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This talk is based on the joint work [3] with C.Takizawa.

§1 Introduction

Horocyclic surfaces in hyperbolic 3-space are defined analogously to ruled surfaces in
the Euclidean space R3:

foliated by
ruled surfaces

in R3 · · · lines

horocyclic surfaces
in H3 · · · horocycles

The notion of horocyclic surfaces was introduced by S.Izumiya, K.Saji and M.Takahashi
([1]) as one of important objects in their horospherical geometry.

In this talk I explain

• to construct horocyclic surfaces associated with spacelike curves in the lightcone

• to describe geometric properties of horocyclic surfaces in terms of invariants (curva-
tures and torsions) of corresponding spacelike curves in the lightcone

• in particular to classify singularities of horocyclic surfaces constructed above

§2 Curves and surfaces in hyperbolic 3-space
〈 The standard Lorentzian model of hyperbolic 3-space 〉 Let R4

1 be a 4-
dimensional vector space R4 with the inner product 〈, 〉 defined by

〈x, y〉 = −x0y0 +
3∑

i=1

xiyi for x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4.

We say that a non-zero vector v ∈ R4
1 is spacelike, lightlike, or timelike if 〈v,v〉 > 0,

〈v, v〉 = 0 or 〈v, v〉 < 0, respectively.
We define

H3
+ = {x ∈ R4

1 | 〈x, x〉 = −1, and x0 ≥ 0} : the hyperbolic 3-space
LC+ = {x ∈ R4

1 | 〈x, x〉 = 0 and x0 > 0} : the future light cone
S3

1 = {x ∈ R4
1 | 〈x, x〉 = 1} : the de Sitter space
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Then H3
+ is a complete Riemannian manifold of constant sectional curvature −1.

〈 Curves in H3
+ 〉 Let γ : I → H3

+ be a unit speed curve defined on an open interval
I of R. We use t(s) for the tangent vector γ′(s) with ‖t(s)‖ = 1. The vector t′(s) − γ(s)
is orthogonal to γ(s) and t(s). We assume that t′(s) − γ(s) is not zero. Then we have
a unit vector n(s) = (t′(s) − γ(s))/‖t′(s) − γ(s)‖. Moreover we define e(t) such that
{γ(s), t(s), n(s), e(s)} is a positive orthonormal basis. Then the following formula (Frene-
Seret formula) holds:

γ′(s)
t′(s)
n′(s)
e′(s)

 =


0 1 0 0
1 0 κh(s) 0
0 −κh(s) 0 τh(s)
0 0 −τh(s) 0




γ(s)
t(s)
n(s)
e(s)

 .

A curve γ in H3
+ is called a horocycle if κh(s) ≡ 1 and τh(s) ≡ 0.

Proposition 2.1 (1) Let γ : I → H3
+ be a horocycle . Then γ(s) + n(s) is a constant

lightlike vector which is denoted by l0 and called to be the polar vector of a horocycle γ.
Moreover we have

γ(s) = γ(s0) + (s − s0)t(s0) +
1
2
(s − s0)2l0 for some fixed s0 ∈ I.

(2) For vectors l0 ∈ LC+ and ω0 ∈ S3
1 with 〈l0, ω0〉 = 0, {x ∈ H3

+ | 〈x, l0〉 + 1 =
0, 〈x, ω0〉 = 0} is a horocycle of H3

+ whose polar vector is given by l0.

〈 Surfaces in H3
+ 〉 Let M be a 2-dimensional connected oriented manifold and

f : M → H3
+ an immersion.

We define two kinds of “ Gauss maps”:

Gauss map E : M → S3
1 a unit normal vector field in H3

+

Lightcone Gauss map L± = f ± E : M → LC+

and define associated shape operators at each point p ∈ M :

Shape operator Ap : TpM → TpM defined by dE = −df(Ap)
Hyperbolic shape operator S±

p = −1TpM ± Ap where dL± = dfp ± dEp = −dfp(S±
p )

We denote the eigenvalues of Ap by κi(p) and those of S±
p by κ̄±

i (p) (i = 1, 2), respectively.
Evidently, Ap and S±

p have same eigenvectors and the relation κ̄±
i (p) = −1 ± κi(p). We

call κi(p) principal curvatures and κ̄±
i (p) hyperbolic principal curvatures of (M,f) at p ∈

M , respectively. The Gauss curvature of M at p is given by K(p) = −1 + det Ap =
−1 + κ1(p)κ2(p) and similarly the hyperbolic Gauss curvature K±

h is defined by K±
h (p) =

det S±
p = κ̄±

1 (p)κ̄±
2 (p).

