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This talk is based on the joint work [3] with C.Takizawa.

§1 Introduction

Horocyclic surfaces in hyperbolic 3-space are defined analogously to ruled surfaces in
the Euclidean space R3:

foliated by
ruled surfaces

. lines
in R?
horocyclic surfaces horoceveles
. T
in H3 Y

The notion of horocyclic surfaces was introduced by S.Izumiya, K.Saji and M.Takahashi
([1]) as one of important objects in their horospherical geometry.

In this talk I explain
e to construct horocyclic surfaces associated with spacelike curves in the lightcone

e to describe geometric properties of horocyclic surfaces in terms of invariants (curva-
tures and torsions) of corresponding spacelike curves in the lightcone

e in particular to classify singularities of horocyclic surfaces constructed above

§2 Curves and surfaces in hyperbolic 3-space

( The standard Lorentzian model of hyperbolic 3-space ) Let R} be a 4-
dimensional vector space R* with the inner product (,) defined by

3
(z,y) = —z0y0 + szyz for @ = (0, 71,22, 73),y = (Yo, Y1, Y2, y3) € RY.
i=1

We say that a non-zero vector v € R‘ll is spacelike, lightlike, or timelike if (v,v) > 0,
(v,v) =0 or (v,v) < 0, respectively.
We define

H? ={x €eR} | (z,z) =1, and x>0} : the hyperbolic 3-space
LC, ={x cR} | (x,) =0 and x9 >0} : the future light cone
S3 ={x cR} | (x,x) =1} : the de Sitter space



Then H i is a complete Riemannian manifold of constant sectional curvature —1.

( Curves in H? ) Let v: I — H3 be a unit speed curve defined on an open interval
I of R. We use t(s) for the tangent vector 7/(s) with ||£(s)|| = 1. The vector (s) — ~(s)
is orthogonal to v(s) and #(s). We assume that t'(s) — v(s) is not zero. Then we have
a unit vector n(s) = (t'(s) — v(s))/||t'(s) — v(s)||. Moreover we define e(t) such that
{7(s),t(s),n(s), e(s)} is a positive orthonormal basis. Then the following formula (Frene-
Seret formula) holds:

+(5) 01 0 0\ [ )
t'(s) | _ |1 0 Kn(s) 0 t(s)
n'(s) 0 —kn(s) 0 Th(s) n(s)
e'(s) 0 0 —1(s) O e(s)

A curve vy in H3 is called a horocycle if kp(s) =1 and 74(s) = 0.

Proposition 2.1 (1) Let v : I — H3 be a horocycle . Then v(s) + m(s) is a constant
lightlike vector which is denoted by Iy and called to be the polar vector of a horocycle .
Moreover we have

1
Y(s) =v(s0) + (s — s0)t(so0) + 5(8 — 50)%ly  for some fixed sg € I.
(2) For vectors lp € LCy and wy € S} with (lp,wo) = 0, {&x € H} | (z,lp) +1 =
0, (x,wo) =0} is a horocycle of H3 whose polar vector is given by lo.

( Surfaces in H? ) Let M be a 2-dimensional connected oriented manifold and
fM—H i an immersion.
We define two kinds of “ Gauss maps”:

Gauss map E:M — S} a unit normal vector field in H?
Lightcone Gauss map L*=f+E: M — LC,

and define associated shape operators at each point p € M:

Shape operator Ay T,M — T,M  defined by dE = —df (Ap)
Hyperbolic shape operator S;t = —1r,y £ Ay where dL* = df, + dE, = —dfp(S;E)

We denote the eigenvalues of A, by k;(p) and those of Spi by Fc;t (p) (i = 1,2), respectively.
Evidently, A, and S have same eigenvectors and the relation FE(p) = —1 =+ ki(p). We
call k;(p) principal curvatures and Rii(p) hyperbolic principal curvatures of (M, f) at p €
M, respectively. The Gauss curvature of M at p is given by K(p) = —1 + det 4, =
—14 k1(p)ka(p) and similarly the hyperbolic Gauss curvature Kff is defined by K }jf (p) =
det S = Ry (p)R3 (p).

