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§0. Introduction

There exists a fundamental question:

Question What maps are closest to conformal ones?

We give a variational approach to this question. We consider the
functional

Φ(f) =

∫

M

‖Tf‖2dvg ,

where Tf is a covariant symmetric tensor such that

Tf = 0 ⇐⇒ f is a weakly conformal map.
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In this note we give a brief summary of results for this functional.

§1. A variational problem for the conformality of
maps

We use the following notations throughout this note:

Notations¶ ³

(M, g)
(N, h)

}
: compact Riemannian manifolds without boundary.

m : the dimension of M

f : a smooth map from M into N .
X, Y : vector fields on M .

ei : a local orthonormal frame on M .
f ∗h : the pullback of a metric h by a map f , i.e.,

(f ∗h)(X, Y ) = h(df(X), df(Y ))
µ ´

We first recall notions of the conformality of maps:

Conformal and Weakly conformal¶ ³

(1) A smooth map f is weakly conformal if there exists a
non-negative function ϕ on M such that

(∗) f ∗h = ϕg . 　

(2) A smooth map f is conformal if there exists a positive
function ϕ on M satisfying (∗).

µ ´
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Note that f is weakly conformal if and only if it is conformal at
x or (df)x = 0 for any x ∈ M 1.

We give a tensor of the conformality. Let ‖df‖ denote the energy
density of f in the theory of harmonic maps, i.e.,

‖df‖2 =
m∑

i=1

h
(
df(ei), df(ei)

)
.

We consider the following covariant symmetric tensor:

Tensor Tf¶ ³

Tf
def
= f ∗h− 1

m
‖df‖2g,

i.e.,

Tf(X, Y )
def
= h

(
df(X), df(Y )

)− 1

m
‖df‖2g(X, Y ) .

　
　

µ ´

Remark. In the case of m = 2, the tensor Tf is equal to the stress
energy tensor

Sf = f ∗h− 1

2
‖df‖2g

for harmonic maps. (See Eells and Lemaire [2], p.392. )

We can verify the following basic properties for the tensor Tf :

1 A map f is called conformal at x ∈ M if it satisfies (∗) at x for a positive function ϕ.
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Properties of tensor Tf¶ ³

Lemma T.

(1) Tf is symmetric, i.e., Tf(X, Y ) = Tf(Y, X).

(2) f is weakly conformal if and only if Tf = 0.

(3) ‖Tf‖2 = ‖f ∗h‖2 − 1

m
‖df‖4.

(4) Tf is trace-free, i.e.,

TrgTf =
m∑

i, j=1

g(ei, ej)Tf(ei, ej) = 0 .

(5) The trace of Tf with respect to the pullback f ∗h is equal
to the norm squared of Tf , i.e.,

Trf∗hTf =
m∑

i, j=1

(f ∗h)(ei, ej)Tf(ei, ej) = ‖Tf‖2 .

µ ´

We are concerned with the following functional:

Functional Φ(f )¶ ³

Φ(f) =

∫

M

‖Tf‖2dvg .

　
　

µ ´

This functional Φ(f) gives a quantity of the conformality of maps
f . Note that if f is a conformal map, then Φ(f) vanishes. In this
note we give a brief summary of the following results ([5], [4]):
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1. First variation formula

2. Second variation formula

3. Weak conformality for maps from or into spheres

4. Quasi-monotonicity formula

5. Bochner type formula

6. Existence of minimizers in 3-homotopy class

7. Other variational problem

§2. First variation formula

In this section we give the first variation formula for the functional
Φ(f). We first define the following “f−1TN -valued” 1-form ξf

2. The
1-form ξf plays an important role in our arguments.

1-form ξf¶ ³

ξf(X) =
∑

j

Tf(X, ej)df(ej)

=
∑

j

h
(
df(X), df(ej)

)
df(ej) − 1

m
‖df‖2df(X) .

