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1. The catenoid

The catenoid is the first nontrivial minimal surface discovered. It was
Euler who found it in 1744 in the process of proving that when the catenary
is rotated about an axis it generates a surface of smallest area. In 1860
Bonnet showed that the catenoid is the only nonplanar minimal surface of
revolution.

Recently Bernstein and Breiner proved that all embedded minimal annuli
in a slab have area bigger than or equal to the minimum area of the catenoids
in the same slab [1]. That minimum is attained by the catenoidal waist along
the boundary of which the rays from the center of the slab are tangent to the
waist. This waist is said to be maximally stable because its proper subset
is stable and any subset of the catenoid properly containing the waist is
unstable.

It is tempting to conjecture that Bernstein-Breiner’s theorem should also
hold for a minimal surface with genus in a slab as they conjectured, and for a
multiply connected minimal surface in a slab as well. Indeed, the author and
Benôıt Daniel prove this conjecture provided the intersections of the minimal
surface with horizontal planes have the same orientation [2]. The orientation
of the horizontal section is induced by the surface. If the minimal surface in
a slab has more than two boundary components or nonzero genus, it may
happen that the horizontal section of the surface consists of two or more
closed curves which have both clockwise and counterclockwise orientations.
If this is not the case, we can prove the conjecture.

The part for the catenoid is a preliminary report. The paper with full
proofs will appear later.

2. Theorem

Given the catenoid C = {(x, y, z) ∈ R3 : cosh z =
√
x2 + y2}, Cba :=

C∩{a ≤ z ≤ b} is called a catenoidal waist. If there exists a point p = (0, 0, c)
such that the rays emanating from p are tangent to C along the waist circles
C ∩ {z = a, b}, then Cba is called a maximally stable waist. This is because
the homotheties centered at p give a foliation of a tubular neighborhood of
Cba, which generates a Jacobi fields J on Cba with |J | > 0 and vanishing only
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on ∂Cba. Let β > 0 be the unique solution to the equation

(2.1) tanhx = 1/x.

Then it is easy to see that the tangent to the graph of y = coshx at x = β

passes through the origin. It follows that Cβ−β is maximally stable.

Theorem 2.1. Given a horizontal slab Ha
−a := {−a ≤ z ≤ a} in R3, let

Σ be a compact minimal surface in Ha
−a with ∂Σ ⊂ ∂Ha

−a such that all
the components of its intersection with any horizontal plane have the same
orientation. Then there exists a catenoidal waist W ⊂ Ha

−a whose flux has
the same vertical component as Σ such that

(2.2) Area(Σ) ≥ Area(W).

Also

(2.3) Area(W) ≥ Area

(
a

β
Cβ−β

)
,

where β satisfies tanhβ = 1
β and a

βC
β
−β is the homothetic expansion of the

catenoid Cβ−β by the factor of a
β . The boundary circles of a

β C
β
−β lie on the

boundary of Ha
−a and a

β C
β
−β is maximally stable. Moreover,

Area(Σ) = Area

(
a

β
Cβ−β

)
if and only if Σ = a

β C
β
−β up to translation.

Proof. The minimality of Σ in R3 implies that the Euclidean coordinates
x, y, z of R3 are harmonic on Σ. The critical points of x, y, z are isolated on
Σ. Let Σ̃ be the set of regular points of z. Let u = z|Σ and define v = u∗,

the harmonic conjugate of u on Σ̃. Note that v is multi-valued on Σ̃ but dv
is well defined there. Then w = u + iv is a local complex parameter on Σ̃.
The Gauss map g : Σ→ C ∪ {∞} is a meromorphic function which is used
to express the metric of Σ:

ds2 = cosh2 κ|dw|2, κ = ln |g| = Re(log g), coshκ =
1

2

(
|g|+ 1

|g|

)
.

The key idea of the proof is to take the average of the harmonic function
κ(u, v) along the level curves of u, γc : {u = c}. To do so, we need to find
the total variation of v along γc:

(2.4)

∫
γc

dv =

∫
γc

dz∗ := f(c).

f(c) equals the vertical component of the flux of Σ along γc, which is in fact
constant for −a ≤ c ≤ a.

The average h(u) of κ(u, v) along γu is defined by

h(u) =
1

f

∫
γ(u)

κ(u, v)dv.
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Since κ(u, v) is harmonic, so is h(u) and

h′′(u) = ∆h = 0.

Hence h(u) is linear in an open interval where u is regular. Let’s compute
the slope of h(u). By the Cauchy-Riemann equations,

h′(u) =
1

f

∫
γ(u)

κu(u, v)dv =
1

f

∫
γ(u)

κ∗v(u, v)dv =
1

f
(κ∗(u, f)− κ∗(u, 0)).

