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Abstract. In this survey article, first we introduce the classification of homo-

geneous hypersurfaces in some Hermitian symmetric spaces of rank 2. Next,
by using the isometric Reeb flow, we give a complete classification for hypersur-

facesM in complex two-plane GrassmanniansG2(Cm+2) = SU2+m/S(U2Um),

complex hyperbolic two-plane Grassmannians G∗
2(Cm+2) = SU2,m/S(U2Um),

complex quadricQm = SOm+2/SOmSO2 and its dualQm∗ = SOo
m,2/SOmSO2.

As a third, we introduce the classifications of contact hypersurfaces with

constant mean curvature in the complex quadric Qm and its noncompact dual

Qm∗ for m ≥ 3. Finally we want to mention some classifications of real hyper-
surfaces in the complex quadrics Qm with Ricci parallel, harmonic curvature,

parallel normal Jacobi, pseud-Einstein, pseudo-anti commuting Ricci tensor

and Ricci soliton etc.

Introduction

Let us denote by (M̄, g) a Riemannian manifold and I(M̄, g) a set of all isome-
tries defined on M̄ . Here, a homogeneous submanifold of (M̄, g) is a connected
submanifold M of M̄ which is an orbit of some closed subgroup G of I(M̄, g). If
the codimension of M is one, then M is called a homogeneous hypersurface. When
M becomes a homogeneous hypersurface of M̄ , there exists some closed subgroup
G of I(M̄, g) having M as an orbit. Since the codimension of M is one, the regular
orbits of the action of G on M̄ have codimension one, that is, the action of G on
M̄ is of cohomogeneity one. This means that the classification of homogeneous
hypersurfaces is equivalent to the classification of cohomogeneity one actions up to
orbit equivalence.

Hereafter let us note that HSSP denotes a Hermitian Symmetric Space. For
HSSP with rank one we say that a complex projective space CPm, a complex hyper-
bolic space CHm. For HSSP of compact type with rank 2 we say SU2+m/S(U2Um),
SO8/U4, G2(R2+m), Sp2/U2 and E6/Spin10U1, and for HSSP of non-compact type
with rank 2 we can give SU2,m/S(U2Um), SO∗8/U4, G∗2(R2+m), Sp(2,R)/U2 and

E−146 /Spin10U1 (See Helgason [12], [13]).
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1. Compact Hermitian Symmetric Space with rank 2

The study of real hypersurfaces in non-flat complex space forms or quaternionic
space forms which belong to HSSP with rank 1 of compact type in section 1 is
a classical topic in differential geometry. For instance, there have been many in-
vestigations for homogeneous hypersurfaces of type A1, A2, B, C, D and E in
complex projective space CPm. They are completely classified by Cecil and Ryan
[10], Kimura [19] and Takagi [57]. Here, explicitly, we mention that A1 : Geodesic
hyperspheres, A2 : a tube around a totally geodesic complex projective spaces CP k,
B : a tube around a complex quadric Qm−1 and can be viewed as a tube around a
real projective space RPm, C : a tube around the Segre embedding of CP 1 ×CP k
into CP 2k+1 for some k≥2, D : a tube around the Plücker embedding into CP 9 of
the complex Grassmannian manifold G2(C5) of complex 2-planes in C5 and E : a
tube around the half spin embedding into CP 15 of the Hermitian symmetric space
SO10/U5.

From such a view point, we considered two natural geometric conditions for real
hypersurfaces in G2(Cm+2) that the maximal complex subbundle C and a maximal
quaternionic subbundle Q of TM are both invariant under the shape operator of
M , where the maximal complex subbundle C of the tangent bundle TM of M is
defined by C = {X∈TM |JX∈TM}, and the maximal quaternionic subbundle Q of
TM is defined by Q = {X∈TM |JX∈TM} respectively. By using such conditions
and the result in Alekseevskii [1], Berndt and Suh [3] proved the following

Theorem A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.
Then the maximal complex subbundle C and a maximal quaternionic subbundle Q
of TM are both invariant under the shape operator of M if and only if
(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2),
or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).

