THE PARALLELISMS FOR THE SHAPE OPERATOR OF REAL HYPERSURFACES IN COMPLEX HYPERBOLIC TWO-PLANE GRASSMANNIANS

HYUNJIN LEE AND YOUNG JIN SUH

As examples of Hermitian symmetric spaces of rank 2 we can give Riemannian symmetric spaces $G_2(\mathbb{C}^{m+2}) = SU_{m+2}/S(U_2U_m)$ and $Q^m = SO_{m+2}/SO_mSO_2$, which are said to be complex two-plane Grassmannians and complex quadric, respectively. Recently, the second author has focused on research for hypersurfaces of Q^m (see [7, 8]). On the other hand, as another kind of Hermitian symmetric space with rank 2 of noncompact type, we can give an example of complex hyperbolic two-plane Grassmannians $G_2^*(\mathbb{C}^{m+2}) = SU_{m,2}/S(U_2U_m)$ which is a set of all complex two-dimensional linear subspaces in indefinite complex Euclidean spaces \mathbb{C}_2^{m+2} . Then it is known that $G_2^*(\mathbb{C}^{m+2})$ has both a Kaehler structure J and a quaternionic Kaehler structure J not containing J, for details we refer to [5, 6]. In particular, when m=1, $G_2^*(\mathbb{C}^3)$ is isometric to the two-dimensional complex hyperbolic space $\mathbb{C}H^2$ with constant holomorphic sectional curvature -4. When m=2, we note that the isomorphism $SO_{4,2} \simeq SU_{2,2}$ yields an isometry between $G_2^*(\mathbb{C}^4)$ and the indefinite real Grassmann manifold $G_2^*(\mathbb{R}_2^6)$ of oriented two-dimensional linear subspaces in \mathbb{R}_2^6 . For this reason we assume $m \geq 3$ from now on.

On a real hypersurface M in $G_2^*(\mathbb{C}^{m+2})$, we can naturally consider two geometric conditions that the 1-dimensional distribution $\mathcal{C}^{\perp} = \operatorname{Span}\{\xi\}$ and the 3-dimensional distribution $\mathcal{Q}^{\perp} = \operatorname{Span}\{\xi_1, \xi_2, \xi_3\}$ are both invariant under the shape operator A of M. Here the almost contact structure vector field ξ defined by $\xi = -JN$ is said to be a Reeb vector field, where N denotes a local unit normal vector field of M in $G_2(\mathbb{C}^{m+2})$. And a real hypersurface such that $A\mathcal{C}^{\perp} \subset \mathcal{C}^{\perp}$ is called by Hopf hypersurface. The almost contact 3-structure vector fields ξ_{ν} for the 3-dimensional distribution \mathcal{Q}^{\perp} of M in $G_2^*(\mathbb{C}^{m+2})$ are defined by $\xi_{\nu} = -J_{\nu}N$ ($\nu = 1, 2, 3$), where J_{ν} denotes a canonical local basis of a quaternionic Kaehler structure \mathfrak{J} , such that $T_xM = \mathcal{Q} \oplus \mathcal{Q}^{\perp}$, $x \in M$. In addition, a real hypersurface of $G_2^*(\mathbb{C}^{m+2})$ satisfying $g(A\mathcal{Q}, \mathcal{Q}^{\perp}) = 0$ (i.e. $A\mathcal{Q}^{\perp} \subset \mathcal{Q}^{\perp}$ or $A\mathcal{Q} \subset \mathcal{Q}$, resp.) is said to be a \mathcal{Q}^{\perp} -invariant hypersurface.

In a paper due to Suh [5] we have introduced the following theorem.

Theorem A. Let M be a connected real hypersurface in $G_2^*(\mathbb{C}^{m+2})$, $m \geq 3$. Then both \mathcal{C}^{\perp} and \mathcal{Q}^{\perp} are invariant under the shape operator of M if and only if M is congruent to an open part of one of the following hypersurfaces:

 (\mathcal{T}_A) a tube around a totally geodesic $SU_{2,m-1}/S(U_2U_{m-1})$ in $SU_{2,m}/S(U_2U_m)$;

 $^{^12010\} Mathematics\ Subject\ Classification:$ Primary 53C40; Secondary 53C15.

²Key words: Hopf hypersurfaces; complex hyperbolic two-plane Grassmannians; complex two-plane Grassmannians; cyclic parallelism; Reeb parallelism; shape operator; geodesic Reeb flow.

 $^{^{\}ast}$ This work was supported by grant Proj. Nos. NRF-2015-R1A2A1A-01002459 and NRF-2016-R1A6A3A-11931947 from National Research Foundation of Korea.

- (\mathcal{T}_B) a tube around a totally geodesic $\mathbb{H}H^n$ in $SU_{2,m}/S(U_2U_m)$, m=2n;
- (\mathcal{H}_A) a horosphere in $SU_{2,m}/S(U_2U_m)$ whose center at infinity is singular and of type $JX \in \mathfrak{J}X$;
- (\mathcal{H}_B) a horosphere in $SU_{2,m}/S(U_2U_m)$ whose center at infinity is singular and of type $JX \perp \mathfrak{J}X$; or the following exceptional case holds:
 - (\mathcal{E}) The normal bundle νM of M consists of singular tangent vectors of type $JX \perp \mathfrak{J}X$. Moreover, M has at least four distinct principal curvatures, three of which are given by

$$\alpha = \sqrt{2}, \quad \gamma = 0, \quad \lambda = \frac{1}{\sqrt{2}}$$

with corresponding principal curvature spaces

$$T_{\alpha} = (\mathcal{C} \cap \mathcal{Q})^{\perp}, \quad T_{\gamma} = J\mathcal{Q}^{\perp}, \quad T_{\lambda} \subset \mathcal{C} \cap \mathcal{Q} \cap J\mathcal{Q}.$$

If μ is another (possibly nonconstant) principal curvature function, then we have $T_{\mu} \subset \mathcal{C} \cap \mathcal{Q} \cap J\mathcal{Q}$, $JT_{\mu} \subset T_{\lambda}$ and $\mathfrak{J}T_{\mu} \subset T_{\lambda}$.

