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Abstract. In this talk, first we introduce the classification of homogeneous
hypersurfaces in some Hermitian symmetric spaces of rank 1 or rank 2. In par-

ticular, we give a full expression of the geometric structures for hypersurfaces
in complex two-plane Grassmannians G2(Cm+2) or in complex hyperbolic two-
plane Grassmannians G∗

2(Cm+2).

Next by using the isometric Reeb flow we give a complete classification for
hypersurfaces M in complex two-plane Grassmannians G2(Cm+2), complex
hyperbolic two-plane Grassmannians G∗

2(Cm+2), complex quadric Qm and its
dual Q∗m. Moreover, we give a classification of contact hypersurfaces with

constant mean curvature in the complex quadric Qn = SOn+2/SOnSO2 and
its noncompact dual Qn∗ = SOo

n,2/SOnSO2 for n ≥ 3

Introduction

Let us denote by (M̄, g) a Riemannian manifold and I(M̄, g) a set of all isome-
tries defined on M̄ . Here, a homogeneous submanifold of (M̄, g) is a connected
submanifold M of M̄ which is an orbit of some closed subgroup G of I(M̄, g). If
the codimension of M is one, then M is called a homogeneous hypersurface. When
M becomes a homogeneous hypersurface of M̄ , there exists some closed subgroup
G of I(M̄, g) having M as an orbit. Since the codimension of M is one, the regular
orbits of the action of G on M̄ have codimension one, that is, the action of G on
M̄ is of cohomogeneity one. This means that the classification of homogeneous
hypersurfaces is equivalent to the classification of cohomogeneity one actions up to
orbit equivalence.

The orbit space M̄/G with quotient topology for a closed subgroup G of I(M̄, g)
with cohomogeneity one becomes a one dimensional Hausdorff space homeomorphic
to the real line R, the circle S1, the half-open interval [0,∞), or the closed interval
[0, 1]. This was proved by Mostert [15] for the case G is compact and in general by
Bérard-Bergery.

When M̄ is simply connected and compact, the quotient space M̄/G must be
homeomorphic to [0, 1] and each singular orbit must have codimension greater than
one. This means that each regular orbit is a tube around any of the two singu-
lar orbits, and each singular orbit is a focal set of any regular orbit. This fact
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will be applied in section 2 for complex projective space CPm, complex two-plane
Grassmannians G2(Cm+2) and complex quadric Qm which are Hermitian symmet-
ric spaces of compact type with rank 1 and rank 2 respectively.

When M̄ is simply connected and non-compact, the quotient space M̄/G must
be homeomorphic to R or [0,∞). In the latter case the singular orbit must have
codimension greater than one, and each regular orbit is a tube around the singular
one. This fact will be applied and discussed in detail in sections 4 and 5 for dual
complex two-plane Grassmannians G∗

2(Cm+2) and dual complex quadric Q∗m which
is a Hermitian symmetric space of non compact type with rank 2.

Hereafter let us note that HSSP denotes a Hermitian Symmetric Space. For
HSSP with rank one we say that a complex projective space CPm, a complex
hyperbolic space CHm. For HSSP of compact type with rank 2 we say SU(2 +
q)/S(U(2)×U(q)), SO(8)/U(4), G2(R2+p), Sp(2)/U(2) and (e6(−78),SO(10) +R)

and of noncompact type SU(2, q)/S(U(2)×U(q)), SO∗(8)/U(4), G∗
2(R2+p),

Sp(2,R)/U(2) and (e6(−14),SO(10) +R) (See Helgason [11], [12]).

The motivation of this talk is to classify all orientable real hypersurfaces M in
almost Hermitian manifold M̄ for which the Reeb flow is isometric. The almost
Hermitian structure on almost Hermitian manifold M̄ induces an almost contact
metric structure on M . The corresponding unit tangent vector field on M is the
Reeb vector field, and its flow is said to be the Reeb flow on M .

The classification of all real hypersurfaces in complex projective space CPm

with isometric Reeb flow has been obtained by Okumura [19]. The corresponding
classification in complex hyperbolic space CHm is due to Montiel and Romero
[18] and in quaternionic projective space HPm due to Martinez and Pérez [14]
respectively.