By using Theorem A, in a paper due to Berndt and Suh [4] we have given a
complete classification of real hypersurfaces in G2(Cm+2) with isometric Reeb flow
as follows:

Theorem 1.1. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.
Then the Reeb flow on M is isometric if and only if M is an open part of a tube
around a totally geodesic G2(Cm+1) in G2(Cm+2).

2. Complex hyperbolic two-plane Grassmannian SU2,m/S(U2Um)

Now let us consider for the case that the Riemannian manifold M̄ becomes a
Riemannian symmetric spaces of non compact type with rank 1 or rank 2. As some
examples of non compact type with rank 1 we say a real hyperbolic space RHm =
SO0

1,m/SOm, a complex hyperbolic space CHm = SU1,m/S(U1Um), a quaternionic

hyperbolic space HHm = Sp1,m/Sp1Spm, and a Caley projective plane OP 2 =
F4/Spin9. The study of homogeneous hypersurfaces in such a symmetric spaces of
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noncompact type with rank 1 was investigated in Berndt [5], Berndt and Tamaru
[8].

Then by the argument asserted in section 1, we note that any homogeneous
hypersurfaces in SU2,m/S(U2Um) becomes a tube around one singular orbit. By
virtue of this fact and using geometric tools given in Helgason [12], [13], Eberlein
[11] , Berndt and Suh [5] proved a characterization of homogeneous hypersurfaces
in SU2,m/S(U2Um) as follows:

Theorem 2.1. Let M be a connected real hypersurface in the complex hyperbolic
two-plane Grassmannian SU2,m/S(U2Um), m ≥ 2. Then the maximal complex
subbundle C and a maximal quaternionic subbundle Q of TM are both invariant
under the shape operator of M if and only if M is congruent to an open part of one
of the following hypersurfaces:

(A) a tube around a totally geodesic SU2,m−1/S(U2Um−1) in SU2,m/S(U2Um),
(B) a tube around a totally geodesic quaternionic hyperbolic space HHn in

SU2,2/S(U2Um), m = 2n,
(C) a horosphere in SU2,m/S(U2Um) whose center at infinity is singular.

In this section we give a classification of all real hypersurfaces with isometric
Reeb flow in complex hyperbolic two-plane Grassmann manifold SU2,m/S(U2Um)
as follows (see Suh [45]):

Theorem 2.2. Let M be a connected orientable real hypersurface in the complex
hyperbolic two-plane Grassmannian SU2,m/S(U2Um), m ≥ 3. Then the Reeb flow
on M is isometric if and only if M is an open part of a tube around some totally
geodesic SU2,m−1/S(U2Um−1) in SU2,m/S(U2Um) or a horosphere whose center at
infinity is singular.

3. Isometric Reeb Flow in Complex Quadric Qm

The homogeneous quadratic equation z21 + . . . + z2m+2 = 0 on Cm+2 defines
a complex hypersurface Qm in the (m + 1)-dimensional complex projective space
CPm+1 = SUm+2/S(Um+1U1). The hypersurfaceQm is known as them-dimensional
complex quadric. The complex structure J on CPm+1 naturally induces a com-
plex structure on Qm which we will denote by J as well. We equip Qm with the
Riemannian metric g which is induced from the Fubini Study metric on CPm+1

with constant holomorphic sectional curvature 4. The 1-dimensional quadric Q1 is
isometric to the round 2-sphere S2. For m ≥ 2 the triple (Qm, J, g) is a Hermitian
symmetric space of rank two and its maximal sectional curvature is equal to 4. The
2-dimensional quadric Q2 is isometric to the Riemannian product S2 × S2.