Now we recall the geometry of horospheres. For a non-zero vector v ∈ R4
1 and a real

number c ∈ R, we define the hyperplane by HP (v, c) = {x ∈ R4
1 | 〈x, v〉 = c}. Then

the intersections M = H3
+ ∩ HP (v, c) (if not empty) are totally umbilical surfaces of H3

+

with κ2 = c2

〈v,v〉+c2
, where κ denotes the principal curvature . In particular for v ∈ LC+

and c < 0, M = H3
+ ∩ HP (v, c) has the constant principal curvature 1 or −1 and hence

its Gauss curvature vanishes. It is called a horosphere. Let M = H3
+ ∩ HP (v,−1) with

v ∈ LC+ be a horosphere. We consider an inclusion map ι : M → H3
+. For x ∈ M ,
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E(x) = v − x is the unit normal vector of M at x ∈ M . Therefore we have the lightcone
Gauss map L+(x) = x + E(x) = v at x ∈ M . It is a constant map and hence the
hyperbolic Gauss curvature K+

h vanishes.
Definition 2.2 ([1]) An immersed surface (M,f) in H3

+ is a horospherical flat surface
(briefly a horo-flat surface) if K+

h (p) = 0 or K−
h (p) = 0 at any point p ∈ M .

Horospheres are examples of horo-flat surfaces and they are also totally umbilical. Now
we assume that an immersed surface (M,f) is a horo-flat surface without umbilical points.
Then the shape operator A of (M,f) has two different eigenvalues 1 and κ(6= 1) . We
denote by F1 the line foliation corresponding to the principal curvature 1. Then the lines
of F1 are horocycles in H3

+ whose polar vectors coincide with the lightcone Gauss map L
(Theorem 4.4 in [1]).
Definition 2.3 ([1]) A surface (M,f) in H3

+ is called a horocyclic surface if it is foliated
by horocycles in H3

+.

§3 Spacelike curves in the lightcone
We introduce the Frenet-Serret formula for spacelike curves in the lightcone LC+. Let

l : I → LC+ be a unit speed spacelike curve defined on an open interval I of R. We
set t(t) = l′(t) and define a function κ on I by κ(t) = 〈l′′(t), l′′(t)〉. We put n(t) =
−κ(t)

2 l(t) − l′′(t) . Then we have 〈n(t),n(t)〉 = 0 and 〈n(t), l(t)〉 = 1. We denote by
e(t) the unit spacelike vector which is orthogonal to l(t), t(t) and n(t) such that the basis
{l(t), t(t), e(t), n(t)} has a positive orientation. Then we have an pseudo orthonormal
frame field {l(t), t(t), e(t), n(t)} along l . We define a function τ on I by τ(t) = 〈n′(t), e(t)〉.
Then we have the following formula of Frenet-Serret type :

(3.1)


l′(t)
t′(t)
e′(t)
n′(t)

 =


0 1 0 0

−κ(t)
2 0 0 −1

−τ(t) 0 0 0
0 κ(t)

2 τ(t) 0




l(t)
t(t)
e(t)
n(t)

 .

§4 Construction of horocyclic surfaces
We construct horocyclic surfaces in H3

+ by a slightly different method to [1] and study
their properties. Let l : I → LC+ and ω : I → S3

1 be smooth maps from an open interval
I of R with 〈l(t), ω(t)〉 = 0 for any t ∈ I. Now we set subsets M̃ of H3

+ × I and M of H3
+

as follows:

M̃ = {(x, t) ∈ H3
+ × I | 〈x, l(t)〉 + 1 = 0, 〈x, ω(t)〉 = 0},

M = {x ∈ H3
+ | there exists t ∈ I with (x, t) ∈ M̃}.

Then the set M̃ is a 2-dimensional submanifold of H3
+ × I. We restrict the projections of

H3
+×I onto H3

+ and of H3
+×I onto I to M̃ , which are denoted by π1 and π2, respectively.

Then M = π1(M̃) and M is a horocyclic surface in H3
+ possibly with singularites. In fact,

for each t ∈ I we put

Ct = π1 ◦ π−1
2 (t) = {x ∈ H3

+ | 〈x, l(t)〉 + 1 = 0, 〈x, ω(t)〉 = 0}.

By Proposition 2.1 (2), it follows that Ct is a horocycle in H3
+ whose polar vector is l(t).
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Now we will construct a parametrization f : R×I → H3
+ with f(R×I) = M . We choose

a smooth curve γ̃(t) = (γ(t), t) in M̃ . Then γ is a smooth curve in H3
+ which is contained

in M . For each t ∈ I , we put a2(t) = l(t) − γ(t) and a3(t) = ω(t). Then γ(t), a2(t), and
a3(t) are orthonormal. We define a unit spacelike vector a1(t) such that a1(t) is orthogonal
to γ(t), a2(t), a3(t) and the basis {γ(t), a1(t), a2(t), a3(t)} has a positive orientation. Then
we have a1(t) ∈ Tγ(t)Ct and the horocycle Ct is parametrized as in Proposition 2.1 (1).
We now define a map f of R × I to H3

+ by

f(s, t) = γ(t) + sa1(t) +
1
2
s2l(t).

Then f(R × I) = M .
In order to study the detailed geometric properties of f , we consider a special class of

horocyclic surfaces which satisfy the following condition:
(HC) we assume that l : I → LC+ has a unit speed and that l′(t) = ω(t).
Under the assumption above, the structure equation for the orthonormal frame fields
{γ(t), a1(t), a2(t), a3(t)} is of the following form:

γ′(t)
a′1(t)
a′2(t)
a′3(t)

 =


0 0 0 c3(t)
0 0 0 c5(t)
0 0 0 c6(t)

c3(t) −c5(t) −c6(t) 0




γ(t)
a1(t)
a2(t)
a3(t)

 , c3(t) + c6(t) = 1.

