半単純擬リーマン対称空間に対するs表現の軌道とそのaustere性について

馬場 蔵人 (福島工業高等専門学校)

導入

擬リーマン幾何学において, austere 部分多様体の概念が Harvey-Lawson([3]) および Anciaux([1]) によっ て導入された.近年, リーマン対称空間内の austere 部分多様体の例が Lie 群作用(表現)の方法によって 与えられた([5], [6], [7]).[6] において, Ikawa-Sakai-Tasaki は半単純リーマン対称空間の s 表現(イソトロ ピー表現)に対して球面内の austere 軌道を分類している.また,その分類方法は制限ルート系の理論を用 いて構築されている.本研究の目的は,彼らの方法を擬リーマンの場合に拡張し,半単純擬リーマン対称空 間の s 表現に対して擬球内の austere 軌道の例を与えることである.

1 s表現の軌道の部分多様体幾何

1.1 非退化軌道の特徴付け

Gを連結半単純非コンパクト Lie 群, $\sigma \in G$ の対合とする. $H \in G$ の閉部分群で $(G_{\sigma})_0 \subset H \subset G_{\sigma}$ を満たすものとする.ただし, $G_{\sigma}(\subset G) \in \sigma$ の固定部分群, $(G_{\sigma})_0 \in \mathcal{C}$ の単位連結成分とする.このとき,商空間 G/H 上には $\mathfrak{g} :=$ Lie(G)のキリング形式 Bから誘導される計量によって擬リーマン対称空間の構造が定まる.また,G は G/H に自然に作用しており $H(\subset G)$ の作用は原点 σ を固定していることから,H は σ における G/Hの接空間 $T_o(G/H)$ 上の表現を与える.この表現は G/H のs表現(イソトロピー表現)とよばれ,Gの随伴表現から誘導される Hの q 上の随伴表現 Ad: $H \rightarrow GL(\mathfrak{q})$ と同一視できることが知られている.ただし, $\mathfrak{q}(\subset \mathfrak{g})$ は $\sigma \in Inv(G)$ が誘導する g の対合の(-1)固有空間を表す.この同一視は軌道に付随する幾何構造を g の Lie 代数構造を用いて記述できるようになる利点がある.以下, $X \in \mathfrak{q}$ はr := B(X, X) > 0を満たすとする.このとき, $Ad(H)(\subset GL(\mathfrak{q}))$ は q 上の擬直交群の部分群であることから Xを通る軌道 M = Ad(H)Xは擬超球面 $S := \{v \in \mathfrak{q} \mid B(v, v) = r\}$ に含まれる.このとき, $M \hookrightarrow S$ が擬リーマン部分多様体(すなわち,M上の誘導計量が非退化)であることが次のように特徴付けられる.

補題 1.1. $M(= \operatorname{Ad}(H)X) \hookrightarrow S$ が擬リーマン部分多様体である必要十分条件は, Mの基点 $X \in S(\subset \mathfrak{g})$ が 半単純元となることである.

ここで, $X \in \mathfrak{g}$ が半単純であるとは $\operatorname{ad}(X) \in \operatorname{End}(\mathfrak{g})$ (ad は \mathfrak{g} の随伴表現)が C上で対角化可能であることをいう.上記の補題より, $M \hookrightarrow S$ が擬リーマン部分多様体であるとき, X を含む Cartan 部分空間(すなわち, \mathfrak{q} 内の極大可換部分空間ですべての元が半単純となるもの)が存在する([8, Corollary]).よって, Cartan 部分空間に関する制限ルート系の理論([8], [3])を用いて $M \hookrightarrow S$ に付随する幾何構造を詳細に記述することが可能となる.

1.2 形作用素の Jordan-Chevalley 分解

 $X \in \mathfrak{q}$ を通る軌道 $M(= \operatorname{Ad}(H)X) \hookrightarrow S$ は擬リーマン部分多様体とする.一般に,法ベクトル $\xi \in T_X^{\perp}M$ 方向の形作用素 $A_{\xi} \in \operatorname{End}(T_XM)$ は複素の範囲であっても対角化可能であるとは限らない(実際, A_{ξ} の行列表示は対称行列になるとは限らない).この節では,随伴表現 ad から得られる g の Jordan-Chevalley 分解を利用して $A_{\xi} \in \operatorname{End}(T_XM)$ の Jordan-Chevalley 分解を記述する.ここで, $Y \in \mathfrak{g}$ の分解 Y = S + Nが Jordan-Chevalley 分解であるとは次の二つの条件を満たすときをいう: (i) $S, N \in \mathfrak{g}$ はそれぞれ半単純元

Based on arXiv: 1511.05243; E-mail: baba@fukushima-nct.ac.jp

とベキ零元, (ii) [S, N] = 0([9, Proposition 1.3.5.1]). さらにこのような $S, N \in \mathfrak{g}$ の存在は唯一つに定ま リ, $S = Y_s, N = Y_n$ で表すことにする.