For the complex projective space CPm a full classification was obtained by Oku-
mura in [29]. He proved that the Reeb flow on a real hypersurface in CPm =
SUm+1/S(UmU1) is isometric if and only if M is an open part of a tube around
a totally geodesic CP k ⊂ CPm for some k ∈ {0, . . . ,m − 1}. For the complex
2-plane Grassmannian G2(Cm+2) = SUm+2/S(UmU2) the classification was ob-
tained by Berndt and the author in [4]. We have proved that the Reeb flow on
a real hypersurface in G2(Cm+2) is isometric if and only if M is an open part of



4 YOUNG JIN SUH

a tube around a totally geodesic G2(Cm+1) ⊂ G2(Cm+2). Finally, related to the
isometric Reeb flow, we give a mention for our recent work due to Berndt and Suh
[6]. In this lecture we want to investigate this problem for the complex quadric
Qm = SOm+2/SOmSO2. In view of the previous two results a natural expectation
could involve at least the totally geodesic Qm−1 ⊂ Qm. But for real hypersurfaces
in Qm with isometric Reeb flow the situations are quite different from the above.
Now we state the following.

Theorem 3.1. (see [6]) Let M be a real hypersurface in the complex quadric Qm,
m ≥ 3. Then the Reeb flow on M is isometric if and only if m is even, say m = 2k,
and M is an open part of a tube around a totally geodesic CP k ⊂ Q2k.

4. Contact hypersurfaces in Complex Quadric Qm
and non-compact dual Qm∗

This section is a recent work due to Berndt and the author [7]. A contact
manifold is a smooth (2m − 1)-dimensional manifold M together with a one-form
η satisfying η ∧ (dη)m−1 6= 0, m ≥ 2. The one-form η on a contact manifold is
called a contact form. The kernel of η defines the so-called contact distribution C
in the tangent bundle TM of M . Note that if η is a contact form on a smooth
manifold M , then ρη is also a contact form on M for each smooth function ρ on M
which is nonzero everywhere. The origin of contact geometry can be traced back to
Hamiltonian mechanics and geometric optics. The standard example of a contact
manifold is R3 together with the contact form η = dz − y dx.

Contact hypersurfaces in complex space forms of complex dimension m ≥ 3 have
been investigated and classified by Okumura [29] (for the complex Euclidean space
Cm and the complex projective space CPm) and Vernon [58] (for the complex hyper-
bolic space CHm). In this paper we carry out a systematic study of contact hyper-
surfaces in Kähler manifolds. We will then apply our results to the complex quadric
Qm = SOm+2/SOmSO2 and its noncompact dual space Qm∗ = SOom,2/SOmSO2

to prove the following two classifications:

Theorem 4.1. (see [7]) Let M be a connected orientable real hypersurface with
constant mean curvature in the complex quadric Qm = SOom+2/SOmSO2 and m ≥
3. Then M is a contact hypersurface if and only if M is congruent to an open part
of the tube of radius 0 < r < π

2
√
2

around a real form Sm of Qm.

When we consider a real hypersurface in complex hyperbolic quadric Qm∗, nat-
urally we have one focal (singular) submanifold in Qm∗, which is different from the
situation of Theorem 4.1. In this case we give a complete classification of contact
real hypersurfaces in Qm∗ as follows:

Theorem 4.2 (see [7]). Let M be a connected orientable real hypersurface with
constant mean curvature in the noncompact dual Qm∗ = SOom,2/SOmSO2 of the
complex quadric and m ≥ 3. Then M is a contact hypersurface if and only if M is
congruent to an open part of one of the following contact hypersurfaces in Qn∗:

(i) the tube of radius r ∈ R+ around the totally geodesic Q(m−1)∗ in Qm∗;
(ii) a horosphere in Qm∗ whose center at infinity is determined by an A-principal

geodesic in Qm∗;
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(iii) the tube of radius r ∈ R+ around a real form RHm in Qm∗.

5. Pseudo-Einstein real hypersurfaces in Complex Quadric Qm

A Riemannian manifold M is said to be Einstein if the Ricci tensor Ric is a scalar
multiple of the Riemannian metric g on M , that is, g(Ric(X), Y ) = λg(X,Y ) for a
smooth function λ and any vector fields X,Y tangent to M . Classically, Einstein
hypersurfaces in real space forms have been studied by many differential geometers.