Now we recall the geometry of horospheres. For a non-zero vector v € R} and a real
number ¢ € R, we define the hyperplane by HP(v,c) = {x € R} | (x,v) = ¢}. Then
the intersections M = H3 N HP(v,c) (if not empty) are totally umbilical surfaces of H?

with k2 = < where k denotes the principal curvature . In particular for v € LC,

2
’U,’l(;)+c2 ’
and c< 0, M = H S”r N HP(v,c) has the constant principal curvature 1 or —1 and hence
its Gauss curvature vanishes. It is called a horosphere. Let M = H3 N HP(v,—1) with

v € LC, be a horosphere. We consider an inclusion map ¢ : M — H_:i For x € M,



E(x) = v — x is the unit normal vector of M at & € M. Therefore we have the lightcone
Gauss map LT (x) =  + E(z) = v at € M. It is a constant map and hence the
hyperbolic Gauss curvature K ;Lr vanishes.

Definition 2.2 ([1]) An immersed surface (M, f) in H3 is a horospherical flat surface
(briefly a horo-flat surface) if K, (p) = 0 or K, (p) = 0 at any point p € M .
Horospheres are examples of horo-flat surfaces and they are also totally umbilical. Now
we assume that an immersed surface (M, f) is a horo-flat surface without umbilical points.
Then the shape operator A of (M, f) has two different eigenvalues 1 and x(# 1) . We
denote by F; the line foliation corresponding to the principal curvature 1. Then the lines

of F1 are horocycles in H _?; whose polar vectors coincide with the lightcone Gauss map L
(Theorem 4.4 in [1]).

Definition 2.3 ([1]) A surface (M, f) in H? is called a horocyclic surface if it is foliated
by horocycles in H _3;

§3 Spacelike curves in the lightcone

We introduce the Frenet-Serret formula for spacelike curves in the lightcone LC,. Let
l: 1 — LCy be a unit speed spacelike curve defined on an open interval I of R. We
set t(t) = I'(t) and define a function x on I by x(t) = (I"(¢),l"(t)). We put n(t) =
—%t)l(t) —1"(t) . Then we have (n(t),n(t)) = 0 and (n(t),l(t)) = 1. We denote by
e(t) the unit spacelike vector which is orthogonal to I(t),t(t) and n(t) such that the basis
{U(t),t(t),e(t),n(t)} has a positive orientation. Then we have an pseudo orthonormal
frame field {i(t),t(t), e(t),n(t)} along I . We define a function 7 on I by 7(t) = (n/(t), e(t)).
Then we have the following formula of Frenet-Serret type :

V(1) 0, L0 0
t'(t) N | I R | t(t)
(3.1) ey |7 =+tp 0 0 o e(t)
n/(t) 0o @ o0 n(t)

§4 Construction of horocyclic surfaces

We construct horocyclic surfaces in H _?; by a slightly different method to [1] and study
their properties. Let [ : I — LC, and w: I — S be smooth maps from an open interval
I of R with (I(t),w(t)) = 0 for any t € I. Now we set subsets M of H? x I and M of H?
as follows:

M {(z,0) € HY x I | (2,1(1)) + 1 =0, (z,w(t)) =0},
M = {z € H3} | there exists t € I with (z,t) € M}.

Then the set M is a 2-dimensional submanifold of H i x I. We restrict the projections of
H _?; x I onto H i and of H i x I onto I to M , which are denoted by 71 and w9, respectively.
Then M = 7r1(]\~4 ) and M is a horocyclic surface in Hi possibly with singularites. In fact,
for each t € I we put

Cr=momy(t)={zecH | (@It)+1=0, (z,w(t)) =0}

By Proposition 2.1 (2), it follows that C; is a horocycle in H3 whose polar vector is I(t).



Now we will construct a parametrization f : RxI — H? with f(RxI) = M. We choose
a smooth curve 5(t) = (y(t),t) in M. Then + is a smooth curve in H? which is contained
in M. For each t € I , we put az(t) = I(t) — v(t) and a3(t) = w(t). Then v(t), az(t), and
as(t) are orthonormal. We define a unit spacelike vector aq(t) such that aq(t) is orthogonal
to y(t),aa(t),as(t) and the basis {y(t),a1(t),a2(t),as(t)} has a positive orientation. Then
we have ai(t) € T, C; and the horocycle Cy is parametrized as in Proposition 2.1 (1).
We now define a map f of R x [ to Hi by

F(s,8) = 7 (1) + sar(t) + %s%).

Then f(RxI)= M.

In order to study the detailed geometric properties of f , we consider a special class of
horocyclic surfaces which satisfy the following condition:
(HC) we assume that [ : [ — LCy has a unit speed and that I'(t) = w(t).