　
　

µ ´

Take any smooth deformation F of f , i.e., any smooth map

F : (−ε, ε)×M −→ N s.t. F (0, x) = f(x).

Let ft(x) = F (t, x), and we often say a deformation ft(x) instead of

2 Though I want to use the notation τf instead of ξf , it is confused with the notation of the
tension field in the theory of harmonic maps.
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a deformation F (t, x). Let

X = dF ( ∂
∂t)

∣∣
t=0

denote the variation vector field of the deformation F . Then we have
the following first variation formula.

First variation formula¶ ³

dΦ(ft)

dt

∣∣∣∣
t=0

= −4

∫

M

h (X, divg ξf) dvg .

　
　

µ ´

In the above formula, dvg denotes the volume form on M , and divg ξf

denotes the divergence of ξf , i.e., divg ξf =
m∑

i=1

(∇ei
ξf)(ei).

We give here the notion of C-stationary maps.

C-stationary map¶ ³

We call a smooth map f C-stationary if

dΦ(ft)

dt

∣∣∣∣
t=0

= 0

for any smooth deformation ft of f .
µ ´

By the first variation formula, a smooth map f is C-stationary if
and only if it satisfies the following equation:

Euler-Lagrange equation¶ ³

divg ξf = 0 .

　
　

µ ´
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§3. Second variation formula

In this section we give the second variation formula for the func-
tional Φ(f). Take any smooth deformation F of f with two param-
eters, i.e., any smooth map

F : (−ε, ε)× (−δ, δ)×M −→ N s.t. F (0, 0, x) = f(x) .

Let fs, t(x) = F (s, t, x), and we often say a deformation fs, t(x) in-
stead of a deformation F (s, t, x). Let

X = dF ( ∂
∂s)

∣∣
s, t=0, Y = dF ( ∂

∂t)
∣∣
s, t=0

denote the variation vector fields of the deformation F . Then we
have the following second variation formula.

Second variation formula¶ ³

1

4

∂2Φ(fs, t)

∂s∂t

∣∣∣∣
s, t=0

=

∫

M

h
(
HessF

(
∂
∂s ,

∂
∂t

)
, divg ξf

)
dvg

+

∫

M

∑
i, j

h
(∇ei

X, ∇ej
Y

)
Tf(ei, ej) dvg

+

∫

M

∑

i, j

h
(∇ei

X, df(ej)
)
h
(∇ei

Y, df(ej)
)
dvg

+

∫

M

∑
i, j

h (∇ei
X, df(ej)) h

(
df(ei), ∇ej

Y
)
dvg

− 2

m

∫

M

∑

i

h (∇ei
X, df(ei))

∑

j

h
(∇ej

Y, df(ej)
)

dvg

−
∫

M

∑
i, j

h
(
NR (df(ei), X) Y, df(ej)

)
Tf(ei, ej) dvg .

　
　

µ ´
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In this formula, Hessf denotes the Hessian of f , i.e., Hessf(Z, W ) =
(∇Zdf)(W ) = (∇Wdf)(Z) .

Remark. Note that the first term in the right hand side vanishes if
f is a C-stationary map.

Remark. The last term of the right hand side is equal to

−
∫

M

∑
i

h
(
NR (df(ei), X) Y, ξf(ei)

)
dvg .

§4. Weak conformality for maps from or into
spheres

A C-stationary map f is called to be stable if the second variation
at f is non-negative. We give two results for the weak conformality
of stable C-stationary maps. (See Kawai-Nakauchi [4]. )

Weak conformailty — the case of source spheres¶ ³

Let f be a stable C-stationary map from the standard sphere Sm

into a Riemannian manifold N . If m ≥ 5, then f is a weakly
conformal map.

µ ´

Weak conformailty — the case of target spheres¶ ³

Let f be a stable C-stationary map from a Riemannian manifold
M into the standard sphere Sn. If n ≥ 5, then f is a weakly
conformal map.