In complex space forms or in quaternionic space forms many differential geome-
ters have discussed real Einstein hypersurfaces, complex Einstein hypersuraces or
more generally real hypersurfaces with parallel Ricci tensor, that is ∇Ric = 0,
where ∇ denotes the Riemannian connection of M (see Cecil-Ryan [10], Kimura
[18],[19], Romero [37], [38] and Martinez and Pérez [24]).

From such a view point Kon [21] has considered the notion of pseudo-Einstein
real hypersurfaces M in complex projective space CPm with Kähler structure J ,
which are defined in such a way that

Ric(X) = aX + bη(X)ξ,

where a, b are constants, η(X) = g(ξ,X) and ξ = −JN for any tangent vector field
X and a unit normal vector field N defined on M . In [21] Kon has also given a
complete classification of pseudo-Einstein real hypersurfaces in CPm by using the
work of Takagi [57] and proved that there do not exist Einstein real hypersurfaces
in CPm, m ≥ 3. Moreover, Kon [20] has considered a new notion of the Ricci tensor

R̂ic in the generalized Tanaka-Webster connection ∇̂(k)

The notion of pseudo-Einstein was generalized by Cecil-Ryan [10] to any smooth
functions a and b defined on M . By using the theory of tubes, Cecil-Ryan [10]
have given a complete classification of such pseudo-Einstein real hypersurfaces and
proved that there do not exist Einstein real hypersurfaces in CPm, m ≥ 3.

On the other hand, Montiel [26] considered pseudo-Einstein real hypersurfaces
in complex hyperbolic space CHm and gave a complete classification of such hy-
persurfaces and also proved that there do not exist Einstein real hypersurfaces in
CHm, m ≥ 3.

For real hypersurfaces in quaternionic projective space HPm the notion of pseudo
Einstein was considered by Martinez and Pérez [24]. But in [32] Pérez proved that
the unique Einstein real hypersurfaces in HPm are geodesic hyperspheres of radius
r, 0 < r < π

2 and cot2 r = 1
2m .

Now let us denote by G2(Cm+2) the set of all complex 2-dimensional linear
subspaces in Cm+2. The situation mentioned above is not so simple if we consider a
real hypersurface in complex two-plane GrassmannianG2(Cm+2). This Riemannian
symmetric space has a remarkable geometrical structure. It is the unique compact
irreducible Riemannian manifold being equipped with both a Kähler structure J
and a quaternionic Kähler structure J not containing J . In other words, G2(Cm+2)
is the unique compact, irreducible, Kähler, quaternionic Kähler manifold which is
not a hyperkähler manifold. So, in G2(Cm+2) we have the two natural geometrical
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conditions for real hypersurfaces M : That [ξ] = Span {ξ} or Q⊥ = Span {ξ1, ξ2, ξ3}
is invariant under the shape operator, being ξ = −JN , ξi = −JiN , i = 1, 2, 3, where
N denotes a unit normal vector on M in G2(Cm+2) and {J1, J2, J3} a local basis
of J.

A real hypersurface M in G2(Cm+2) is said to be pseudo-Einstein if the Ricci
tensor Ric of M satisfies

Ric(X) = aX + bη(X)ξ + c
∑3

i=1
ηi(X)ξi

for any constants a, b and c on M . In a paper due to Pérez, Suh and Watanabe [35]
we have defined the notion of pseudo-Einstein hypersurfaces in G2(Cm+2) with the
assumption that b and c are non-vanishing constants. In this case the meaning
of pseudo-Einstein is proper pseudo-Einstein. So in [35] we have given a complete
classification of proper Hopf pseudo-Einstein as follows.

Theorem E. Let M be a pseudo-Einstein Hopf real hypersurface in G2(Cm+2).
Then M is congruent to

(a) a tube of radius r, cot2
√

2r = m−1
2 , over G2(Cm+1), where a = 4m + 8,

b+ c = −2(m+ 1), provided that c 6=− 4.

(b) a tube of radius r, cot r = 1+
√
4m−3

2(m−1) , over HPm, m = 2n, where a = 8n+6,

b = −16n+ 10, c = −2.

