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§0. Introduction

There exists a fundamental question:

Question What maps are closest to conformal ones?

We give a variational approach to this question. We consider the
functional

o(f) = [ ITlPd,
M
where T is a covariant symmetric tensor such that

Ty =0 <= [ is a weakly conformal map.



In this note we give a brief summary of results for this functional.

g§1. A variational problem for the conformality of
maps

We use the following notations throughout this note:

- Notations ~
(M, g) } . compact Riemannian manifolds without boundar
(N By f g

m : the dimension of M
f : a smooth map from M into N.
X, Y . vector fields on M.
€; . a local orthonormal frame on M.
f*h : the pullback of a metric h by a map f, i.e.,
L (f*R)(X, Y) = h(df (X), df(Y)) )

We first recall notions of the conformality of maps:

- Conformal and Weakly conformal ~

(1) A smooth map f is weakly conformal if there exists a
non-negative function ¢ on M such that

(%) f*h=yg. O

(2) A smooth map f is conformal if there exists a positive

function ¢ on M satisfying (x).
. J




Note that f is weakly conformal if and only if it is conformal at
x or (df), =0 for any z € M 1®.

We give a tensor of the conformality. Let ||df|| denote the energy
density of f in the theory of harmonic maps, i.e.,

lafll* = D h(df(e), df ().

We consider the following covariant symmetric tensor:

- Tensor T N

def o4 1
Ty = f*h— E\Idflﬁg,

ie.,

TH(X, Y) L h(df(X), dFV)) — g, ).

H
[ J

Remark. In the case of m = 2, the tensor T} is equal to the stress
energy tensor

. 1
Sy = F'h - afl
for harmonic maps. (See Eells and Lemaire [2], p.392. )

We can verify the following basic properties for the tensor T:

L'A map f is called conformal at x € M if it satisfies () at x for a positive function ¢.
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- Properties of tensor T ~

Lemma T.

(1) Ty is symmetric, ie., Tf(X, Y) = Ty(Y, X).
(2) fis weakly conformal if and only if Ty = 0.
1
B) NT® = IRl = —lldf |

(4) Ty is trace-free, i.e.,

Tr, Ty = Zg(ei, e;)T(e;, ej) = 0.
i, j=1

(5) The trace of Ty with respect to the pullback f*h is equal

to the norm squared of 7%, i.e.,

m

Tepa Ty = Y (fh)(er, e))Ty(ei e) = | Tyl

i,j=1

We are concerned with the following functional:

- Functional ®(f) ~

(f) = /M 1T\,
]

[ J

This functional ®(f) gives a quantity of the conformality of maps
f. Note that if f is a conformal map, then ®(f) vanishes. In this
note we give a brief summary of the following results ([5], [4]):



First variation formula

Second variation formula

Weak conformality for maps from or into spheres
Quasi-monotonicity formula

Bochner type formula

Existence of minimizers in 3-homotopy class

N ot

Other variational problem

§2. First variation formula

In this section we give the first variation formula for the functional
®(f). We first define the following “f~1T N-valued” 1-form ;2. The
1-form &f plays an important role in our arguments.

- 1-form &; N
§5(X) = YTHX, e)df(e)
= M), ) aste) — - arPar(x).

[]
[ J

Take any smooth deformation F' of f, i.e., any smooth map
F : (—g,e)xM — N st. F(0,z)= f(x).

Let f;(x) = F(t, x), and we often say a deformation f;(x) instead of

2 Though I want to use the notation 7¢ instead of &y, it is confused with the notation of the
tension field in the theory of harmonic maps.



a deformation F(¢, x). Let

X = dF(%)’t:O

denote the variation vector field of the deformation F'. Then we have
the following first variation formula.

- First variation formula ~

do(ft)
dt

= —4/ h (X, div, &f) doy .
. M

\[J J

t=0

In the above formula, dv, denotes the volume form on M, and div, &

denotes the divergence of &y, i.e., div, &y = Z(Veiff)(ei).
i=1
We give here the notion of C-stationary maps.

- C-stationary map ~
We call a smooth map f C-stationary if
)
dt |,
kfor any smooth deformation f; of f. )

By the first variation formula, a smooth map f is C-stationary if
and only if it satisfies the following equation:

Euler-Lagrange equation

divgff = 0.

