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Abstract

The study of ruled surfaces has a long history. In particular, there are many
results on ruled minimal surfaces. One of the most famous facts is that the only
non-planar, ruled minimal surface in Rn is the classical helicoid. O. Kobayashi
classified spacelike minimal ruled surfaces of R3

1 ([1]). I. van de Woestijne
classified timelike minimal ruled surfaces of R3

1 ([2]). And, H. Anciaux classified
minimal ruled surfaces of Rn

p ([3]). But his proof is incomplete. This paper gives
a complete classification of ruled minimal surfaces in Rn

p .

Let I ⊂ R be an open interval including 0 ∈ R. Assume that γ : I → Rn \ {0}
is a C∞-curve and x : I → Rn is a C∞-regular curve. Then, we define a mapping f
by the following

f : I × R ∋ (s, t) −→ γ(s)t+ x(s) ∈ Rn.

From now on we assume that f is an immersion. The image S of this mapping f

S := {γ(s)t+ x(s) ∈ Rn | (s, t) ∈ I × R}

is called a ruled surface in Rn. Moreover we define the curve γ as a direction
curve on S, and the curve x as a base curve on S. In particular, if the direction
curve is parallel i.e. γ(s) = γ0 : constant, then we say that a given ruled surface
is a cylinder. As the ambient space, we consider pseudo-Euclidean space Rn

p =
(Rn, ⟨· , · ⟩p := −

∑p
i=1 dx

2
i +

∑n
i=p+1 dx

2
i ). A C∞-curve c in Rn

p is called a null

curve if for any s ∈ I, it holds the condition |c′(s)|2p = 0. Finally, a ruled surface
S in Rn

p is minimal if the induced metric g on S is non-degenerate, and the mean

curvature vector field H⃗ of S is identically vanishing

i.e. det g = g11g22 − g212 ̸= 0, H⃗ =
1

2

g11h22 − 2g12h12 + g22h11
det g

= 0.

From now on, we use the following notation:
O.S. : orthogonal system, O.N.S. : orthonormal system.

Theorem 1. Let S be a non-planar, minimal ruled surface of pseudo-Euclidean
space Rn

p . Then, S is, up to isometry and scaling, locally congruent to an open
subset of the following surfaces:

1. A minimal cylinder
f(s, t) = γ0t+ x(s),

where γ0 : null vector, x(s) : null curve s.t. ⟨γ0, x′(s)⟩p ̸= 0

2. An elliptic helicoid of the 1st kind
f(s, t) = (cos se1 + sin se2)t+ se3,

where {e1, e2, e3} : O.N.S., |e1|2p = |e2|2p = ±1, |e3|2p = ±1
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3. An elliptic helicoid of the 2nd kind
f(s, t) = (cos se1 + sin se2)t+ se3,

where {e1, e2, e3} : O.S., |e1|2p = |e2|2p = ±1, |e3|2p = 0

4. A hyperbolic helicoid of the 1st kind
f(s, t) = (cosh se1 + sinh se2)t+ se3,

where {e1, e2, e3} : O.N.S., |e1|2p = −|e2|2p = ±1, |e3|2p = ±1

5. A hyperbolic helicoid of the 2nd kind
f(s, t) = (cosh se1 + sinh se2)t+ se3,

where {e1, e2, e3} : O.S., |e1|2p = −|e2|2p = ±1, |e3|2p = 0)

6. A parabolic helicoid

f(s, t) = (t+ s2)e1 + (
s3

3
+ st− s)e2 + (

s3

3
+ st+ s)e3,

where {e1, e2, e3} : O.N.S., |e1|2p = |e2|2p = −|e3|2p = ±1

7. A minimal hyperbolic paraboloid
f(s, t) = ste1 + te2 + se3,

where {e1, e2, e3} : O.S., |e1|2p = 0, |e2|2p = ±1, |e3|2p = ±1

Theorem 2. There is no hyperbolic helicoid of the 2nd kind in Minkowski n-space
Rn
1 . And, there is a hyperbolic helicoid of the 2nd kind but there is no elliptic

helicoid of the 2nd kind in four dimensional pseudo-Euclidean space R4
2 with the

neutral metric. We can summarize the existence by a table indicated below.

1. 2. 3. 4. 5. 6. 7.

R3
0 × ○ × × × × ×

R3
1 ○ ○ × ○ × ○ ×

R4
1 ○ ○ ○ ○ × ○ ○

R4
2 ○ ○ × ○ ○ ○ ○

Rn
1 (n ≥ 5) ○ ○ ○ ○ × ○ ○

Rn
p (n ≥ 5, 2 ≤ p ≤ n− 2) ○ ○ ○ ○ ○ ○ ○

Here the number of this table corresponds to that of the theorem 1.
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