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§1 Prehistory: Biharmonic functions. Recall the works on biharmonic function
by Lipman Bers. For a C∞ function U(x1, y1, x2, y2) = U(z1, z2), let

∆1U :=
∂2U
∂x12

+
∂2U
∂y12

, and ∆2U :=
∂2U
∂x22

+
∂2U
∂y22

.

Then, U is biharmonic if (i) ∆1U = ∆2U = 0, and (ii)

∂2U
∂x1∂x2

+
∂2U
∂y1y2

= 0,
∂2U
∂x1y2

− ∂
2U
∂x2y1

= 0.

It holds that ∆2U = (∆1 + ∆2)2U = 0. U is doubly harmonic if (i) only. Then, we have:
Theorem 1 (L. Bers) If U(z1, z2) is biharmonic on {(z1, z2) ∈ C2| |z1| < 1, |z2| < 1},

and if there exist c > 0 and a sequence {r1
ν, r2

ν} such that
(i) 0 < rk

ν < 1 (ν = 1, 2, . . .; k = 1, 2),
(ii) limν→∞ rk

ν = 1 (k = 1, 2), and

(iii)
∫ 2π

0

∫ 2π
0 |U(r1

ν ei θ1 , r2
ν ei θ2 ) | dθ1 dθ2 ≤ c < ∞.

Then, U(z1, z2) can be written as:

U(z1, z2) =
∫ 2π

0

∫ 2π
0 Q(z1, z2; θ1, θ2) u(θ1, θ2) dθ1dθ2.

Here, the kernel function Q(z1, z2; θ1, θ2) is given as:

Q(z1, z2; θ1, θ2) =
i ei θ2

4 π2

∂G(z1, ei θ2 )
∂n(ei θ2 )

P(z2, ei θ1 ),

G(z,w) (z ∈ D, w ∈ D), the Green kernel of the unit disc D := {z ∈ C| |z| < 1}, n(ei θ),
the inward unit normal of D at ei θ ∈ ∂D, P(z, ei θ), (z, ei θ) ∈ D × ∂D is the Poisson
kernel of D,

P(z, ei θ) = P(s ei t , ei θ) =
1

2π
1 − s2

1 − 2s cos(t − θ) + s2
.

§2. Introduction of biharmonic maps. Consider an isometric immersion f :
(Mm, g) ↪→ (Rk, g0) and f (x) = ( f1(x), · · · , fk(x)) (x ∈ M). Then,

∆ f := (∆ f1, · · · , ∆ fk) = m H,
Here, H := 1

m
∑m

i=1 B(ei, ei), the mean curvature vector field, and B(X, Y) := D0
X

( f∗Y)−
f∗(∇XY), the second fundamental form.

Definition f : (Mm, g) ↪→ (Rk, g0) is minimal if H ≡ 0.
Chen defined that f is biharmonic if ∆H = ∆(∆ f ) ≡ 0.
Theorem 2 (Chen) If dim M = 2, any biharmonic surface is minimal.
Chen’s Conjecture: All biharmonic submanifolds in (Rk, g0) are minimal.
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For a C∞ map f : (M, g) → (N, h), the energy functional is defined by

E( f ) :=
1
2

∫
M
|d f |2 vg.

The first variation formula is:
d
dt

∣∣∣∣∣
t=0

E( ft) = −
∫

M
〈τ( f ),V〉 vg.

Here, Vx =
d
dt |t=0 ft(x) ∈ T f (x)N, (x ∈ M), and

τ( f ) =
m∑

i=1

B( f )(ei, ei), B( f )(X, Y) = ∇N
d f (X)

d f (Y) − d f (∇XY), X, Y ∈ X(M).

f : (M, g) → (N, h) is harmonic if τ( f ) = 0. The second variation formula for the
energy functional E(•) for a harmonic map f : (M, g) → (N, h) is:

d2

dt2

∣∣∣∣∣
t=0

E( ft) =
∫

M
〈J(V),V〉vg,

where

J(V) = ∆V − R(V), ∆V = ∇
∗
∇V, R(V) :=

m∑
i=1

RN(V, d f (ei))d f (ei).

The k-energy functional due to Eells-Lemaire is

Ek( f ) :=
1
2

∫
M
|(d + δ)k f |2vg (k = 1, 2, · · · ).