補題 1.2. $\xi = \xi_s + \xi_n$ を法ベクトル $\xi \in T_X^{\perp}M(\subset \mathfrak{g})$ の Jordan-Chevalley 分解とする.このとき, $\xi_s, \xi_n \in T_X^{\perp}M$ が成り立つ.

上記の補題より A_{ξ} の分解 $A_{\xi} = A_{\xi_s} + A_{\xi_n}$ は well-defined である.一方,M上の $Z \in \mathfrak{h} := \text{Lie}(H)$ が生成 するベクトル場を Z^* で表したとき, $A_{\xi}Z_X^* = -[Z,\xi] (\xi \in T_X^{\perp}M)$ となることから,Cartan 部分空間に関 する制限ルート系の理論を用いて A_{ξ} の半単純性およびベキ零性を調べることで次の結果を得る.

補題 1.3. 法ベクトル $\xi \in T_X^\perp M(\subset \mathfrak{g})$ が半単純であるとき, $A_{\xi} \in \operatorname{End}(T_X M)$ も半単純である.さらに,Rを X, ξ を含む Cartan 部分空間に関する制限ルート系としたとき, A_{ξ}^C の固有値全体 Spec A_{ξ}^C は次で記述 される:

Spec
$$A_{\xi}^{C} = \left\{ -\frac{\alpha(\xi)}{\alpha(X)} \middle| \alpha \in R_{+} \text{ with } \alpha(X) \neq 0 \right\}.$$

ただし, R₊ は R の正ルート系とする.

注意 1.4. 補題 1.3 にある X, ξ を含む Cartan 部分空間は常に存在する.その証明には q 内の部分空間 a が X を含む Cartan 部分空間 (for $(\mathfrak{g}, \mathfrak{h})$) になる必要十分条件は, a が \mathfrak{q}_X 内の Cartan 部分空間 (for $(\mathfrak{g}_X, \mathfrak{h}_X)$) となる事実を用いる.ただし, $\mathfrak{g}_X = \{Y \in \mathfrak{g} \mid [X, Y] = 0\}, \mathfrak{h}_X = \mathfrak{g}_X \cap \mathfrak{h}, \mathfrak{q}_X = \mathfrak{g}_X \cap \mathfrak{q}$ とする (\mathfrak{g}_X は \mathfrak{g} 内の簡約 Lie 部分代数であることが示され, Cartan 部分空間の概念を簡約対称対の場合にも自然に拡張される).

補題 1.5. 法ベクトル $\xi \in T_X^\perp M(\subset \mathfrak{g})$ がベキ零であるとき, $A_\xi \in \operatorname{End}(T_X M)$ もベキ零である.

上記の補題から次の結果を得る.

命題 1.6. 分解 $A_{\xi} = A_{\xi_s} + A_{\xi_n}$ は A_{ξ} の Jordan-Chevalley 分解を与える. すなわち, A_{ξ_s} は半単純, A_{ξ_n} はベキ零および $A_{\xi_s}A_{\xi_n} = A_{\xi_n}A_{\xi_s}$ が成り立つ.

系 1.7. 法ベクトル $\xi \in T_X^{\perp} M(\subset \mathfrak{g})$ の Jordan-Chevalley 分解を $\xi = \xi_s + \xi_n$ とし, X と ξ_s の含む Cartan 部分空間に関する制限ルート系を R とする.このとき, Spec A_{ε}^C は次で記述される:

Spec
$$A_{\xi}^{\boldsymbol{C}} = \left\{ -\frac{\alpha(\xi_s)}{\alpha(X)} \middle| \alpha \in R_+ \text{ with } \alpha(X) \neq 0 \right\}.$$

2 Austere 部分多様体の構築:s表現の方法

2.1 Austere 軌道の特徴付け

Austere 部分多様体は次で定義される.

