normal vector of M at $\boldsymbol{x} \in M$. Therefore we have the lightcone Gauss map $\mathbb{L}^+(\boldsymbol{x}) = \boldsymbol{x} + \mathbb{E}(\boldsymbol{x}) = \boldsymbol{v}$ at $\boldsymbol{x} \in M$. It is a constant map and hence the hyperbolic Gauss curvature K_h^+ vanishes.

Definition 2.2 ([1]) An immersed surface (M, f) in H^3_+ is a horospherical flat surface (briefly a horo-flat surface) if $K^+_h(p) = 0$ or $K^-_h(p) = 0$ at any point $p \in M$.

Horospheres are examples of horo-flat surfaces and they are also totally umbilical. Now we assume that an immersed surface (M, f) is a horo-flat surface without umbilical points. Then the shape operator A of (M, f) has two different eigenvalues 1 and $\kappa \neq 1$). We denote by \mathcal{F}_1 the line foliation corresponding to the principal curvature 1. Then the lines of \mathcal{F}_1 are horocycles in H^3_+ whose polar vectors coincide with the lightcone Gauss map \mathbb{L} (Theorem 4.4 in [1]).

Definition 2.3 ([1]) A surface (M, f) in H^3_+ is called *a horocyclic surface* if it is foliated by horocycles in H^3_+ .

$\S3$ Spacelike curves in the lightcone

We introduce the Frenet-Serret formula for spacelike curves in the lightcone LC_+ . Let $l: I \to LC_+$ be a unit speed spacelike curve defined on an open interval I of \mathbb{R} . We set $\mathbf{t}(t) = l'(t)$ and define a function κ on I by $\kappa(t) = \langle l''(t), l''(t) \rangle$. We put $\mathbf{n}(t) = -\frac{\kappa(t)}{2}l(t) - l''(t)$. Then we have $\langle \mathbf{n}(t), \mathbf{n}(t) \rangle = 0$ and $\langle \mathbf{n}(t), l(t) \rangle = 1$. We denote by $\mathbf{e}(t)$ the unit spacelike vector which is orthogonal to $l(t), \mathbf{t}(t)$ and $\mathbf{n}(t)$ such that the basis $\{l(t), \mathbf{t}(t), \mathbf{e}(t), \mathbf{n}(t)\}$ has a positive orientation. Then we have an pseudo orthonormal frame field $\{l(t), \mathbf{t}(t), \mathbf{e}(t), \mathbf{n}(t)\}$ along l. We define a function τ on I by $\tau(t) = \langle \mathbf{n}'(t), \mathbf{e}(t) \rangle$. Then we have the following formula of Frenet-Serret type :

(3.1)
$$\begin{pmatrix} l'(t) \\ t'(t) \\ e'(t) \\ n'(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -\frac{\kappa(t)}{2} & 0 & 0 & -1 \\ -\tau(t) & 0 & 0 & 0 \\ 0 & \frac{\kappa(t)}{2} & \tau(t) & 0 \end{pmatrix} \begin{pmatrix} l(t) \\ t(t) \\ e(t) \\ n(t) \end{pmatrix}$$

§4 Construction of horocyclic surfaces

We construct horocyclic surfaces in H^3_+ by a slightly different method to [1] and study their properties. Let $l: I \to LC_+$ and $\omega: I \to S^3_1$ be smooth maps from an open interval I of \mathbb{R} with $\langle l(t), \omega(t) \rangle = 0$ for any $t \in I$. Now we set subsets \tilde{M} of $H^3_+ \times I$ and M of H^3_+ as follows:

$$\begin{split} \tilde{M} &= \{(\boldsymbol{x},t) \in H^3_+ \times I \mid \langle \boldsymbol{x}, l(t) \rangle + 1 = 0, \ \langle \boldsymbol{x}, \omega(t) \rangle = 0\}, \\ M &= \{\boldsymbol{x} \in H^3_+ \mid \text{ there exists } t \in I \text{ with } (\boldsymbol{x},t) \in \tilde{M}\}. \end{split}$$

Then the set \tilde{M} is a 2-dimensional submanifold of $H^3_+ \times I$. We restrict the projections of $H^3_+ \times I$ onto H^3_+ and of $H^3_+ \times I$ onto I to \tilde{M} , which are denoted by π_1 and π_2 , respectively. Then $M = \pi_1(\tilde{M})$ and M is a horocyclic surface in H^3_+ possibly with singularities. In fact, for each $t \in I$ we put

$$C_t = \pi_1 \circ \pi_2^{-1}(t) = \{ \boldsymbol{x} \in H^3_+ \mid \langle \boldsymbol{x}, l(t) \rangle + 1 = 0, \langle \boldsymbol{x}, \omega(t) \rangle = 0 \}.$$

By Proposition 2.1 (2), it follows that C_t is a horocycle in H^3_+ whose polar vector is l(t).