Then, E1( f ) = 1
2

∫
M |d f |2 vg, E2( f ) = 1

2

∫
M |τ( f )|2 vg. The first variation for E2( f )

(G.Y. Jiang, Chin. Ann. Math. 7A (’86), Note di Mat. 28 (’09), 209–232) is:

d
dt

∣∣∣∣∣
t=0

E2( ft) = −
∫

M
〈τ2( f ),V〉vg,

τ2( f ) := J(τ( f )) = ∆τ( f ) − R(τ( f )).
A C∞ map f : (M, g) → (N, h) is biharmonic if τ2( f ) = 0. The second variation
formula for E2( f ) is given by

d2

dt2

∣∣∣∣∣
t=0

E2( ft) =
∫

M
〈J2(V),V〉vg, J2(V) = J(J(V)) − R2(V),

R2(V) = RN(τ( f ),V)τ( f ) + 2 trRN(d f (·), τ( f ))∇·V + 2 trRN(d f (·),V)∇·τ( f )

+ tr(∇N
d f (·)R

N)(d f (·), τ( f ))V + tr(∇τ( f )RN)(d f (·),V)d f (·).

Theorem 3 (cf. [NUG]) Let f : (M, g) → (N, h) be a biharmonic map of a complete
Riemannian manifold (M, g) into another Riemannian manifold (N, h) of non-positive
sectional curvature, with E( f ) = 1

2

∫
M |d f |2 vg < ∞, and E2( f ) = 1

2

∫
M |τ( f )|2 vg < ∞.

Then, f : (M, g) → (N, h) is harmonic, i.e., τ( f ) ≡ 0.

§3. Problems, examples and main results.
Problem 1. Let π : (P, g) → (M, h) be a principal G-bundle. If π is biharmonic,

is π harmonic ?
Theorem 4. Let π : (P, g) → (M, h), a compact principal G-bundle and the Ricci

tensor of (M, h) is negative definite If π is biharmonic, then it is harmonic.
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Theorem 5. Let π : (P, g) → (M, h) be a principal G-bundle & the Ricci tensor
of (M, h) is non-positive. Assume that (P, g) is non-compact, complete, and π has the
finite energy E(π) < ∞ and the finite bienergy E2(π) < ∞. If π is biharmonic, then it is
harmonic.

Example 1 (cf. [LOu], p. 62) The inversion in the unit sphere φ : Rn\{o} 3 x 7→
x
|x|2 ∈ R

n is a biharmonic morphism if n = 4. τ(φ) = − 4 x
|x|4 .

φ : (M, g) → (N, h) is a biharmonic morphism if f : U ⊂ N → R with φ−1(U) , ∅
biharmonic fct., f ◦ φ : φ−1(U) ⊂ M → R is biharmonic.

Example 2 (cf. [LOu], p. 70) Let take β = c2 e
∫

f (x) dx, f (x) = −c1 (1+ec1 x)
1−ec1 x , c1, c2 ∈ R∗.

π : (R2×R∗, dx2+dy2+β2(x) dt2) 3 (x, y, t) 7→ (x, y) ∈ (R2, dx2+dy2) gives a family
of proper biharmonic (i.e., biharmonic but not harmonic) Riemannian submersions.

(Proof of Theorem 4) Let P = P(M,G), a principal bundle. A compact Lie group G
acts on P by (G, P) 3 (a, u) 7→ u · a ∈ P. The vertical subspace Gu := {A∗u| A ∈ g} ⊂
Tu P, ∀ A ∈ g, the fund. vector field A∗ ∈ X(P) def. by A∗u := d

dt

∣∣∣∣∣
t=0

u exp(t A) ∈ Tu P.
Assume a Riemannian metric g on P satisfies Ra

∗g = g for all a ∈ G. Then, we
have

(a) Tu P = Gu ⊕ Hu (orthonormal decomposition.)
(b) Gu = {A∗u| A ∈ g}, and
(c) Ra∗Hu = Hu·a, a ∈ G, u ∈ P.
Here Hu ⊂ Tu P is the horizontal subspace.
The adapted Riemannian metri) is a Riemannian metric g on the total space P of a

principal G-bundle π : P → M,
g = π∗h + 〈ω(·), ω(·)〉,

where ω is a g-valued 1-form on P called a connection form, and 〈 · , ·〉 is an Ad(G)-
invariant inner product on g satisfying that

ω(A∗) = A, A ∈ g,
Ra
∗ω = Ad(a−1)ω, a ∈ G.