定義 2.1 ([4, Definition 3.15], [1, p. 27]). 擬リーマン部分多様体 $M \hookrightarrow \tilde{M}$ が austere 部分多様体であるとは,任意の $x \in M, \xi \in T_x^{\perp}M$ に対して, ξ 方向の形作用素に対する特性多項式のすべての奇数次の係数が 恒等的に 0 となることである.すなわち,任意の $x \in M, \xi \in T_x^{\perp}M$ に対して, ξ 方向の形作用素の固有値 全体が重複度を込めて -1 倍で不変である.

 $X \in \mathfrak{q}$ を通る軌道 $M(= \operatorname{Ad}(H)X) \hookrightarrow S$ は擬リーマン部分多様体であるとする.この節では, $M \hookrightarrow S$ が austere 部分多様体である特徴付けを与える.その方法として Ikawa-Sakai-Tasaki([6]) が与えた s 表現の方法を擬リーマンの場合に拡張する.彼らの方法で key となるのは軌道 M のスライス表現(基点 X における H のイソトロピー部分群 H_X が定める $T_X^{\perp}M$ 上の直交表現)が持つ極性(polarity)である.すなわち,G/H がリーマン対称空間の場合,スライス表現の切断は基点 X を含む極大可換部分空間 a を用いて a \ominus $\mathbf{R}X$ によって与えられる.よって, $M \hookrightarrow S$ に対して $\xi \in \mathfrak{a} \ominus \mathbf{R}(\subset T_X^{\perp}M)$ 方向の形作用素が本質的と

なり, $M \hookrightarrow S$ が austere 部分多様体となることが a に関する制限ルート系によって特徴付けられる.一方, G/Hが擬リーマン対称空間の場合,スライス表現は擬直交表現における極性を持つことが知られているが, その切断はすべての軌道と交わるとは限らない(図1に示すように, $SO(2) \curvearrowright \mathbb{R}^2$ では x 軸と y 軸はすべ ての軌道と交わっている.一方, $SO(1,1) \curvearrowright \mathbb{R}^2$ では x 軸もしくは y 軸を通る軌道を集めてきても退化軌 道(点線)は含まれない.)しかし, Spec $A_{\xi}^C = \operatorname{Spec} A_{\xi_s}^C$ ($\xi = \xi_s + \xi_n \in T_X^{\perp}M$)より,M が austere 性を持 つかどうかは Spec $A_{\xi_s}^C$ の対称性を調べれば十分であることがわかる.

補題 2.2. 法空間 $T_X^\perp M(\subset \mathfrak{g})$ 内の半単純元全体 $(T_X^\perp M)_s$ は次で記述される:

$$(T_X^{\perp}M)_s = \bigcup_{\mathfrak{a}\in \mathcal{CS}_X} (\mathfrak{a}\ominus \mathbf{R}X).$$

ただし, CS_X は X を含む Cartan 部分空間全体を表す.

上記の補題より X を含む Cartan 部分空間が軌道 M の基点 X におけるスライス表現の切断のような役割を はたすことが期待される.また,イソトロピー部分群 H_X は CS_X にも自然に作用しているころから,二つ の $\mathfrak{a},\mathfrak{a}' \in CS_X$ で $\mathfrak{a}' = \operatorname{Ad}(h)\mathfrak{a}(h \in H_X)$ となっていれば, $A_{\operatorname{Ad}(h)\xi} = \operatorname{Ad}(h)A_{\xi}\operatorname{Ad}(h)^{-1}$ となる.したがっ て,実数の範囲では $\xi \in \bigcup_{\mathfrak{a} \in CS_X/H_X} \mathfrak{a} \ominus \mathbf{R}X (\subset T_X^{\perp}M)$ 方向の形作用素 A_{ξ} をが本質的となる(すでに見た ように CS_X/H_X は一点から成るとは限らない(図1)).さらに,複素化した形作用素では次の結果が key となる.

補題 2.3. 二つの $\mathfrak{a}, \mathfrak{a}' \in \mathcal{CS}_X$ に対して, $\psi \in \operatorname{Aut}(\mathfrak{g}^C)$ で $\psi \circ \sigma = \sigma \circ \psi, \psi(\mathfrak{a}^C \ominus CX) = \mathfrak{a}'^C \ominus CX$ および $\psi(X) = X$ を満たすものが存在する.