1]




§3. Second variation formula

In this section we give the second variation formula for the func-
tional ®(f). Take any smooth deformation F' of f with two param-
eters, i.e., any smooth map

F : (—e,e)x(=6,0)x M — N s.t. F(0,0,x)= f(z).

Let fs.i(x) = F(s, t, z), and we often say a deformation f; ,(z) in-
stead of a deformation F(s, ¢, x). Let

X =dF(2)|, . Y =dF(Z), _,

denote the variation vector fields of the deformation F'. Then we
have the following second variation formula.

~ Second variation formula ~

a2q)(fs,t)

1 .
4 0sot 5,40 - /Mh(HeSSF(%’ %)7 dlvgff)dvg

+ / Zh(v€z‘X7 Ver) Ty(eis ¢5) dvg
M

N /M Z h(Ve X, df(e)) h(V..Y, df(e;))dv,
n /M Zh(veix, df () h (df (e:), Ve,Y) dv,
- %LZ’%(V&X, df(ei)) 2R (Ve Y, df(ey) dug

_ /MZh(NR (df (ei), X)Y, df(e;)) Ty(es, e5) vy .




In this formula, Hesss denotes the Hessian of f, i.e., Hess¢(Z, W) =
(Vzdf)(W) = (Vwdf)(Z).

Remark. Note that the first term in the right hand side vanishes if
f is a C-stationary map.

Remark. The last term of the right hand side is equal to

- /M >_ MR (df(e), X)Y, &(er)) dv,.

§4. Weak conformality for maps from or into
spheres

A C-stationary map f is called to be stable if the second variation
at f is non-negative. We give two results for the weak conformality
of stable C-stationary maps. (See Kawai-Nakauchi [4]. )

Weak conformailty — the case of source spheres

Let f be a stable C-stationary map from the standard sphere S™
into a Riemannian manifold N. If m > 5, then f is a weakly
conformal map.

Weak Conformaﬂty — the case of target spheres

Let f be a stable C-stationary map from a Riemannian manifold
M into the standard sphere S". If n > 5, then f is a weakly
conformal map.

The above results can be regarded as a type of Liouville theorems
since the trivial case for the functional ® is that of not constant maps,
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but weakly conformal maps. On the other hand, stable C-stationary
maps are not weakly conformal in general. We see the following fact.

Existence of non-conformal stable C-stationary maps

There exists a stable C-stationary maps which is not weakly con-
formal.

This fact follows from a simple example. Let us define a map

fio StxStx...xst —  Sr)yxSx...x 8!
w w
(2, 2%, ..., ™) — (rat, 22, ..., a™)
where ST (resp. S'(r)) denotes the sphere of dimension 1 with radius
1 (resp. r) centered at the origin of R%. Obviously f is not weakly
conformal if » # 1. By simple calculations, we can verify that f is a
C-stationary map, and that f is stable if r is sufficiently close to 1.

§5. Quasi-monotonicity formula

In this section we prove a kind of the monotonicity formula for
C-stationary maps. We give this formula under the following weak
condition.

~———— C-stationary w.r.t. diffeomorphisms ————

We call a map f C-stationary with respect to diffeomor-
phisms on M if

d

_@ p—
7 (fowr) . 0

for any 1-parameter family ¢; of diffeomorphisms on M.




Note that the above definition of C-stationary maps is weaker
than the previous one of C-stationary maps, since fi(z) = f o ()
is a deformation in the latter definition.

Let B,(x¢) be the open ball of a radius p with a center zy € M.
Then we have the following formula.

- Quasi-monotonicity formula ~

For any C-stationary map f with respect to diffeomorphisms, we
have

d . . C
- {ec”p4 / ITfIdeg} > 457 pt (@’(p) + Zso(p)>
p B,(o)

where

o) = [ (@ ()& (5)) doy
0 B,(x0)

\[J J

Remark. If ¢(p) satisfies the condition ¢'(p) + $p(p) > 0, then
eCrpt—m / |T¢||*dv, is monotone non-decreasing. We cannot
Bp(xo)

expect such a monotonicity in general, since T is indefinite.