Then, we have

g(Xu, Yu) = h(π∗Wu, π∗Zu) + 〈 A, B 〉,
for Xu = A∗u +Wu, Yu = B∗u + Zu, (A, B ∈ g, Wu, Zu ∈ Hu).

Assume that the projection π : (P, g) → (M, h) is biharmonic, J(τ(π)) ≡ 0, where

τ(π) :=
∑

i

{∇h
ei
π∗ei − π∗(∇ei ei)

}
, JV := ∆V − R(V),

∆V := −
∑

i

{∇ei
(∇ei V) − ∇∇ei ei V

}
, R(V) :=

∑
i

Rh(V, π∗ei)π∗ei,

for V ∈ Γ(π−1TN). Here, {ei} is a locally defined orthonormal frame field on (P, g).
Since J(τ(π)) = 0,∫

M
〈J(τ(π)), τ(π)〉 vg =

∫
M
〈∇
∗
∇ τ(π), τ(π)〉 vg −

∫
M

∑
i

〈Rh(τ(π), π∗ei)π∗ei, τ(π)〉 vg

vanishes. Therefore,
∫

M〈∇τ(π),∇τ(π)〉 vg is equal to∫
M

∑
i

Rh(τ(π), e′i)e
′
i , τ(π)〉 vg =

∫
M
〈ρh(τ(π)), τ(π)〉 vg =

∫
M

Rich(τ(π)) vg,
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where {e′
i
}, a local orthonormal frame field and ρh is the Ricci tensor, Rich(X), X ∈ TM,

is the Ricci curvature of (M, h). By the assumption that the Ricci curvature of (M, h) is
negative definite, Rich(τ(π)) ≤ 0, so that the right hand side is non-positive.

Since the left hand side of the above is non-negative, so that the both hand sides
must vanish. Then, we have

Rich(τ(π)) ≡ 0 and ∇ τ(π) ≡ 0.

Let us define α ∈ A1(M) by

α(Y)(x) = 〈τ(π)(u), Yx〉, Y ∈ X(M),

u ∈ P, x = π(u) ∈ M. Then, for Y, Z ∈ X(M),

(∇h
Zα)(Y) = Z(α(Y)) − α(∇h

ZY) = Z 〈τ(π), Y〉 − 〈τ(π),∇h
ZY〉

= 〈∇Zτ(π), Y〉 + 〈τ(π),∇h
ZY〉 − 〈τ(π),∇h

ZY〉 = 0.

Therefore, α is a parallel 1-form on (M, h). Our assumption is that the Ricci tensor
of (M, h) is negative definite. Then, due to Bochner’s theorem, α must vanish.

Bochner’s theorem: Let M be a compact Riemannian manifold with negative Ricci
tensor. Then, it is well known that the following are equivalent:

(i) there is no non-zero Killing vector field,
(ii) there is no non-zero parallel vector field,
(iii) there is no non-zero parallel 1-form on M.

Thus, X is a Killing vector field. i.e., τ(π) ≡ 0, π : (P, g) → (M, h) is harmonic.
Therefore, we obtain Theorem 4. �

§4 Principal G-bundles, proof of Theorem 5.
(The first step) Take a cut off function η on the total space (P, g) for a fixed point

p0 ∈ P as follows:

0 ≤ η ≤ 1 (on P), η = 1 (on Br(p0) = {p : d(p, p0) < r}),

η = 0 (outside B2r(p0)), |∇η| ≤ 2
r

(on P).

Let π : (P, g) → (M, h) be biharmonic. Then,
(1) 0 = J2(π) = Jπ(τ(π)) = ∆τ(π)−

∑p
i=1

Rh(τ(π), π∗ei)π∗ei.

Here, {ei}pi=1
is a locally defined orthonormal frame field on (P, g) (dim P = p), and ∆

is the rough Laplacian: ∆V = ∇
∗
∇V = −∑i

{∇ei (∇ei V − ∇∇ei ei V
}
, (V ∈ Γ(π−1TM)).

(The second step) By (1), we have

(2)
∫

P〈∇
∗
∇ τ(π), η2 τ(π)〉 vg =

∫
P
η2〈
∑

i

Rh(τ(π), π∗ei)π∗ei, τ(π)〉 vg.