以上より, $M \hookrightarrow S$ が austere 性を持つかどうかを調べるにあたっては, X を含むある Cartan 部分空間 a に対して, $\xi \in \mathfrak{a} \ominus \mathbf{R} X (\subset T_X^{\perp} M)$ 方向の形作用素 Spec A_{ξ}^C の対称性を調べれば十分であることがわかる. このとき, a に関する制限ルート系 R を用いて $M \hookrightarrow S$ が austere 部分多様体であることを特徴付けたのが次の結果である.

命題 2.4. $M \hookrightarrow S$ が austere 部分多様体である必要十分条件は $\mathfrak{a}^{C} \ominus CX$ 内の部分集合

$$\left\{-\frac{p_X(A_\alpha)}{\alpha(X)}\middle|\alpha\in R_+ \text{ with } \alpha(X)\neq 0\right\}$$

が(重複度を込めて)-1倍で不変になることである.ただし, $A_{\alpha} \in \mathfrak{a}^{C}$ は $\alpha \in R$ の制限ルートベクトル, $p_{X}:\mathfrak{a}^{C} \rightarrow \mathfrak{a}^{C} \ominus CX$ はXに沿った直交射影とする.

系 2.5. \mathfrak{a} 上で実数値の制限ルートに対する制限ルートベクトルを通る軌道は擬超球面 S 内の austere 部分 多様体である .

注意 2.6. 一般に,制限ルートベクトル $A_{\alpha} \in \mathfrak{a}^{C}$ ($\alpha \in R$) は \mathfrak{a} に属するとは限らない. $A_{\alpha} \in \mathfrak{a}$ となる必要 十分条件が α が \mathfrak{a} 上で実数値をとることである(以下,このような制限ルートを実制限ルートとよぶ).

2.2 極大分離的 Cartan 部分空間に関する制限ルート系の実制限ルートの分類

例 2.7 (($\mathfrak{g},\mathfrak{h}$) = ($\mathfrak{e}_{6(-14)},\mathfrak{su}(5,1)$ ⊕ $\mathfrak{sl}(2,\mathbf{R})$)の場合). \mathfrak{g} の極大コンパクト部分代数は $\mathfrak{t} = \mathfrak{so}(10) \oplus \mathfrak{so}(2)$, ($\mathfrak{g},\mathfrak{h}$)のリーマン双対は($\mathfrak{g}^{d},\mathfrak{t}^{d}$) = ($\mathfrak{e}_{6(2)},\mathfrak{su}(6) \oplus \mathfrak{su}(2)$)である.このとき,($\mathfrak{g},\mathfrak{t}$)および($\mathfrak{g}^{d},\mathfrak{t}^{d}$)のリーマン対称空間としての佐武図形を図 2 (左・中央) に示す.特に,($\mathfrak{g}^{d},\mathfrak{t}^{d}$)の佐武図形より $R \cong F_{4}$ となる. \mathfrak{g}^{C} のルートを Cartan 部分空間へ制限したとき, $\lambda_{2} \mapsto \alpha_{1}, \lambda_{4} \mapsto \alpha_{2}, \lambda_{3} \mapsto \alpha_{3}, \lambda_{1} \mapsto \alpha_{4}$ の対応によって { $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ } は Rの基本系を与える.さらに,($\mathfrak{g},\mathfrak{t}$)の佐武図形を用いることで,(R, θ)の佐武図形が求 まる(図 2 右).したがって,{ $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ }上の θ 作用は次のように決定される:

$$\theta(\alpha_1) = -(\alpha_1 + 2\alpha_2 + 2\alpha_3), \ \theta(\alpha_2) = \alpha_2, \ \theta(\alpha_3) = \alpha_3, \ \theta(\alpha_1) = -(\alpha_2 + 2\alpha_3 + \alpha_4).$$

このとき, $\alpha = n_1\alpha_1 + \cdots + n_4\alpha_4 \in R$ に対して, $\theta(\alpha) = -\alpha \Leftrightarrow 2n_2 = 2n_1 + n_4, n_3 = n_1 + n_4$ となるので,実制限ルートは次のように決定される:

$$\pm(\alpha_1 + \alpha_2 + \alpha_3), \ \pm(\alpha_2 + 2\alpha_3 + 2\alpha_4), \ \pm(\alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4), \ \pm(2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4).$$