µ ´

The above results can be regarded as a type of Liouville theorems
since the trivial case for the functional Φ is that of not constant maps,
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but weakly conformal maps. On the other hand, stable C-stationary
maps are not weakly conformal in general. We see the following fact.

Existence of non-conformal stable C-stationary maps¶ ³

There exists a stable C-stationary maps which is not weakly con-
formal.

µ ´

This fact follows from a simple example. Let us define a map

f : S1 × S1 × · · · × S1

∈

(x1, x2, . . . , xm)

−→

7−→

S1(r)× S1 × · · · × S1

∈

(rx1, x2, . . . , xm)

where S1 (resp. S1(r)) denotes the sphere of dimension 1 with radius
1 (resp. r) centered at the origin of R2. Obviously f is not weakly
conformal if r 6= 1. By simple calculations, we can verify that f is a
C-stationary map, and that f is stable if r is sufficiently close to 1.

§5. Quasi-monotonicity formula

In this section we prove a kind of the monotonicity formula for
C-stationary maps. We give this formula under the following weak
condition.

C-stationary w.r.t. diffeomorphisms¶ ³

We call a map f C-stationary with respect to diffeomor-
phisms on M if

d

dt
Φ(f ◦ ϕt)

∣∣∣∣
t=0

= 0

for any 1-parameter family ϕt of diffeomorphisms on M .
µ ´
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Note that the above definition of C-stationary maps is weaker
than the previous one of C-stationary maps, since ft(x) = f ◦ ϕt(x)
is a deformation in the latter definition.

Let Bρ(x0) be the open ball of a radius ρ with a center x0 ∈ M .
Then we have the following formula.

Quasi-monotonicity formula¶ ³

For any C-stationary map f with respect to diffeomorphisms, we
have

d

dρ

{
eCρρ4−m

∫

Bρ(x0)
‖Tf‖2dvg

}
≥ 4eCρρ4−m

(
ϕ′(ρ) +

C

4
ϕ(ρ)

)

where

ϕ(ρ) =

∫

Bρ(x0)
h
(
df

(
∂
∂r

)
, ξf

(
∂
∂r

))
dvg .

　
　

µ ´

Remark. If ϕ(ρ) satisfies the condition ϕ′(ρ) + C
4 ϕ(ρ) ≥ 0, then

eCρρ4−m

∫

Bρ(x0)
‖Tf‖2dvg is monotone non-decreasing. We cannot

expect such a monotonicity in general, since Tf is indefinite.

§6. Bochner type formula

Bochner type formulas are basic tools for various arguments in
geometry. For the norm of Tf , we have the following Bochner type
formula.
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Bochner type formula¶ ³

1

4
4 ‖Tf‖2 = divg αf − h

(
τf , divg ξf

)
+

1

2
‖∇Tf‖2

+
∑

i, j, k

h
(
(∇ek

df)(ei), (∇ek
df)(ej)

)
Tf(ei, ej)

+
∑
i, j

h
(
df

(∑

k

MR(ei, ek)ek

)
, df(ej)

)
Tf(ei, ej)

−
∑

i, j, k

h
(
NR

(
df(ei), df(ek)

)
df(ek), df(ej)

)
Tf(ei, ej)

where

αf(X) = h
(
ξf(X), τf

)
.

　
　

µ ´

In the above formula, τf = tr(∇df) =
∑

j

(∇ej
df)(ej) is the tension

field of f in the theory of harmonic maps. (See Eells and Lemaire
[1], p.9.)

Remark. The first term in the right hand side is of divergence form,
and hence the integral of it over M vanishes.

Remark. The second term in the right hand side vanishes if f is a
C-stationary map.

Remark. The last two terms of the right hand side are equal to

+
∑

i, k

h
(
df(

∑

k

MR(ei, ek)ek), ξf(ei)
)

and

−
∑

i, k

h
(
NR

(
df(ei), df(ek)

)
df(ek), ξf(ei)

)
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respectively.