Since
log g = ln |g|+ i arg g = κ(u, v) + i κ∗(u, v),

κ∗(u, f) − κ∗(u, 0) equals 2π times the total rotation number r(γu) of the
set γu which is the union of a finite number of closed curves.

If all the components of γc have the same orientation, obviously

(2.5) r(γc) ≥ 1.

h(u) is piecewise linear and continuous at the height of the horizontal points.
Now let’s compute the area of Σ.

Area(Σ) =

∫ a

−a

∫ f

0
cosh2 κ(u, v)dv du ≥

∫ a

−a
f cosh2 h(u)du,

where we have the inequality due to the convexity of cosh2 x. If h(u) vanishes
at some height d, define

k(u) =
2π

f
(u− d).

If h(u) has no zero and minh(u) = h(−a) > 0, define

k(u) =
2π

f
(u+ a) + h(−a),

and if max h(u) = h(a) < 0, define

k(u) =
2π

f
(u− a) + h(a).

Then we have for every u

h(u) ≤ k(u) ≤ 0 or 0 ≤ k(u) ≤ h(u).

It follows that
coshh(u) ≥ cosh k(u).

Therefore

(2.6) Area(Σ) ≥
∫ a

−a
f cosh2 h(u)du ≥

∫ a

−a
f cosh2 k(u)du.

By the way, for some d0 ∈ R

k(u) =
2π

f
u+ d0 = Re

(
2π

f
w + d0

)
.

So

Area(Σ) ≥ Area(C(2πw/f + d0) ∩Ha
−a),
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which proves (2.2) with W = C(2πw/f + d0) ∩Ha
−a. Note here that

Area(C(2πw/f + d0) ∩Ha
−a) ≥ Area(C(2πw/f) ∩Ha

−a).(2.7)

Now we need to find the catenoidal waist in Ha
−a with smallest area. (2.1)

implies that β = ea and hence

(2.8) Area(C(2πw/f) ∩Ha
−a) ≥ Area(C(βw/a) ∩Ha

−a).

Since the central waist circle of C(βw/a) has radius r = a/β, we have

C(βw/a) =
a

β
C.

Therefore

C(βw/a) ∩Ha
−a =

a

β
Cβ−β,

which, together with (2.7) and (2.8), gives (2.3). Clearly a
β C

β
−β is maximally

stable. �

3. The helicoid

Catalan proved that the helicoid and the plane are the only ruled minimal
surfaces in R3. Recently Eunjoo Lee, a former student of the author, has
given some new characterizations of the helicoid as follows.

Definition:
Let Cyl = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, 0 ≤ z ≤ 1},
S = {(x, y, z) ∈ R3 : x2 + y2 = 1, 0 < z < 1},
d1, d2 : diameters on the top and bottom disks of ∂Cyl,
`: the central axis of Cyl,
HC : the helicoid ⊂ Cyl containing d1 ∪ d2 ∪ `,
h1, h2: the helices ⊂ ∂HC ∩ S.

Theorem 3.1. Let Σ ⊂ Cyl be a minimal surface spanning d1∪d2∪h1∪h2.
If the slope of hi as a curve on the flat surface S is ≥ 1, then Σ = HC .

Theorem 3.2. Let Σ ⊂ Cyl be a minimal surface spanning d1∪d2∪h1∪h2.
If the angle swept from d1 to d2 is ≤ π, then Σ = HC .

Theorem 3.3. Let Σ ⊂ Cyl be a minimal disk and γ1, γ2 ⊂ S simple curves
connecting ∂d1 to ∂d2 such that ∂Σ = d1 ∪ d2 ∪ γ1 ∪ γ2. If γ1 is axially
symmetric to γ2 and Σ is perpendicular to S along γ1 ∪ γ2, then Σ = HC .

Theorem 3.4. Let Σ be a disk type surface in Cyl which is not necessarily
minimal such that ∂Σ ⊂ ∂Cyl and Σ ⊃ d1 ∪ d2 ∪ `. Then Area(Σ) ≥
Area(HC) and equality holds if and only if Σ = HC .

Theorem 3.5. Let Σ be a disk type surface in Cyl which is not necessarily
minimal. And let γ1, γ2 ⊂ S be simple curves connecting ∂d1 to ∂d2 such
that ∂Σ = d1 ∪ d2 ∪ γ1 ∪ γ2. If γ1 is axially symmetric to γ2 and the total
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curvature of γ1 is ≤ π, then Area(Σ) ≥ Area(HC) and equality holds if and
only if Σ = HC .
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