Now we will construct a parametrization $f : \mathbb{R} \times I \to H^3_+$ with $f(\mathbb{R} \times I) = M$. We choose a smooth curve $\tilde{\gamma}(t) = (\gamma(t), t)$ in \tilde{M} . Then γ is a smooth curve in H^3_+ which is contained in M. For each $t \in I$, we put $a_2(t) = l(t) - \gamma(t)$ and $a_3(t) = \omega(t)$. Then $\gamma(t), a_2(t)$, and $a_3(t)$ are orthonormal. We define a unit spacelike vector $a_1(t)$ such that $a_1(t)$ is orthogonal to $\gamma(t), a_2(t), a_3(t)$ and the basis $\{\gamma(t), a_1(t), a_2(t), a_3(t)\}$ has a positive orientation. Then we have $a_1(t) \in T_{\gamma(t)}C_t$ and the horocycle C_t is parametrized as in Proposition 2.1 (1). We now define a map f of $\mathbb{R} \times I$ to H^3_+ by

$$f(s,t) = \gamma(t) + sa_1(t) + \frac{1}{2}s^2l(t).$$

Then $f(\mathbb{R} \times I) = M$.

In order to study the detailed geometric properties of f, we consider a special class of horocyclic surfaces which satisfy the following condition:

(**HC**) we assume that $l: I \to LC_+$ has a unit speed and that $l'(t) = \omega(t)$. Under the assumption above, the structure equation for the orthonormal frame fields $\{\gamma(t), a_1(t), a_2(t), a_3(t)\}$ is of the following form:

$$\begin{pmatrix} \gamma'(t) \\ a'_1(t) \\ a'_2(t) \\ a'_3(t) \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & c_3(t) \\ 0 & 0 & 0 & c_5(t) \\ 0 & 0 & 0 & c_6(t) \\ c_3(t) & -c_5(t) & -c_6(t) & 0 \end{pmatrix} \begin{pmatrix} \gamma(t) \\ a_1(t) \\ a_2(t) \\ a_3(t) \end{pmatrix}, \quad c_3(t) + c_6(t) = 1$$

The induced metric g on $\mathbb{R} \times I$ by f is given by

$$g = ds^{2} + \frac{1}{4}(s^{2} + 2c_{5}(t)s + 2c_{3}(t))^{2}dt^{2}.$$

This implies the following:

Lemma 4.1 Under the assumption (HC), a point $(s_0, t_0) \in \mathbb{R} \times I$ is a singular point of f if and only if

$$s_0^2 + 2c_5(t_0)s_0 + 2c_3(t_0) = 0.$$

At a non-singular point $(s, t) \in \mathbb{R} \times I$, the shape operator A is given by

$$A\left(\frac{\partial}{\partial s}\right) = \frac{\partial}{\partial s}, \quad A\left(\frac{\partial}{\partial t}\right) = \left(1 - \frac{2}{s^2 + 2c_5(t)s + 2c_3(t)}\right)\frac{\partial}{\partial t}.$$

Consequently we obtain the following.

Proposition 4.2 A horocyclic surface *M* constructed above is horo-flat.

Now we describe the geometric properties of a horocyclic surface M in terms of invariants κ, τ defined in (3.1) of the corresponding spacelike curve $l: I \to LC_+$. First we show the criteria for the existence of singularities on the horocycle C_t for $t \in I$.

Proposition 4.3 (1) If $\kappa(t) > 1$, there exist two singular points of f on the horocycle C_t . (2) If $\kappa(t) = 1$, there exists only one singular point of f on the horocycle C_t . (3) If $\kappa(t) < 1$, there exists no singularity of f on the horocycle C_t .

Applying the criteria above, we can construct complete non-singular horo-flat horocyclic surfaces.Let $l : \mathbb{R} \to LC_+$ be a unit speed spacelike curve defined on the whole \mathbb{R} . Suppose that there exists a positive number $\varepsilon > 0$ such that $\kappa(t) \leq 1 - \varepsilon$ for any $t \in \mathbb{R}$. Then by Proposition 4.3 (3), f is an immersion of $\mathbb{R} \times \mathbb{R}$ into H^3_+ . Moreover we see that the induced Riemannian metric g on $\mathbb{R} \times \mathbb{R}$ by f is geodesically complete.