The induced metric g on R × I by f is given by

g = ds2 +
1
4
(s2 + 2c5(t)s + 2c3(t))2dt2.

This implies the following:
Lemma 4.1 Under the assumption (HC), a point (s0, t0) ∈ R× I is a singular point of f
if and only if

s2
0 + 2c5(t0)s0 + 2c3(t0) = 0.

At a non-singular point (s, t) ∈ R × I, the shape operator A is given by

A

(
∂

∂s

)
=

∂

∂s
, A

(
∂

∂t

)
=

(
1 − 2

s2 + 2c5(t)s + 2c3(t)

)
∂

∂t
.

Consequently we obtain the following.
Proposition 4.2 A horocyclic surface M constructed above is horo-flat.

Now we describe the geometric properties of a horocyclic surface M in terms of invari-
ants κ, τ defined in (3.1) of the corresponding spacelike curve l : I → LC+ . First we show
the criteria for the existence of singularities on the horocycle Ct for t ∈ I.
Proposition 4.3 (1) If κ(t) > 1, there exist two singular points of f on the horocycle Ct.
(2) If κ(t) = 1, there exists only one singular point of f on the horocycle Ct.
(3) If κ(t) < 1, there exists no singularity of f on the horocycle Ct.

Applying the criteria above, we can construct complete non-singular horo-flat horo-
cyclic surfaces.Let l : R → LC+ be a unit speed spacelike curve defined on the whole R.
Suppose that there exists a positive number ε > 0 such that κ(t) ≤ 1 − ε for any t ∈ R.
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Then by Proposition 4.3 (3), f is an immersion of R × R into H3
+ . Moreover we see that

the induced Riemannian metric g on R × R by f is geodesically complete.

§5 Classification of singularities
Now we study the cases of Proposition 4.3 (1) and (2) in the previous section. For

a fixed t0 ∈ I with κ(t0) ≥ 1, we may assume that a point (0, t0) ∈ R × I is a singular
point of f . By Lemma 4.1, it follows that c3(t0) = 0 and the other singular point on Ct0 is
given by (−2c5(t0), t0). Moreover we assume that c5(t0) ≥ 0. Then we have the following
theorem:

Theorem 5.1 (A) Suppose that κ(t0) > 1. Then we have the following:
(1) The point (0, t0) is the cuspidal edge if 1

2κ′(t0) −
√

κ(t0) − 1τ(t0) 6= 0.
(2) The point (0, t0) is the swallowtail if 1

2κ′(t0) −
√

κ(t0) − 1τ(t0) = 0 and
1
2κ′′(t0) −

√
κ(t0) − 1τ ′(t0) − τ(t0)

2 6= 0.
(3) The point (−2c5(t0), t0) is the cuspidal edge if 1

2κ′(t0) +
√

κ(t0) − 1τ(t0) 6= 0.
(4) The point (−2c5(t0), t0) is the swallowtail if 1

2κ′(t0) +
√

κ(t0) − 1τ(t0) = 0 and
1
2κ′′(t0) +

√
κ(t0) − 1τ ′(t0) − τ(t0)

2 6= 0.
(B) Suppose that κ(t0) = 1. Then we have c5(t0) = 0 and the point (0, t0) is only one
singular point on Ct0 . Moreover we have the following:
(1) The point (0, t0) is the cuspidal edge if κ′(t0) 6= 0.
(2) The point (0, t0) is the cuspidal beaks if κ′(t0) = 0, κ′′(t0) > 0, and κ′′(t0) 6= 2τ(t0)2.
(3) The point (0, t0) is the cuspidal lips if if κ′(t0) = 0, κ′′(t0) < 0.

Here the cuspidal edge is a germ of surface diffeomorphic to {(x1, x2, x3)|x1 = u2, x2 =
u3, x3 = v}, the swallowtail is a germ of surface diffeomorphic to {(x1, x2, x3)|x1 = 3u4 +
u2v, x2 = 4u3 + 2uv, x3 = v}, the cuspidal beaks is a germ of surface diffeomorphic to
{(x1, x2, x3)|x1 = 3u4 − 2u2v2, x2 = u3 − uv2, x3 = v} and the cuspidal lips is a germ of
surface diffeomorphic to {(x1, x2, x3)|x1 = 3u4 + 2u2v2, x2 = u3 + uv2, x3 = v}.
Remark This theorem is an another formulation of the classification theorem (Theorem
6.2 in [1]) proved by S.Izumiya, K.Saji and M.Takahashi. Compared with their theorem,
our classification is to use invariants (the curvatures κ and the torsions τ ) of spacelike
curves in the lightcone.

Recently useful criteria in order to recognize the singularities of surfaces have been
developed (cf. [2], [1]). We apply their recognition lemmas and prove the Theorem above.
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