In complex hyperbolic space CHm we consider the ani-de Sitter sphere H2m−1
1

in Cm, where the orbits of the Reeb flow induce the Hopf foliation on H2m−1
1 with

principal S1-bundle of time-like totally geodesic fibres. It is well known that H2m−1
1

is a principal S1-bundle over a complex hyperbolic space CHm with projection π :
H2m+1

1 →CHm. Moreover, in a paper due to Montiel and Romero [18] it was proved
that the second fundamental tensor A′ of a Lorentzian hypersurface in H2m−1

1 is
parallel if and only if a hypersurface in CHm is with isometric Reeb flow, that is,
ϕA = Aϕ, where π∗A = A′, π∗A is called a pullback of the shape operator A for
a hypersurface in CHm by the projection π and ϕ denotes the structure tensor
induced from the Kähler structure J of CHm.

1. Compact Hermitian Symmetric Space with rank 2

The study of real hypersurfaces in non-flat complex space forms or quaternionic
space forms which belong to HSSP with rank 1 of compact type in section 1 is
a classical topic in differential geometry. For instance, there have been many in-
vestigations for homogeneous hypersurfaces of type A1, A2, B, C, D and E in
complex projective space CPm. They are completely classified by Cecil and Ryan
[9], Kimura [13] and Takagi [28]. Here, explicitly, we mention that A1 : Geodesic
hyperspheres, A2 : a tube around a totally geodesic complex projective spaces CP k,
B : a tube around a complex quadric Qm−1 and can be viewed as a tube around a
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real projective space RPm, C : a tube around the Segre embedding of CP 1 ×CP k

into CP 2k+1 for some k≥2, D : a tube around the Plücker embedding into CP 9 of
the complex Grassmannian manifold G2(C5) of complex 2-planes in C5 and E : a
tube around the half spin embedding into CP 15 of the Hermitian symmetric space
SO(10)/U(5).

Now let us study hypersurfaces in complex two-plane Grassmanians G2(Cm+2)
which is a kind of HSSP with rank two of compact type. The ambient space
G2(Cm+2) is known to be the unique compact irreducible Riemannian symmetric
space equipped with both a Kähler structure J and a quaternionic Kähler structure
J not containing J .

On the other hand, Cecil and Ryan [9] proved that any tubeM around a complex
submanifold in complex projective space CPm are characterized by the invariancy
of Aξ = αξ, where the Reeb vector ξ is defined by ξ = −JN for a Kähler structure
J and a unit normal N to hypersurfaces M in Pm(C). Moreover, the corresponding
geometrical feature for hypersurfaces in QPm is the invariance of the distribution
D⊥ = Span {ξ1, ξ2, ξ3} by the shape operator, where ξi = −JiN , Ji∈J. In fact every
tube around a quaternionic submanifold QPm satisfies such kind of geometrical
feature (See [14], [16], [17]).

From such a view point, we considered two natural geometric conditions for real
hypersurfaces in G2(Cm+2) that means that the maximal complex subbundle C and
a maximal quaternionic subbundle Q of TM are both invariant under the shape
operator of M , where the maximal complex subbundle C of the tangent bundle
TM of M is defined by C = {X∈TM |JX∈TM}, and the maximal quaternionic
subbundle Q of TM is defined by Q = {X∈TM |JX∈TM} respectively. By using
such conditions and the result in Alekseevskii [1], Berndt and Suh [3] proved the
following

Theorem 1.1. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.
Then the maximal complex subbundle C and a maximal quaternionic subbundle Q
of TM are both invariant under the shape operator of M if and only if
(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2),
or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).

When the Reeb flow on M in G2(Cm+2) is isometric, we say that the Reeb
vector field ξ on M is Killing. Moreover, the Reeb vector field ξ is said to be Hopf
if it is invariant by the shape operator A. The 1-dimensional foliation of M by the
integral manifolds of the Reeb vector field ξ is said to be a Hopf foliation of M . We
say that M is a Hopf hypersurface in G2(Cm+2) if and only if the Hopf foliation of
M is totally geodesic.