§7. Existence of local minimizers

In this section we utilize the notion of 3-homotopy in the Sobolev
spaces, which is given by White, and consider a variational problem
of minimizing the functional Φ(f) in each 3-homotopy class. For any
two maps f1 and f2 from M into N , these maps are k-homotopic
(k ∈ N) if they are homotopic to each other on k-dimensional skele-
tons of a triangulation on M .

By Nash’s isometric embedding, we may assume that N is a sub-
manifold of a Euclidean space Rq. Let

L1, p(M, N) = { f ∈ L1, p(M, Rq) | f(x) ∈ N a.e. } ,

where L1, p(M, Rq) denotes the Sobolev space of Rq-valued Lp-functions
on M such that their derivatives are in Lp . Then White proved that
the notion of the [p − 1]-homotopy is compatible with the Sobolev
space L1, p(M, N) , where [ ] denotes the Gauss symbol, i.e., [r] is
the maximum integer less than or equal to r. We recall the following
results of White [8]. (See also White [7]. )

Known results¶ ³

(1) The [p − 1]-homotopy is well-defined for any map f ∈
L1, p(M, N).
(2) If fj converges weakly to f∞ in L1, p(M, N), then fj and f∞
are [p− 1]-homotopic for sufficient large j .

µ ´

The functional Φ(f) is defined on L1, 4(M, N), in which the 3-
homotopy is well-defined. Then for any given continuous map f0

from M into N , we want to minimize the functional Φ(f) in the
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following class:

F =
{

f ∈ L1, 4(M, N) | f is 3-homotopic to f0 and ‖f‖L1, 4(M, N) ≤ C0
}

,

where C0 is a given positive constant. We see that the space F is
not empty for sufficiently large C0.

Existence of minimizers¶ ³

There exists a minimizer of the functional Φ(f) in F .
µ ´

If a 3-homotopy class contains a conformal map, then the confor-
mal map is a minimizer. Minimizers are expected to be closest to
conformal maps, even if its 3-homotopy class does not contain any
conformal map.

Remark. When M is 4-dimensional and π4(N) = 0, any continuous
minimizer is (freely) homotopic to f0 in the ordinary sense .

§8. Other variational problem

By Lemma T (3), we see

‖Tf‖2 = ‖f ∗h‖2

↑
the norm of
the pullback

− 1

m
‖df‖4 .

↑
the energy density
of 4-harmonic maps

Then we consider the following functional for pullbacks of metrics.
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Functional F (f )¶ ³

F (f) =

∫

M

‖f ∗h‖2dvg .

　
　

µ ´

We mention here harmonic maps. A map f is called a har-
monic map if it is a critical point of the energy functional E(f)

=

∫

M

‖df‖2dvg. The theory of harmonic maps make a rapid progress

during the last fifty years, and gave various applications to other
branches in mathematics and physics. From the viewpoint of pull-
backs of metrics, the norm squared ‖df‖2 of the energy density is the
trace of the pullback f ∗h. Thus we see the following correspondence
between the energy functional E(f) and our functional F (f).

the energy functional
in the theory of our functional
harmonic maps

E(f) =

∫

M

‖df‖2dvg

=

∫

M

trg(f
∗h)dvg

F (f) =

∫

M

‖f ∗h‖2dvg .

the trace of the pullback f ∗h the norm of the pullback f ∗h

We give the notion of symphonic maps.
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symphonic map¶ ³

We call a smooth map f symphonic if

dF (ft)

dt

∣∣∣∣
t=0

= 0

for any smooth deformation ft of f .
µ ´

The norm contains informations of more components than the
trace while symphonies have more parts than harmonies. Compared
with harmonic maps, a critical point of the functional F (f) is called
a symphonic map 3. For symphonic maps, see Nakauchi-Takenaka
[6] and Kawai-Nakauchi [3]. (In these papers we use the term “sta-
tionary maps” instead of “symphonic maps”. )
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