$(\mathfrak{g},\mathfrak{k})$ の佐武図形	$(\mathfrak{g}^d,\mathfrak{k}^d)$ の佐武図形	(R, heta)の佐武図形		
$\begin{array}{cccc} \lambda_2 \\ \bullet \\ \bullet \\ \circ \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet$	$\begin{array}{c} \lambda_2 \\ \lambda_6 \\ \bullet \\ $	$ \overset{\alpha_1}{\circ} \overset{\alpha_2}{\longrightarrow} \overset{\alpha_3}{\longrightarrow} \overset{\alpha_4}{\longrightarrow} \overset{\alpha_4}{\longrightarrow} \overset{\alpha_4}{\longrightarrow} \overset{\alpha_5}{\longrightarrow} \overset{\alpha_6}{\longrightarrow} \overset{\alpha_6}{\to} \overset{\alpha_6}{\to} \overset{\alpha_6}{\to} \alpha$		

図 2: 佐武図形

[2] において, 例 2.7の議論と同様に ($\mathfrak{g},\mathfrak{k}$) およびリーマン双対 ($\mathfrak{g}^d,\mathfrak{k}^d$)の佐武図形を用いて,次の二つのク ラス (A), (B)の半単純擬リーマン対称空間 G/H に対する (R,θ)の佐武図形を決定している:

- (A) g は単純で複素構造を持たないもの,
- (B) gは単純で複素構造を持つか, g = g₀ ⊕ g₀ (g₀: 複素構造を持たない非コンパクト実単純 Lie 代数)と なるもの.

さらに [2] おいて,例 2.7 以外にも上記のクラスの半単純擬リーマン対称空間を (R, θ) の佐武図形によるタイプ別に分け, (R, θ) の佐武図形を用いた包括的な実制限ルートの分類を行っている.その分類結果を表1に示す.よって,次の結果を得る.

定理 2.8. 表1の制限ルートベクトルを通る軌道は擬超球面 S 内の部分多様体である.

今後の課題:今回得られた結果は Ikawa-Sakai-Tasaki の分類結果 [6, Theorem 5.1] の部分的な拡張にあたるため,残りの部分についても擬リーマン対称空間の場合へ拡張することを試みる.