By using Theorem 1, in a paper due to Berndt and Suh [4] we have given a
complete classification of real hypersurfaces in G2(Cm+2) with isometric Reeb flow
as follows:

Theorem 1.2. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.
Then the Reeb flow on M is isometric if and only if M is an open part of a tube
around a totally geodesic G2(Cm+1) in G2(Cm+2).
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2. Complex hyperbolic two-plane Grassmannian SU2,m/S(U2·Um)

Now let us consider for the case that the Riemannian manifold M̄ becomes a
Riemannian symmetric spaces of non compact type with rank 1 or rank 2. As some
examples of non compact type with rank 1 we say a real hyperbolic space RHn =
SO0(1, n)/SO(n), a complex hyperbolic space CHn = SU(1, n)/S(U(1)×U(n)), a
quaternionic hyperbolic space HHn = Sp(1, n)/Sp(1)×Sp(n), and a Caley projec-
tive plane OP 2 = F4/Spin(9). The study of homogeneous hypersurfaces in such a
symmetric spaces of noncompact type with rank 1 was investigated in Berndt [5],
Berndt and Tamaru [8].

In this section we consider a hypersurface in HSSP of noncompact type with
rank 2. Among some examples of noncompact type with rank 2 given in section
1 we focus on a dual complex two-plane Grassmannian SU(2,m)/S(U(2)×U(m)).
The Riemannian symmetric space SU(2,m)/S(U(2)×U(m)) is a connected, simply
connected, irreducible Riemannian symmetric space of noncompact type with rank
2.

Let G = SU2,m and K = S(U2·Um), and denote by g and k the corresponding
Lie algebra of the Lie group G and K respectively. Let B be the Killing form of
g and denote by p the orthogonal complement of k in g with respect to B. The
resulting decomposition g = k ⊕ p is a Cartan decomposition of g. The Cartan
involution θ ∈ Aut(g) on su2,m is given by θ(A) = I2,mAI2,m, where

I2,m =

(
−I2 02,m
0m,2 Im

)
I2 and Im denote the identity (2 × 2)-matrix and (m × m)-matrix respectively.
Then < X,Y >= −B(X, θY ) becomes a positive definite Ad(K)-invariant inner
product on g. Its restriction to p induces a metric g on SU2,m/S(U2·Um), which is
also known as the Killing metric on SU2,m/S(U2·Um). Throughout this paper we
consider SU2,m/S(U2·Um) together with this particular Riemannian metric g.

The Lie algebra k decomposes orthogonally into k = su2 ⊕ sum ⊕ u1, where u1
is the one-dimensional center of k. The adjoint action of su2 on p induces the
quaternionic Kähler structure J on SU2,m/S(U2·Um), and the adjoint action of

Z =

( mi
m+2I2 02,m
0m,2

−2i
m+2Im

)
∈ u1

induces the Kähler structure J on SU2,m/S(U2·Um). By construction, J commutes
with each almost Hermitian structure Jν in J for ν = 1, 2, 3. Recall that a canonical
local basis J1, J2, J3 of a quaternionic Kähler structure J consists of three almost
Hermitian structures J1, J2, J3 in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where
the index ν is to be taken modulo 3. The tensor field JJν , which is locally defined
on SU2,m/S(U2·Um), is selfadjoint and satisfies (JJν)

2 = I and tr(JJν) = 0,
where I is the identity transformation. For a nonzero tangent vector X we define
RX = {λX|λ ∈ R}, CX = RX ⊕ RJX, and HX = RX ⊕ JX.

Then by the argument asserted in section 1, we note that any homogeneous
hypersurfaces in G∗

2(Cm+2) becomes a tube around one singular orbit. By virtue
of this fact and using geometric tools given in Helgason [11], [12], Eberlein [10]
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, Berndt and Suh [5] proved a characterization of homogeneous hypersurfaces in
G∗

2(Cm+2) as follows:

Theorem 2.1. Let M be a connected real hypersurface in the complex hyperbolic
two-plane Grassmanniaan SU(2,m)/S(U(2)×U(m)), m ≥ 2, with constant princi-
pal curvatures. Then the maximal complex subbundle C and a maximal quaternionic
subbundle Q of TM are both invariant under the shape operator of M if and only
if M is congruent to an open part of one of the following hypersurfaces:
(A) a tube around a totally geodesic SU(2,m− 1)/S(U(2)×U(m− 1)) in
SU(2,m)/S(U(2)×U(m)),
(B) a tube around a totally geodesic quaternionic hyperbolic space HHn in
SU(2, 2)/S(U(2)×U(m)), m = 2n,
(C) a horosphere in SU(2,m)/S(U(2)×U(m)) whose center at infinity is singular.