Then, the right hand side of (2) is equal to∫
P
η2

p∑
i=1

〈
Rh(τ(π), π∗ei)π∗ei, τ(π)

〉
vg =

∫
P
η2

m∑
i=1

〈
Rh(τ(π), e′i)e

′
i , τ(π)

〉
vg

=

∫
P
η2 Rich(τ(π)) vg.

Here, {e′
i
}m

i=1
is a locally defined orthonormal frame field on (M, h), Rich(u) (u ∈ TM)

is the Ricci curvature of (M, h) which is non-positive by our assumption. Therefore, the
left hand side of the above is non-positive.
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(The third step) Then, we have

0 ≥
∫

P

〈
∇
∗
∇ τ(π), η2 τ(π)

〉
vg =

∫
P

〈
∇ τ(π),∇(η2 τ(π))

〉
vg

=

∫
P

∑
i

{
η2
∣∣∣∇eiτ(π)

∣∣∣2 + ei(η2)〈∇eiτ(π), τ(π)〉
}

vg.

Here, the second term in the integrand in the above is 2〈η∇eiτ(π), ei(η) τ(π)〉.
Then, we have∫

P
η2

p∑
i=1

∣∣∣∣∣∇eiτ(π)
∣∣∣∣∣2 ≤ −2

∫
P

p∑
i=1

〈η∇eiτ(π), ei(η) τ(π)〉 vg = −2
∫

P

p∑
i=1

〈Vi,Wi〉 vg.

Here, Vi := η∇eiτ(π), Wi = ei(η) τ(π) (i = 1, . . . , p).

0 ≤ |
√
ε Vi ±

1
√
ε

Wi|2 = ε |Vi|2 ± 2 〈Vi,Wi〉 +
1
ε
|Wi|2,

∴ ∓ 2 〈Vi,Wi〉 ≤ ε |Vi|2 + 1
ε |Wi|2. (#)

Substituting (#) into the RHS of the above , and putting ε = 1
2 ,∫

P
η2

p∑
i=1

∣∣∣∣∣∇eiτ(π)
∣∣∣∣∣2 vg ≤ −2

∫
P

p∑
i=1

〈Vi,Wi〉 vg

≤ 1
2

∫
P

p∑
i=1

η2 |∇eiτ(π)|2 vg + 2
∫

P

p∑
i=1

ei(η)2 |τ(π)|2 vg.

Therefore, we have∫
P
η2

p∑
i=1

∣∣∣∣∣∇eiτ(π)
∣∣∣∣∣2 vg ≤ 4

∫
P

p∑
i=1

| ∇η|2 |τ(π)|2 vg ≤
16
r2

∫
P
|τ(π)|2 vg. (##)

(The fourth step) Tending r → ∞ in (##), by completeness of (P, g) and

E2(π) =
1
2

∫
P
|τ(π)|2 vg < ∞,

we have
∫

P
∑p

i=1
|∇ei τ(π)|2 vg = 0.We obtain ∇X τ(π) = 0 (∀ X ∈ X(P)).

Thus, c = |τ(π)| is constant (∵) X |τ(π)|2 = 2 〈∇Xτ(π), τ(π)〉 = 0 (∀ X ∈ X(P)).
In the case Vol(P, g) = ∞ and E2(π) < ∞, we have c = 0.
(∵) If c , 0, then E2(π) = 1

2

∫
P |τ(π)|

2 vg =
c
2 Vol(P, g) = ∞ which is a contradiction.

Thus, if Vol(P, g) = ∞, we have c = 0, i.e., π : (P, g) → (M, h) is harmonic.
(The fifth step) In the case that E(π) < ∞ and E2(π) < ∞, let us define a 1-form