Type of (R, θ)	Real Restricted Roots	
AI	all restricted roots	
AIII	$\{\pm(\alpha_i + \dots + \alpha_{r+1-i}) \mid 1 \le i \le l\}$	
BI	$\{\pm(\alpha_i + \dots + \alpha_{j-1}) \mid 1 \le i < j \le l\} \cup \{\pm(\alpha_i + \dots + \alpha_r + \alpha_j + \dots + \alpha_r) \mid 1 \le i < j \le l\}$	
	$\cup \{ \pm (\alpha_i + \dots + \alpha_r) \mid 1 \le i \le l \}$	
BCI	$\{\pm(\alpha_i + \dots + \alpha_{j-1}) \mid 1 \le i < j \le l\} \cup \{\pm(\alpha_i + \dots + \alpha_r + \alpha_j + \dots + \alpha_r) \mid 1 \le i < j \le l\}$	
	$\cup \{ \pm (\alpha_i + \dots + \alpha_r) \mid 1 \le i \le l \} \cup \{ \pm 2(\alpha_i + \dots + \alpha_r) \mid 1 \le i \le l \}$	
BCIII	$\{\pm(\alpha_{2i-1}+2\alpha_{2i}+\dots+2\alpha_r)\mid 1\leq i\leq l\}$	
CI	$\{\pm(\alpha_i + \dots + \alpha_{j-1}) \mid 1 \le i < j \le l\} \cup \{\pm(\alpha_i + \dots + \alpha_{j-1} + \alpha_j + \dots + \alpha_r) \mid 1 \le i < j \le l\}$	
	$\cup \{ \pm (2\alpha_i + \dots + 2\alpha_{r-1} + \alpha_r) \mid 1 \le i \le l \}$	
CIII	$\{\pm(\alpha_{2i-1}+2\alpha_{2i}+\dots+2\alpha_{r-1}+\alpha_r) \mid 1 \le i \le l\}$	
DI	$\{\pm(\alpha_{i} + \dots + \alpha_{j-1}) \mid 1 \le i < j \le l\} \cup \{\pm(\alpha_{i} + \dots + \alpha_{r-2} + \alpha_{j} + \dots + \alpha_{r}) \mid 1 \le i < j \le l\}$	
DIII	$\{\pm(\alpha_{2i-1}+\cdots+\alpha_{r-2}+\alpha_{2i}+\cdots+\alpha_r)\mid 1\leq i\leq l\}$	
EI	all restricted roots	
EII	$ \{ \pm \alpha_2, \pm \alpha_4, \pm (\alpha_3 + \alpha_4 + \alpha_5), \pm (\alpha_2 + \alpha_4), \pm (\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5) \} \cup \\ \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5), \pm (\alpha_1 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6) \} \cup \{ \pm (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6) \} \cup \\ \{ \pm (\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5 + \alpha_6), \pm (\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6) \} \cup \\ \{ \pm (\alpha_1 + \alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6), \pm (\alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6) \} $	
EIII	$\{\pm(\alpha_1 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6) \pm (\alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6)\}$	
EV	all restricted roots	
EVI	$ \{ \pm \alpha_1, \pm \alpha_3, \pm (\alpha_1 + \alpha_3), \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5), \pm (\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5) \} \cup \{ \pm (\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5), \pm (\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7), \pm (2\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_1 + 2\alpha_2 + 2\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} \cup \{ \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7) \} $	
EVII	$\{\pm\alpha_7, \pm(\alpha_2+\alpha_3+2\alpha_4+2\alpha_5+2\alpha_6+\alpha_7), \pm(2\alpha_1+2\alpha_2+3\alpha_3+4\alpha_4+3\alpha_5+2\alpha_6+\alpha_7)\}$	
EVIII	all restricted roots	
EIX	$\{\pm \alpha_7, \pm \alpha_8, \pm (\alpha_7 + \alpha_8), \pm (\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7)\}\$	
	$\cup\{\pm(\alpha_{2}+\alpha_{3}+2\alpha_{4}+2\alpha_{5}+2\alpha_{6}+\alpha_{7}+\alpha_{8}),\pm(\alpha_{2}+\alpha_{3}+2\alpha_{4}+2\alpha_{5}+2\alpha_{6}+2\alpha_{7}+\alpha_{8})\}$	
	$\cup\{\pm(2\alpha_{1}+2\alpha_{2}+3\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6}+\alpha_{7})\}\cup\{\pm(2\alpha_{1}+2\alpha_{2}+3\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6}+2\alpha_{7}+\alpha_{8})\}\cup\{\pm(2\alpha_{1}+2\alpha_{2}+3\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6}+\alpha_{7}+\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+2\alpha_{7}+\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8})\}\cup\{\pm(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+2\alpha_{7}+2\alpha_{8})\}$	
FI	all restricted roots	
FII	$\{\pm(\alpha_1+2\alpha_2+3\alpha_3+2\alpha_4)\}$	
FIII	$\{\pm(\alpha_1 + \alpha_2 + \alpha_3), \pm(\alpha_2 + 2\alpha_3 + 2\alpha_4), \pm(\alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4), \pm(2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4)\}$	
G	all restricted roots	

 \mathbf{a} 1: The real restricted roots of R with respect to a maximally split Cartan subspace

Note: r (resp. l) denotes the rank (resp. the split rank) of G/H.

参考文献

- H. ANCIAUX, Minimal submanifolds in pseudo-Riemannian geometry, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
- K. BABA, Examples of austere orbits of the isotropy representations for semisimple pseudo-Riemannian symmetric spaces, arXiv: 1511.05243.
- [3] J. HAHN, Isotropy representations of semisimple symmetric spaces and homogeneous hypersurfaces, J. Math. Soc. Japan, 40 (1988), 271–288.
- [4] R. HARVEY AND H. B. LAWSON, Calibrated geometries, Acta Math., 148, (1982), 47–157.
- [5] O. IKAWA, The geometry of symmetric triad and orbit spaces of Hermann actions, J. Math. Soc. Japan 63 (2011), 79–136.
- [6] O. IKAWA, T. SAKAI AND H. TASAKI, Weakly reflective submanifolds and austere submanifolds, J. Math. Soc. Japan 61 (2009), 437–481.
- [7] N. KOIKE, Examples of certain kind of minimal orbits of Hermann actions, Hokkaido Math. J. 43 (2014), 21-42.
- [8] T. OSHIMA AND T. MATSUKI, Orbits on affine symmetric spaces under the action of the isotropy subgroups, J. Math. Soc. Japan, 32 (1980), 399–414.
- [9] G. WARNER, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, 1972.