In this section we give a classification of all real hypersurfaces with isometric
Reeb flow in complex hyperbolic two-plane Grassmann manifold SU2,m/S(U2·Um)
as follows (see Suh [26]):

Theorem 2.2. Let M be a connected orientable real hypersurface in the complex
hyperbolic two-plane Grassmannian SU2,m/S(U2·Um), m ≥ 3. Then the Reeb flow
on M is isometric if and only if M is an open part of a tube around some totally
geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um) or a horosphere whose center
at infinity is singular.

A tube around SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um) is a principal orbit
of the isometric action of the maximal compact subgroup SU1,m+1 of SUm+2,
and the orbits of the Reeb flow corresponding to the orbits of the action of U1.
The action of SU1,m+1 has two kinds of singular orbits. One is a totally geodesic
SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um) and the other is a totally geodesic CHm

in SU2,m/S(U2·Um).

A remarkable consequence of our Main Theorem is that a connected complete real
hypersurface in SU2,m/S(U2·Um), m ≥ 3 with isometric Reeb flow is homogeneous.
This was also true in complex two-plane Grassmannians G2(Cm+2), which could
be identified with symmetric space of compact type SUm+2/S(U2·Um), as follows
from the classification. It would be interesting to understand the actual reason for
it (See [3], [4], [17], and [22]).

3. Isometric Reeb Flow in Complex Quadric Qm

The homogeneous quadratic equation z21 + . . . + z2m+2 = 0 on Cm+2 defines
a complex hypersurface Qm in the (m + 1)-dimensional complex projective space
CPm+1 = SUm+2/S(Um+1U1). The hypersurfaceQ

m is known as them-dimensional
complex quadric. The complex structure J on CPm+1 naturally induces a com-
plex structure on Qm which we will denote by J as well. We equip Qm with the
Riemannian metric g which is induced from the Fubini Study metric on CPm+1

with constant holomorphic sectional curvature 4. The 1-dimensional quadric Q1 is
isometric to the round 2-sphere S2. For m ≥ 2 the triple (Qm, J, g) is a Hermitian
symmetric space of rank two and its maximal sectional curvature is equal to 4. The
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2-dimensional quadric Q2 is isometric to the Riemannian product S2×S2. We will
assume m ≥ 3 for the main part of this paper.

For a nonzero vector z ∈ Cm+1 we denote by [z] the complex span of z, that is,
[z] = {λz | λ ∈ C}. Note that by definition [z] is a point in CPm+1. As usual,
for each [z] ∈ CPm+1 we identify T[z]CPm+1 with the orthogonal complement

Cm+2 ⊖ [z] of [z] in Cm+2. For [z] ∈ Qm the tangent space T[z]Q
m can then be

identified canonically with the orthogonal complement Cm+2⊖ ([z]⊕ [z̄]) of [z]⊕ [z̄]
in Cm+2. Note that z̄ ∈ ν[z]Q

m is a unit normal vector of Qm in CPm+1 at the
point [z].

We denote by Az̄ the shape operator of Q
m in CPm+1 with respect to z̄. Then we

have Az̄w = w for all w ∈ T[z]Q
m, that is, Az̄ is just complex conjugation restricted

to T[z]Q
m. The shape operator Az̄ is an antilinear involution on the complex vector

space T[z]Q
m and

T[z]Q
m = V (Az̄)⊕ JV (Az̄),

where V (Az̄) = Rm+2 ∩ T[z]Q
m is the (+1)-eigenspace and JV (Az̄) = iRm+2 ∩

T[z]Q
m is the (−1)-eigenspace of Az̄. Geometrically this means that the shape

operator Az̄ defines a real structure on the complex vector space T[z]Q
m. Recall

that a real structure on a complex vector space V is by definition an antilinear
involution A : V → V . Since the normal space ν[z]Q

m of Qm in CPm+1 at [z] is

a complex subspace of T[z]CPm+1 of complex dimension one, every normal vector
in ν[z]Q

m can be written as λz̄ with some λ ∈ C. The shape operators Aλz̄ of
Qm define a rank two vector subbundle A of the endomorphism bundle End(TQm).
Since the second fundamental form of the embedding Qm ⊂ CPm+1 is parallel (see
e.g. [27]), A is a parallel subbundle of End(TQm). For λ ∈ S1 ⊂ C we again get
a real structure Aλz̄ on T[z]Q

m and we have V (Aλz̄) = λV (Az̄). We thus have an

S1-subbundle of A consisting of real structures on the tangent spaces of Qm.
The Gauss equation for the complex hypersurface Qm ⊂ CPm+1 implies that the

Riemannian curvature tensor R of Qm can be expressed in terms of the Riemannian
metric g, the complex structure J and a generic real structure A in A:

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y

+ g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+ g(AY,Z)AX − g(AX,Z)AY

+ g(JAY,Z)JAX − g(JAX,Z)JAY.

