CLASSIFICATION OF REAL HYPERSURFACES IN COMPLEX HYPERBOLIC TWO-PLANE GRASSMANNAINS RELATED TO THE RICCI TENSOR

GYU JONG KIM AND YOUNG JIN SUH

In the geometry of real hypersurfaces in complex space forms $M_m(c)$ or in quaternionic space forms $Q_m(c)$ Kimura [1] and [2] (resp. Pérez and Suh [4]) considered real hypersurfaces in $M_n(c)$ (resp. in $Q_m(c)$) with commuting Ricci tensor, that is, $S\phi = \phi S$, (resp. $S\phi_i = \phi_i S$, i = 1, 2, 3) where S and ϕ (resp. S and ϕ_i , i = 1, 2, 3) denote the Ricci tensor and the structure tensor of real hypersurfaces in $M_m(c)$ (resp. in $Q_m(c)$).

In [1] and [2], Kimura has classified that a Hopf hypersurface M in complex projective space $P_m(\mathbb{C})$ with commuting Ricci tensor is locally congruent to of type (A), a tube over a totally geodesic $P_k(\mathbb{C})$, of type (B), a tube over a complex quadric Q_{m-1} , $\cot^2 2r = m-2$, of type (C), a tube over $P_1(\mathbb{C}) \times P_{(m-1)/2}(\mathbb{C})$, $\cot^2 2r = \frac{1}{m-2}$ and n is odd, of type (D), a tube over a complex two-plane Grassmannian $G_2(\mathbb{C}^5)$, $\cot^2 2r = \frac{3}{5}$ and n = 9, of type (E), a tube over a Hermitian symmetric space SO(10)/U(5), $\cot^2 2r = \frac{5}{9}$ and m = 15.

On the other hand, in a quaternionic projective space $\mathbb{Q}P^m$ Pérez and Suh [4] have classified real hypersurfaces in QP^m with commuting Ricci tensor $S\phi_i=\phi_iS,i=1,2,3$, where S (resp. ϕ_i) denotes the Ricci tensor(resp. the structure tensor) of M in $\mathbb{Q}P^m$, is locally congruent to of A_1,A_2 -type, that is, a tube over $\mathbb{Q}P^k$ with radius $0 < r < \frac{\pi}{2}, k \in \{0, \cdots, m-1\}$. The almost contact structure vector fields $\{\xi_1,\xi_2,\xi_3\}$ are defined by $\xi_i=-J_iN, i=1,2,3$, where $J_i, i=1,2,3$, denote a quaternionic Kähler structure of $\mathbb{Q}P^m$ and N a unit normal field of M in $\mathbb{Q}P^m$. Moreover, Pérez and Suh [3] have considered the notion of $\nabla_{\xi_i}R=0, i=1,2,3$, where R denotes the curvature tensor of a real hypersurface M in $\mathbb{Q}P^m$, and proved that M is locally congruent to a tube of radius $\frac{\pi}{4}$ over $\mathbb{Q}P^k$.

Let us denote by $SU_{2,m}$ the set of $(m+2)\times(m+2)$ -indefinite special unitary matrices and U_m the set of $m\times m$ -unitary matrices. Then the Riemannian symmetric space $SU_{2,m}/S(U_2U_m)$, $m\geq 2$, which consists of complex two-dimensional subspaces in indefinite complex Euclidean space \mathbb{C}_2^{m+2} , has a remarkable feature that it is a Hermitian symmetric space as well as a quaternionic Kähler symmetric space. In fact, among all Riemannian symmetric spaces of noncompact type the symmetric spaces $SU_{2,m}/S(U_2U_m)$, $m\geq 2$, are the only ones which are Hermitian symmetric and quaternionic Kähler symmetric.

When the Ricci tensor S satisfies the formula $S\phi + \phi S = 2k\phi$, on M in $SU_{2,m}/S(U_2 \cdot U_m)$, we say M has a pseudo anti-commuting Ricci tensor. We give

a complete classification of real hypersurfaces in $SU_{2,m}/S(U_2 \cdot U_m)$ satisfying the notion of pseudo anti-commuting Ricci tensor as follows:

Main Theorem 1. Let M be a Hopf real hypersurface in $SU(2,m)/S(U(2) \cdot U(m))$ with pseudo anti-commuting Ricci tensor, $m \geq 3$. Then M is locally congruent to one of the following:

- (B) a tube around a totally geodesic $\mathbb{H}H^n$ in $SU(2,2n)/S(U(2)\times U(2n))$, m=2n;
- (C₂) a horosphere in $SU(2,m)/S(U(2) \times U(m))$ whose center at infinity is singular and of type $JN \perp \mathfrak{J}N$;
- (D) The normal bundle νM of M consists of singular tangent vectors of type $JX \perp \mathfrak{J}X$. Moreover, M has at least four distinct principal curvatures, three of which are given by

$$\alpha = \sqrt{2} \ , \ \gamma = 0 \ , \ \lambda = \frac{1}{\sqrt{2}}$$

with corresponding principal curvature spaces

$$T_{\alpha} = TM \ominus (\mathcal{C} \cap \mathcal{Q}) \ , \ T_{\gamma} = J(TM \ominus \mathcal{Q}) \ , \ T_{\lambda} \subset \mathcal{C} \cap \mathcal{Q} \cap J\mathcal{Q}.$$

If μ is another (possibly nonconstant) principal curvature function, then we have $T_{\mu} \subset \mathcal{C} \cap \mathcal{Q} \cap J\mathcal{Q}$, $JT_{\mu} \subset T_{\lambda}$ and $\mathfrak{J}T_{\mu} \subset T_{\lambda}$.

Now let us recall an n-dimensional Riemannian manifold (M,g) is said to be a $Ricci\ soliton$, If there exists a sooth vector field $V\in T_pM$ that satisfies $\frac{1}{2}(\mathfrak{L}_Vg)(X,Y)+Ric(X,Y)=2kg(X,Y)$ for any $X,Y\in TM$. As an application of our Main Theorem 1 to the Ricci soliton problem, we give another Main Theorem 2 as follows:

Main Theorem 2. There do not exist any Ricci soliton (M, g, ξ, k) on Hopf real hypersurface in complex hyperbolic two-plane Grassmannian $SU_{2,m}/S(U_2 \cdot U_m)$, $m \geq 3$.

References

- M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137–149.
- [2] M. Kimura, Some real hypersurfaces of a complex projective space, Saitama Math. J. 5 (1987), 1-5.
- [3] J.D. Pérez and Y.J. Suh, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0$, Diff. Geom. and Its Appl. 7 (1997), 211–217.
- [4] J.D. Pérez and Y.J. Suh, Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective space, Acta Math. Hungarica 91 (2001), 343-356.

GYUJONG KIM AND YOUNG JIN SUH KYUNGPOOK NATIONAL UNIVERSITY, DEPARTMENT OF MATHEMATICS, TAEGU 702-701, KOREA

E-mail address: hb2107@naver.com E-mail address: yjsuh@knu.ac.kr