§6. Bochner type formula

Bochner type formulas are basic tools for various arguments in
geometry. For the norm of Ty, we have the following Bochner type
formula.
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- Bochner type formula ~

1 1
ZAHTfH? = divyay — h(ry, divy&s) + §HVTfHQ
+ 3 W((Veudf)(e), (Ve df)(e)) Ty(e, ;)

i, J, k

+ D2 (A QoY Rl ener). df(e)) T(e ;)
— 3" h(MR(df(ex), df (ex))df (ex). df (e)))Ty(er, e5)

i J, k

where

ar(X) = h(g(X). 7).
N J

In the above formula, 74 = tr(Vdf) = Z(v€j df)(e;) is the tension

J
field of f in the theory of harmonic maps. (See Eells and Lemaire
1], p.9.)

Remark. The first term in the right hand side is of divergence form,
and hence the integral of it over M vanishes.

Remark. The second term in the right hand side vanishes if f is a
C-stationary map.

Remark. The last two terms of the right hand side are equal to

T Z h(df(z MR(e;, en)er), Es(ei))

and

= D (R (), df(en))df(ex), &5(ex)
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respectively.

§7. Existence of local minimizers

In this section we utilize the notion of 3-homotopy in the Sobolev
spaces, which is given by White, and consider a variational problem
of minimizing the functional ®(f) in each 3-homotopy class. For any
two maps f; and fy from M into N, these maps are k-homotopic
(k € N) if they are homotopic to each other on k-dimensional skele-
tons of a triangulation on M.

By Nash’s isometric embedding, we may assume that N is a sub-
manifold of a Euclidean space RY. Let

LYP(M, N) = { feL"(M,RY) | f(x) € N ae. },

where L1?(M, R?) denotes the Sobolev space of R4-valued LP-functions
on M such that their derivatives are in L? . Then White proved that
the notion of the [p — 1]-homotopy is compatible with the Sobolev
space LMP(M, N), where [ | denotes the Gauss symbol, i.e., [r] is
the maximum integer less than or equal to r. We recall the following
results of White [8]. (See also White [7]. )

e Known results ~
(1) The [p — 1]-homotopy is well-defined for any map f €
LL?(M, N).

(2) If f; converges weakly to f in LYP(M, N), then f; and [y
are [p — 1]-homotopic for sufficient large j .

J

The functional ®(f) is defined on LY“*(M, N), in which the 3-
homotopy is well-defined. Then for any given continuous map f
from M into N, we want to minimize the functional ®(f) in the
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following class:
F={fe LY4(M, N) | f is 3-homotopic to f; and [ flleeaor vy < Co

where () is a given positive constant. We see that the space F is
not empty for sufficiently large Cj.

There exists a minimizer of the functional ®(f) in F.

[ Existence of minimizers j

If a 3-homotopy class contains a conformal map, then the confor-
mal map is a minimizer. Minimizers are expected to be closest to
conformal maps, even if its 3-homotopy class does not contain any
conformal map.

Remark. When M is 4-dimensional and m4(/N) = 0, any continuous
minimizer is (freely) homotopic to fjy in the ordinary sense.

§8. Other variational problem

By Lemma T (3), we see

2 _ *7 (12 1 4
17511 = 1Al — ™
T T
the norm of the energy density
the pullback of 4-harmonic maps

Then we consider the following functional for pullbacks of metrics.
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- Functional F'(f) ~

F(f) = /M | Fhdv,
]

[ J

We mention here harmonic maps. A map f is called a har-
monic map if it is a critical point of the energy functional E(f)

= [ ||df||*dv,. The theory of harmonic maps make a rapid progress

durij\r{g the last fifty years, and gave various applications to other
branches in mathematics and physics. From the viewpoint of pull-
backs of metrics, the norm squared ||df||* of the energy density is the
trace of the pullback f*h. Thus we see the following correspondence
between the energy functional E(f) and our functional F(f).

the energy functional
in the theory of our functional
harmonic maps

B(f) = /M \df | 2dv,
= /trg(f*h)dvg
M

F(f) = /M £ hl2du, .

the trace of the pullback f*h | the norm of the pullback f*h

We give the notion of symphonic maps.
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- symphonic map ~

We call a smooth map f symphonic if
FH|
dt |,
Kfor any smooth deformation f; of f. )

The norm contains informations of more components than the
trace while symphonies have more parts than harmonies. Compared
with harmonic maps, a critical point of the functional F'(f) is called
a symphonic map?. For symphonic maps, see Nakauchi-Takenaka
6] and Kawai-Nakauchi [3]. (In these papers we use the term “sta-
tionary maps” instead of “symphonic maps”. )
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