For the real hypersurfaces of type (a) or of type (b) in Theorem A the constants
b and c of pseudo-Einstein real hypersurfaces M in G2(Cm+2) never vanish at the
same time on M , that is, at least one of them is non-vanishing at any point of M .
As a direct consequence of Theorem A, we have also asserted that there are no
Einstein Hopf real hypersurfaces in G2(Cm+2).

Now let us consider the complex quadric Qm = SOm+2/SOmSO2 which is a
Kähler manifold and a kind of Hermitian symmetric space of rank 2. For real
hypersurfaces M in the complex quadric Qm we have classified the isomeric Reeb
flow which is defined by Lξg = 0, where Lξ denotes a Lie derivative along the Reeb
direction ξ. The Lie invariant Lξg = 0 along the direction ξ is equivalent to the
commuting shape operator S of M in Qm, that is, Sφ = φS. The tensor field φ on
M is defined by φX = JX − g(JX,N)N = JX − η(X)N , so that φX is just the
tangential component of JX. The classification of isomeric Reeb flow was mainly
used in [49], [54] and [50]. Moreover, in order to give a complete classification of
pseudo-Einstein hypersurfaces in the complex quadric Qm we need the classification
of isometric Reeb flow in Theorem E due to Berndt and Suh [4]

6. Pseudo-anti commuting Ricci tensor and Ricci soliton in Complex
Quadric Qm

If the Ricci tensor Ric of a real hypersurface M in Qm satisfies

Ric(X) = aX + bη(X)ξ,

for constants a, b∈R, then M is said to be pseudo-Einstein.



CONTACT, PSEUDO-EINSTEIN HYPERSURFACES 7

It is known that Einstein, pseudo-Einstein real hypersurfaces in the sense of
Besse [9], Kon [22], and Cecil and Ryan [10], satisfy the condition of pseudo-anti
commuting. Real hypersurfaces of type (B) in CPm, which is characterized by
Sφ + φS = kφ, k 6=0 and a tube over a totally real totally geodesic real projective
space RPn, m = 2n, satisfy the formula of pseudo-anti commuting (see Yano and
Kon [59]). Moreover, it can be easily checked that Einstein hyepersurfacs and some
special kind of pseudo Einstein hypersurfaces in G2(Cm+2), and hypersurfaces of
type (B) in G2(Cm+2), which is a tube over a totally real totall geodesic quater-
nionic projective space HPn, m = 2n, satisfy this formula (see Pérez, Suh and
Watanabe [35], Suh [40] and [43]).

In the complex quadric Qm, Berndt and Suh [7] classified all of contact hy-
persurfaces in Qm, which is defined by Sφ + φS = kφ, k 6=0, and have given a
characterization which is a tube of radius r around an m-dimensional totally real
and totally geodesic sphere Sm in Qm. All of these hypersurfaces in Hermitian
symmetric spaces also satisfy the condition of pseudo-anti commuting.

Recently, we have known that a solution of the Ricci flow equation ∂
∂tg(t) =

−2Ric(g(t)) is given by

1

2
(LV g)(X,Y ) + Ric(X,Y ) = ρg(X,Y ),

where ρ is a constant and LV denotes the Lie derivative along the direction of the
vector field V (see Morgan and Tian [25]). Then the solution is said to be a Ricci
soliton with potential vector field V and Ricci soliton constant ρ, and surprisingly,
it satisfies the pseudo-anti commuting condition Sφ + φS = κφ, where κ = 2ρ is
non-zero constant.

Now at each point z ∈M let us consider a maximal A-invariant subspace

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}
of TzM , z∈M . Thus for a case where the unit normal vector field N is A-isotropic it
can be easily checked that the orthogonal complement Q⊥z = Cz	Qz, z∈M , of the
distribution Q in the complex subbundle C, becomes Q⊥z = Span [Aξ,AN ]. Here
it can be easily checked that the vector fields Aξ and AN belong to the tangent
space TzM , z∈M if the unit normal vector field N becomes A-isotropic. Then in
this survey article we give a complete classification for pseudo-anti commuting real
hypersurfaces in the complex quadric Qm as follows:

Theorem 6.1. (see [52]) Let M be a pseudo-anti commuting Hopf real hyper-
surfaces in the complex quadric Qm, m≥3. Then M is locally congruent to one of
the following:

(i) M is an open part of a tube of radius r, 0 < r < π
2
√
2

, around a totally real

and totally geodesic m-dimensional unit sphere Sm in Qm, with A-principal
unit normal.