Note that the complex structure J anti-commutes with each endomorphism A ∈ A,
that is, AJ = −JA.

A nonzero tangent vector W ∈ T[z]Q
m is called singular if it is tangent to more

than one maximal flat in Qm. There are two types of singular tangent vectors for
the complex quadric Qm:

1. If there exists a real structure A ∈ A[z] such that W ∈ V (A), then W is
singular. Such a singular tangent vector is called A-principal.

2. If there exist a real structure A ∈ A[z] and orthonormal vectors X,Y ∈
V (A) such that W/||W || = (X + JY )/

√
2, then W is singular. Such a

singular tangent vector is called A-isotropic.

Basic complex linear algebra shows that for every unit tangent vector W ∈ T[z]Q
m

there exist a real structure A ∈ A[z] and orthonormal vectors X,Y ∈ V (A) such
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that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0
and t = π/4.

Let M be a real hypersurface in a Kähler manifold M̄ . The complex structure
J on M̄ induces locally an almost contact metric structure (ϕ, ξ, η, g) on M . In
the context of contact geometry, the unit vector field ξ is often referred to as the
Reeb vector field on M and its flow is known as the Reeb flow. The Reeb flow has
been of significant interest in recent years, for example in relation to the Weinstein
Conjecture. We are interested in the Reeb flow in the context of Riemannian
geometry, namely in the classification of real hypersurfaces with isometric Reeb
flow in homogeneous Kähler manifolds.

For the complex projective space CPm a full classification was obtained by Oku-
mura in [19]. He proved that the Reeb flow on a real hypersurface in CPm =
SUm+1/S(UmU1) is isometric if and only if M is an open part of a tube around a
totally geodesic CP k ⊂ CPm for some k ∈ {0, . . . ,m−1}. For the complex 2-plane
Grassmannian G2(Cm+2) = SUm+2/S(UmU2) the classification was obtained by
the author in [26]. We have proved that the Reeb flow on a real hypersurface in
G2(Cm+2) is isometric if and only if M is an open part of a tube around a totally
geodesic G2(Cm+1) ⊂ G2(Cm+2). Finally, related to the isometric Reeb flow, we
give a mention for our recent work due to Berndt and Suh [6]. In this lecture we
want to investigate this problem for the complex quadric Qm = SOm+2/SOmSO2.
In view of the previous two results a natural expectation is that the classification
involves at least the totally geodesic Qm−1 ⊂ Qm. Surprisingly, this is not the case.
Our main result states:

Theorem 3.1. Let M be a real hypersurface of the complex quadric Qm, m ≥ 3.
The Reeb flow on M is isometric if and only if m is even, say m = 2k, and M is
an open part of a tube around a totally geodesic CP k ⊂ Q2k.

Every tube around a totally geodesic CP k ⊂ Q2k is a homogeneous hypersurface.
In fact, the closed subgroup Uk+1 of SO2k+2 acts on Q2k with cohomogeneity one.
The two singular orbits are totally geodesic CP k ⊂ Q2k and the principal orbits
are the tubes around any of these two singular orbits. So as a corollary we get:

Corollary 3.1. Let M be a connected complete real hypersurface in the complex
quadric Q2k, k ≥ 2. If the Reeb flow on M is isometric, then M is a homogeneous
hypersurface of Q2k.

It is remarkable that in this situation the existence of a particular one-parameter
group of isometries implies transitivity of the isometry group. As another interest-
ing consequence we get:

Corollary 3.2. There are no real hypersurfaces with isometric Reeb flow in the
odd-dimensional complex quadric Q2k+1, k ≥ 1.

To our knowledge the odd-dimensional complex quadrics are the first examples
of homogeneous Kähler manifolds which do not admit a real hypersurface with
isometric Reeb flow.
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4. Contact hypersurfaces in Complex Quadric Qm

This section is a recent work due to Berndt and the author [7]. A contact
manifold is a smooth (2n − 1)-dimensional manifold M together with a one-form
η satisfying η ∧ (dη)n−1 ̸= 0, n ≥ 2. The one-form η on a contact manifold is
called a contact form. The kernel of η defines the so-called contact distribution C
in the tangent bundle TM of M . Note that if η is a contact form on a smooth
manifold M , then ρη is also a contact form on M for each smooth function ρ on M
which is nonzero everywhere. The origin of contact geometry can be traced back to
Hamiltonian mechanics and geometric optics. The standard example of a contact
manifold is R3 together with the contact form η = dz − y dx.

