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Abstract

The study of ruled surfaces has a long history. In particular, there are many
results on ruled minimal surfaces. One of the most famous facts is that the only
non-planar, ruled minimal surface in R"™ is the classical helicoid. O. Kobayashi
classified spacelike minimal ruled surfaces of R} ([1]). 1. van de Woestijne
classified timelike minimal ruled surfaces of R? ([2]). And, H. Anciaux classified
minimal ruled surfaces of R} ([3]). But his proof is incomplete. This paper gives
a complete classification of ruled minimal surfaces in R}.

Let I C R be an open interval including 0 € R. Assume that v : I — R™\ {0}
is a C*®°-curve and z : I — R" is a C'°-regular curve. Then, we define a mapping f
by the following
f:IxR> (s, t) — vy(s)t+ z(s) € R™.

From now on we assume that f is an immersion. The image S of this mapping f
S:={v(s)t+z(s) e R" | (s,t) € I xR}

is called a ruled surface in R". Moreover we define the curve v as a direction
curve on S, and the curve z as a base curve on S. In particular, if the direction
curve is parallel i.e. y(s) = 7o : constant, then we say that a given ruled surface
is a cylinder. As the ambient space, we consider pseudo-Euclidean space Rj =
(R, (-, )p = =20y daf + 320, def). A C®-curve ¢ in R} is called a null
curve if for any s € I, it holds the condition |/(s)|2 = 0. Finally, a ruled surface
S in R} is minimal if the induced metric g on S is non-degenerate, and the mean

curvature vector field H of S is identically vanishing
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i.e. detg = — g 0, H= =0.
1 9= 911922 — 912 7 9 det g

From now on, we use the following notation:
0O.S. : orthogonal system, O.N.S. : orthonormal system.

Theorem 1. Let S be a non-planar, minimal ruled surface of pseudo-Euclidean
space R}. Then, S is, up to isometry and scaling, locally congruent to an open
subset of the following surfaces:

1. A minimal cylinder

f(s,t) = yot + x(s),
where 7o : null vector, z(s) : null curve s.t. {yp,2'(s))p #0

2. An elliptic helicoid of the 1st kind
f(s,t) = (cossej + sin sea)t + ses,
where {e1,e2,e3} : O.N.S., |61|% = |€2|12, = +1, ’€3|127 ==+1



3. An elliptic helicoid of the 2nd kind
f(s,t) = (cossej + sin sea)t + ses,
where {e1,e2,e3}: 0.5, ’€1|127 = |62|]2) ==+1, |63];2) =0

4. A hyperbolic helicoid of the 1st kind
f(s,t) = (cosh se; + sinh sey)t + ses,
where {e1,e,e3} : O.N.S., |e1]2 = —|ea|2 = £1,]es]2 = £1

5. A hyperbolic helicoid of the 2nd kind
f(s,t) = (cosh se; + sinh sey)t + ses,

where {e1,e,e3} : 0.5., |e1]2 = —|ea|2 = £1, |e3|2 = 0)
6. A parabolic helicoid
3 3
s s
f(s,t) = (t+s%)e; + (5 + st — s)es + (5 + st + s)es,
where {e1,e2,e3} : O.N.S., |€1|]2) = |eg|12, = —|eg|120 =+1

7. A minimal hyperbolic paraboloid
f(s,t) = stey + tea + ses,
where {e1,e,e3} : 0.5., |e1]2 =0, |ea|2 = 1, |es|2 = +1

Theorem 2. There is no hyperbolic helicoid of the 2nd kind in Minkowski n-space
RY. And, there is a hyperbolic helicoid of the 2nd kind but there is no elliptic
helicoid of the 2nd kind in four dimensional pseudo-Euclidean space R with the
neutral metric. We can summarize the existence by a table indicated below.

1. | 2.1 8 | 4.|56.]6.|7

R% x | O x x x x x

RS O[O x [O]x [Ox

R: O[O0 [O[x [O]0

R OlO[x [O]O[O[0O

Ri(n > 5) OlO]O[O[x O[O
Ry(n>52<p<n-2) | O O]O]O]O|O]|O

Here the number of this table corresponds to that of the theorem 1.
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