$\S5$ Classification of singularities

Now we study the cases of Proposition 4.3 (1) and (2) in the previous section. For a fixed $t_0 \in I$ with $\kappa(t_0) \geq 1$, we may assume that a point $(0, t_0) \in \mathbb{R} \times I$ is a singular point of f. By Lemma 4.1, it follows that $c_3(t_0) = 0$ and the other singular point on C_{t_0} is given by $(-2c_5(t_0), t_0)$. Moreover we assume that $c_5(t_0) \geq 0$. Then we have the following theorem:

Theorem 5.1 (A) Suppose that $\kappa(t_0) > 1$. Then we have the following: (1) The point $(0, t_0)$ is the cuspidal edge if $\frac{1}{2}\kappa'(t_0) - \sqrt{\kappa(t_0) - 1}\tau(t_0) \neq 0$. (2) The point $(0, t_0)$ is the swallowtail if $\frac{1}{2}\kappa'(t_0) - \sqrt{\kappa(t_0) - 1}\tau(t_0) = 0$ and $\frac{1}{2}\kappa''(t_0) - \sqrt{\kappa(t_0) - 1}\tau'(t_0) - \tau(t_0)^2 \neq 0$. (3) The point $(-2c_5(t_0), t_0)$ is the cuspidal edge if $\frac{1}{2}\kappa'(t_0) + \sqrt{\kappa(t_0) - 1}\tau(t_0) \neq 0$. (4) The point $(-2c_5(t_0), t_0)$ is the swallowtail if $\frac{1}{2}\kappa'(t_0) + \sqrt{\kappa(t_0) - 1}\tau(t_0) = 0$ and $\frac{1}{2}\kappa''(t_0) + \sqrt{\kappa(t_0) - 1}\tau'(t_0) - \tau(t_0)^2 \neq 0$. (B) Suppose that $\kappa(t_0) = 1$. Then we have $c_5(t_0) = 0$ and the point $(0, t_0)$ is only one singular point on C_{t_0} . Moreover we have the following:

- (1) The point $(0, t_0)$ is the cuspidal edge if $\kappa'(t_0) \neq 0$.
- (2) The point $(0, t_0)$ is the cuspidal beaks if $\kappa'(t_0) = 0$, $\kappa''(t_0) > 0$, and $\kappa''(t_0) \neq 2\tau(t_0)^2$. (3) The point $(0, t_0)$ is the cuspidal lips if if $\kappa'(t_0) = 0$, $\kappa''(t_0) < 0$.
- (5) The point $(0, i_0)$ is the cuspidal rips if if $\kappa(i_0) = 0$, $\kappa(i_0) < 0$. Here the cuspidal edge is a germ of surface diffeomorphic to $\{(x_1, x_2, x_3) | x_1 = u^2, x_2 = u^2\}$

u³, $x_3 = v$ }, the swallowtail is a germ of surface diffeomorphic to $\{(x_1, x_2, x_3)|x_1 = u, x_2 = u^3, x_3 = v\}$, the swallowtail is a germ of surface diffeomorphic to $\{(x_1, x_2, x_3)|x_1 = 3u^4 + u^2v, x_2 = 4u^3 + 2uv, x_3 = v\}$, the cuspidal beaks is a germ of surface diffeomorphic to $\{(x_1, x_2, x_3)|x_1 = 3u^4 - 2u^2v^2, x_2 = u^3 - uv^2, x_3 = v\}$ and the cuspidal lips is a germ of surface diffeomorphic to $\{(x_1, x_2, x_3)|x_1 = 3u^4 - 2u^2v^2, x_2 = u^3 - uv^2, x_3 = v\}$ and the cuspidal lips is a germ of surface diffeomorphic to $\{(x_1, x_2, x_3)|x_1 = 3u^4 - 2u^2v^2, x_2 = u^3 - uv^2, x_3 = v\}$.

Remark This theorem is an another formulation of the classification theorem (Theorem 6.2 in [1]) proved by S.Izumiya, K.Saji and M.Takahashi. Compared with their theorem, our classification is to use invariants (the curvatures κ and the torsions τ) of spacelike curves in the lightcone.

Recently useful criteria in order to recognize the singularities of surfaces have been developed (cf. [2], [1]). We apply their recognition lemmas and prove the Theorem above.

References

- [1] S.Izumiya, K.Saji and M.Takahashi: Horospherical flat surfaces in hyperbolic 3space, preprint.
- [2] M.Kokubu, W.Rossman, K.Saji, M.Umehara and K.Yamada: Singularities of flat fronts in hyperbolic space, Pacific J.Math., 221(2005), 303-351
- [3] C.Takizawa and K.Tsukada : Horocyclic surfaces in hyperbolic 3-space , preprint