(ii) M is an open part of a tube of radius r, 0 < r < π
2 , r 6=π

4 , around a totally

geodesic k-dimensional complex projective space CP k in Q2k, m = 2k. Here
the unit normal N is A-isotropic.
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[24] A. Martinez and J.D. Pérez, Real hypersurfaces in quaternionic projective space, Ann. di
Mat. Pura Appl. 145 (1968), 355–384.

[25] J. Morgan and G. Tian, Ricci flow and Poincaré Conjecture, Clay Math. Inst. Monographs,
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[35] J.D. Pérez, Y.J. Suh and Y. Watanabe, Generalized Einstein Real hypersurfaces in complex

two-plane Grassmannians, J. Geom. Phys. 60 (2010), 1806-1818.

[36] H. Reckziegel, On the geometry of the complex quadric, in: Geometry and Topology of Sub-
manifolds VIII (Brussels/Nordfjordeid 1995), World Sci. Publ., River Edge, NJ, 1995, pp.

302–315.

[37] A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally
symmetric, Proc. Amer. Math. Soc. 98 (1986), 283286.

[38] A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space
forms, Math. Z. 192 (1986), 627635.

[39] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246-266.

[40] Y.J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatshefte
Math. 147 (2006), 337–355.

[41] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci

tensor, J. Geom. Phys. 60 (2010), 1792-1805.
[42] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with ξ-invariant Ricci

tensor, J. Geom. Phys. 61 (2011), 808–814.

[43] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor,
Proc. Royal Soc. Edinb. A. 142 (2012), 1309-1324.

[44] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci

tensor, J. Geom. Phys. 64(2013), 1-11.
[45] Y.J. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grass-

mannians, Advances in Applied Math. 50(2013), 645-659.
[46] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature,

J. Math. Pures Appl. 100 (2013), 16-33.

[47] Y.J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Inter-
national J. Math. 25 (2014), 1450059, 17pp.

[48] Y.J. Suh, Real hypersurfaces in the complex hyperbolic two-plane Grassmannians with com-

muting Ricci tensor, International J. Math. 26 (2015), 1550008, 26pp.
[49] Y.J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Advances in

Math. 281 (2015), 886-905.

[50] Y.J. Suh, Real hypersurfaces in complex quadric with harmonic curvature, J. Math. Pures
Appl. 106(2016), http://dx.doi.org/10.1016/j.matpur.2016.02.015.

[51] Y.J. Suh, Real hypersurfaces in the complex quadric with commuting and parallel Ricci ten-

sor, J. Geom. Phys. 106(2016), 130-142.
[52] Y.J. Suh, Pseudo-anti commuting and Ricci soliton Real hypersurfaces in complex quadric,

J. Math. Pures Appl. 107(2017), in press.

[53] Y.J. Suh, Pseudo-Einstein real hypersurfaces in complex quadric, Submitted.
[54] Y.J. Suh and D. H. Hwang, Real hypersurfaces in complex quadric with commuting Ricci

tensor, Sci. China Math., 59 (2016), doi:10.1007/s11425-000-0000-0.
[55] Y.J. Suh and C. Woo, Real hypersurfaces in complex hyperbolic two-plane Grassmannians

with parallel Ricci tensor, Math. Nachr. 55 (2014), 1524-1529.
[56] Y.J. Suh and G. J. Kim, Real hypersurfaces in complex hyperbolic two-plane Grassmannians

with Reeb invariant Ricci tensor, Differ. Geom. Appl. 47(2016), 14-25.

[57] R. Takagi, On homogeneous real hypersurfaces of a complex projective space, Osaka J. Math.

10 (1973), 495–506.
[58] M.H. Vernon, Contact hypersurfaces of a complex hyperbolic space, Tôhoku Math. J. 39
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