In this talk, we consider a new concept as the generalization of parallelism with respect to the shape operator \tilde{A} of a submanifold \tilde{M} in a Riemannian manifold. Actually, if the shape operator \tilde{A} of \tilde{M} satisfies

$$\mathfrak{S}_{X,Y,Z \in T\tilde{M}} \, g((\tilde{\nabla}_X \tilde{A})Y,Z) \\ = g((\tilde{\nabla}_X \tilde{A})Y,Z) + g((\tilde{\nabla}_Y \tilde{A})Z,X) + g((\tilde{\nabla}_Z \tilde{A})X,Y) = 0$$

where $\tilde{\nabla}$ is the Levi-Civita connection on \tilde{M} , then \tilde{M} is said to be *cyclic parallel*. When \tilde{M} is a real hypersurface in complex space form $M^n(c)$ with constant holomorphic sectional curvature $4c, c \neq 0, n \geq 3$, the cyclic parallelism is equivalent to the condition

$$(\nabla_X A)Y = -c\{\eta(Y)\phi X + g(\phi X, Y)\xi\}$$

for any vector fields X and Y tangent to \tilde{M} . Maeda ([4]) and Chen, Ludden and Montiel ([1]) classified real hypersurfaces in $M^n(c)$, $c \neq 0$, under this condition.

By these motivations we consider the cyclic parallelism for real hypersurfaces in complex hyperbolic two-plane Grassmannians $G_2^*(\mathbb{C}^{m+2})$ and prove the following theorem.

Theorem 1. There does not exist any cyclic parallel hypersurface in complex hyperbolic two-plane Grassmannians $G_2^*(\mathbb{C}^{m+2})$, $m \geq 3$, with non-vanishing geodesic Reeb flow.

Moreover, by virtue of the equation of Codazzi on a real hypersurface in $G_2^*(\mathbb{C}^{m+2})$ we see that if the Reeb vector field ξ belongs to the distribution \mathcal{Q}^{\perp} , then a cyclic parallel hypersurface satisfies the condition of Reeb parallelism. So, we obtain:

Theorem 2. Let M be a real hypersurfce in complex hyperbolic two-plane Grassmannians $G_2^*(\mathbb{C}^{m+2})$, $m \geq 3$, with non-vanishing geodesic Reeb flow. Then the shape operator A of M is Reeb parallel if and only if M is locally congruent to an open part of one of the following two hypersurfaces:

- (\mathcal{T}_A) a tube around some totally geodesic $G_2^*(\mathbb{C}^{m+1}) = SU_{2,m-1}/S(U_2U_{m-1})$ in $G_2^*(\mathbb{C}^{m+2})$ or
- (\mathcal{H}_A) a horospher whose center at infinity is singular and of type $JN \in \mathfrak{J}N$.

Finally, in [2] it has studied about the Reeb parallelism of a real hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$. As a lemma for this result we observe the relation between the cyclic parallelism and the Reeb parallelism for a real hypersurface in $G_2(\mathbb{C}^{m+2})$. And by virtue of this result we obtain:

Theorem 3. There does not exist any cyclic parallel hypersurface in complex twoplane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with non-vanishing geodesic Reeb flow.

Throughout this talk, we use some references [5] and [6] (or [2] and [3], resp.) to recall the Riemannian geometry of $G_2^*(\mathbb{C}^{m+2})$ (or $G_2(\mathbb{C}^{m+2})$, resp.) and some fundamental formulas including the Codazzi and Gauss equations for a real hypersurface in $G_2^*(\mathbb{C}^{m+2})$ (or $G_2(\mathbb{C}^{m+2})$, resp.).

References

- B.Y. Chen, G.D. Ludden and S. Montiel, Real submanifolds of a Kaehler manifold, Algebras Groups Geom. 1 (1984), 176-212.
- [2] H. Lee, Y.S. Choi and C. Woo, Hopf hypersurfaces in complex two-plane Grassmannians with Reeb parallel shape operator, Bull. Malays. Math. Sci. Soc. 38 (2015), 617-634.
- [3] H. Lee and Y.J. Suh, Real hypersurfaces of type (B) in complex two-plane Grassmannians related to the Reeb vector, Bull. Korean Math. Soc. 47 (2010), no. 3, 551-561.
- [4] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Jpn. 28 (1976), 529-540.
- [5] Y.J. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Adv. Appl. Math., 50 (2013), 645659.
- [6] Y.J. Suh, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb vector field, Adv. Appl. Math. 55 (2014), 131-145.
- [7] Y.J. Suh, Real hypersurfaces in compeke quadric with Reeb parallel shape operator, Internat. J. Math. 25 (2014), no. 6, 1450059.
- [8] Y.J. Suh, Real hypersurfaces in the compelx quadric with parallel Ricci tensor, Adv. Math. 281 (2015), 886-905.

Hyunjin Lee

THE RESEARCH INSTITUTE OF REAL AND COMPLEX MANIFOLDS,
KYUNGPOOK NATIONAL UNIVERSITY,
DAEGU 41566, REPUBLIC OF KOREA
E-mail address: lhjibis@hanmail.net

Young Jin Suh
Department of Mathematics and RIRCM,
Kyungpook National University,
Daegu 41566, REPUBLIC OF KOREA
E-mail address: yjsuh@knu.ac.kr