Another standard example is a round sphere in an even-dimensional Euclidean
space. Consider the sphere S2n−1(r) with radius r ∈ R+ in Cn and denote by ⟨·, ·⟩
the inner product on Cn given by ⟨z, w⟩ = Re

∑n
ν=1 zνw̄ν . By defining ξz = − 1

r iz

for z ∈ S2n−1(r) we obtain a unit tangent vector field ξ on S2n−1(r). We denote
by η the dual one-form given by η(X) = ⟨X, ξ⟩ and by ω the Kähler form on Cn

given by ω(X,Y ) = ⟨iX, Y ⟩. A straightforward calculation shows that dη(X,Y ) =
− 2

rω(X,Y ). Since the Kähler form ω has rank 2(n−1) on the kernel of η it follows

that η∧(dη)n−1 ̸= 0. Thus S2n−1(r) is a contact manifold with contact form η. This
argument for the sphere motivates a natural generalization to Kähler manifolds.

Let (M̄, J, g) be a Kähler manifold of complex dimension n and let M be a
connected oriented real hypersurface of M̄ . The Kähler structure on M̄ induces
an almost contact metric structure (ϕ, ξ, η, g) on M . The Riemannian metric on
M is the one induced from the Riemannian metric on M̄ , both denoted by g. The
orientation on M determines a unit normal vector field N of M . The so-called Reeb
vector field ξ on M is defined by ξ = −JN and η is the dual one form on M , that is,
η(X) = g(X, ξ). The tensor field ϕ on M is defined by ϕX = JX − g(JX,N)N =
JX− η(X)N , so that ϕX is just the tangential component of JX. The tensor field
ϕ determines the fundamental 2-form ω on M by ω(X,Y ) = g(ϕX, Y ). M is said
to be a contact hypersurface if there exists an everywhere nonzero smooth function
ρ on M such that dη = 2ρω. It is clear that if dη = 2ρω holds then η∧ (dη)n−1 ̸= 0,
that is, every contact hypersurface in a Kähler manifold is a contact manifold.

Contact hypersurfaces in complex space forms of complex dimension n ≥ 3 have
been investigated and classified by Okumura [20] (for the complex Euclidean space
Cn and the complex projective space CPn) and Vernon [21] (for the complex hyper-
bolic space CHn). In this paper we carry out a systematic study of contact hyper-
surfaces in Kähler manifolds. We will then apply our results to the complex quadric
Qn = SOn+2/SOnSO2 and its noncompact dual space Qn∗ = SOo

n,2/SOnSO2 to
prove the following two classifications:

Theorem 4.1. Let M be a connected orientable real hypersurface with constant
mean curvature in the complex quadric Qn = SOo

n+2/SOnSO2 and n ≥ 3. Then
M is a contact hypersurface if and only if M is congruent to an open part of the
tube of radius 0 < r < π

2
√
2
around a real form Sn of Qn.

Theorem 4.2. Let M be a connected orientable real hypersurface with constant
mean curvature in the noncompact dual Qn∗ = SOo

n,2/SOnSO2 of the complex
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quadric and n ≥ 3. Then M is a contact hypersurface if and only if M is congruent
to an open part of one of the following contact hypersurfaces in Qn∗:

(i) the tube of radius r ∈ R+ around the totally geodesic Q(n−1)∗ in Qn∗;
(ii) a horosphere in Qn∗ whose center at infinity is determined by an A-principal

geodesic in Qn∗;
(iii) the tube of radius r ∈ R+ around a real form RHn in Qn∗.

The symbol A refers to a circle bundle of real structures on Qn∗ and the notion
of A-principal will be explained later. Every contact hypersurface in a complex
space form has constant mean curvature. Our results on contact hypersurfaces in
Kähler manifolds suggest that it is natural to impose the condition of constant
mean curvature in the more setting.
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[16] J.D. Pérez, On the Ricci tensor of real hypersurfaces of quaternionic projective space, Inter-

nat. J. Math., & Math. Sci. 19(1996), 193–197.
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