Under the assumption above, the structure equation for the orthonormal frame fields
{7(t),a1(t),az(t),as(t)} is of the following form:

’Y/((t)) 0 0 0 C3Et; ’y((t))
ay (t 0 0 0 cs(t aq(t
aé(t) - 0 0 0 CZ(t) G/; (t) ) 03(t) + Cﬁ(t) == 1
az(t) c3(t) —es(t) —cg(t) O as(t)

The induced metric g on R x I by f is given by

1
g=ds®+ 1(32 + 2¢5(t)s + 2¢3(t))2dt?.

This implies the following;:

Lemma 4.1 Under the assumption (HC'), a point (sg,tg) € R x I is a singular point of f
if and only if
S% + 265(t0)80 + 263(t0) = 0.

At a non-singular point (s,t) € R x I, the shape operator A is given by

d d d 2 d
A (as> =5 A (m) B <1 2 +205(t)s+203(t)> at’

Consequently we obtain the following.

Proposition 4.2 A horocyclic surface M constructed above is horo-flat.

Now we describe the geometric properties of a horocyclic surface M in terms of invari-
ants k, 7 defined in (3.1) of the corresponding spacelike curve [ : I — LCy . First we show
the criteria for the existence of singularities on the horocycle C for t € I.

Proposition 4.3 (1) If x(t) > 1, there exist two singular points of f on the horocycle C;.
(2) If k(t) = 1, there exists only one singular point of f on the horocycle C;.
(3) If k(t) < 1, there exists no singularity of f on the horocycle Ck.

Applying the criteria above, we can construct complete non-singular horo-flat horo-
cyclic surfaces.Let [ : R — LC, be a unit speed spacelike curve defined on the whole R.
Suppose that there exists a positive number € > 0 such that x(t) < 1 —¢ for any t € R.



Then by Proposition 4.3 (3), f is an immersion of R x R into H3 . Moreover we see that
the induced Riemannian metric g on R x R by f is geodesically complete.

§5 Classification of singularities

Now we study the cases of Proposition 4.3 (1) and (2) in the previous section. For
a fixed tp € I with k(tp) > 1, we may assume that a point (0,%p) € R x I is a singular
point of f. By Lemma 4.1, it follows that c3(tp) = 0 and the other singular point on Cy, is
given by (—2c5(t), to). Moreover we assume that c5(tg) > 0. Then we have the following
theorem:

Theorem 5.1 (A) Suppose that k(tg) > 1. Then we have the following:

(1) The point (0,%o) is the cuspidal edge if $+(t0) — \/k(to) — 17(to) # 0.

) The point (0,t) is the swallowtail if /@’(to) k(to) — 17(tg) = 0 and

Iﬁ?”(to) VK ( ) 17’ (to) - T(to) 7é 0.

3) The point (—2¢5(to), to) is the cuspidal edge if $+/(to) + v/k(to) — 17(to) # 0.
)

K
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(4) The point (—2¢5(to), to) is the swallowtail if $£/(to) + /k(to) — 17(tg) = 0 and

% (to) =+ ( 0) — 17 (to) — T(t()) 7& 0.

(B) Suppose that x(tp) = 1. Then we have c5(tp) = 0 and the point (0,?p) is only one
singular point on Cy,. Moreover we have the following:

(1) The point (0, o) is the cuspidal edge if /(tg) # 0.

(2) The point (0, ) is the cuspidal beaks if x/(tg) = 0, " (tg) > 0, and " (tg) # 27(to)?.

(3) The point (0, o) is the cuspidal lips if if '(¢o) = 0, " (to) < 0.

Here the cuspidal edge is a germ of surface diffeomorphic to {(z1, 22, x3)|z1 = u?, 2o =

u3,x3 = v}, the swallowtail is a germ of surface diffeomorphic to {(z1, 22, x3)|z1 = 3u* +
u?v,z9 = 4u> + 2uv,r3 = v}, the cuspidal beaks is a germ of surface diffeomorphic to
{(z1, 22, v3) |71 = 3u* — 2u?v? 290 = u® — wv? 23 = v} and the cuspidal lips is a germ of
surface diffeomorphic to {(z1, 2, z3)|z1 = 3u* + 2u?v? 2o = u® + wv?, 23 = v}.
Remark This theorem is an another formulation of the classification theorem (Theorem
6.2 in [1]) proved by S.Izumiya, K.Saji and M.Takahashi. Compared with their theorem,
our classification is to use invariants (the curvatures x and the torsions 7 ) of spacelike
curves in the lightcone.

Recently useful criteria in order to recognize the singularities of surfaces have been
developed (cf. [2], [1]). We apply their recognition lemmas and prove the Theorem above.
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