α ∈ A1(P) by α(X) := 〈dπ(X), τ(π)〉, (X ∈ X(P)). Then, we have∫
P
|α| vg =

∫
P

(∑
i

|α(ei)|2
)1/2

vg ≤
∫

P
|dπ| |τ(π)| vg

≤
( ∫

P
|dπ|2 vg

)1/2 ( ∫
P
|τ(π)|2 vg

)1/2
= 2
√

E(π) E2(π).
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For δα = −
p∑

i=1

(∇eiα)(ei) ∈ C∞(P), we have

− δα =
∑

i

(∇eiα)(ei) =
∑

i

{ei(α(ei)) − α(∇ei ei)}

=
∑

i

{ei 〈dπ(ei), τ(π)〉 − 〈dπ(∇ei ei), τ(π)〉}

= 〈
∑

i

{∇ei dπ(ei) − dπ(∇ei ei)}, τ(π)〉 +
∑

i

〈dπ(ei),∇eiτ(π)〉

= 〈τ(π), τ(π)〉 + 〈dπ,∇τ(π)〉 = |τ(π)|2

since ∇τ(π) = 0. By the above, we have∫
P
|δα| vg =

∫
P
|τ(π)|2 vg = 2 E2(π) < ∞.

By the completeness of (P, g), we can apply Gaffney’s theorem,

0 =
∫

P
(−δα) vg =

∫
P
|τ(π)|2 vg.

Therefore, we obtain τ(π) = 0, i.e., π : (P, g) → (M, h) is harmonic. �

§5 Geometry of CR manifolds Let us begin the CR formalism. I.e., an odd
dimensional analogue of Kähler manifold: Let (M2n+1, θ), a contact manifold of (2n+1)-
dim., T ∈ X(M), the characteristic vector field, θ(T) = 1. Tx(M) = Hx(M) ⊕ RTx,
(x ∈ M), and assume J is the complex str. on H(M), and J(H(M)) = H(M):

J(JX) = −X; [X, Y] ∈ H(M) (X, Y ∈ H(M)).
Let gθ, the Webster Riemannian metric on (M, θ), i.e., gθ(X, Y) = dθ(X, JY) (X, Y ∈

H(M)), gθ(X, T) = 0 (x ∈ H(M)), gθ(T, T) = 1. Then, (M, gθ) is called a strictly
pseudoconvex CR manif.

For two Riemannian manifolds (M2n+1, gθ), (N, h), and for f ∈ C∞(M, N), let the
pseudo energy be

Eb( f ) =
1
2

∫
M

2n∑
i=1

( f ∗h)(Xi, Xi) vgθ ,

where {Xi} is an orthonrmal frame field on (H(M), gθ). The first variation formula is
given by

d
dt

∣∣∣∣∣
t=0

Eb( ft) = −
∫

M h(τb( f ),V) vgθ ,

where τb( f ) =
∑2n

i=1 B f (Xi, Xi) is the pseudo tension field, and B f (X, Y) is the second
fundamental form. Then the second variation formula is given as follows.

d2

dt2

∣∣∣∣∣
t=0

Eb( ft) =
∫

M h(Jb(V),V) vgθ ,

where Jb(V) = ∆bV − Rb(V), ∆bV = −∑2n
i=1
{∇Xi (∇Xi V) − ∇∇Xi Xi V

}
, and Rb(V) =∑2n

i=1 Rh(V, d f (Xi))d f (Xi). Here, ∇ is the induced connection of ∇h, ∇ is the Tanaka-
Webster connection. The pseudo bienergy is

Eb,2( f ) =
1
2

∫
M

h(τb( f ), τb( f )) vgθ , vgθ = θ ∧ (dθ)n.

The first variation formula of Eb,2 is



7

d
dt

∣∣∣∣∣
t=0

Eb,2( ft) = −
∫

M h(τb,2( f ),V) vgθ ,

where τb,2( f ) is the pseudo bitension field given by

τb,2( f ) = ∆b(τb( f )) − ∑2n
i=1 Rh(τb( f ), d f (Xi))d f (Xi).

A C∞ map f : (M, gθ) → (N, h) is pseudo biharmonic if τb,2( f ) = 0. A pseudo
harmonic map is pseudo biharmonic.

The CR analogue of the generalized Chen’s conjecture is: If (N, h) has non-positive
curvature, then every pseudo biharmonic isometric immersion f : (M, gθ) → (N, h)
must be pseudo harmonic.

Lemma (G.-Y. Jiang) Let f : (M, g) → (N, h) be an isometric immersion whose

mean curvature vector field is parallel, i.e., ∇
⊥
Xτ( f ) = 0 (∀ X ∈ X(M)). Then, we have

∆(τ( f ))
= −∑i, j 〈τ( f ), Rh(d f (ei), d f (e j))d f (e j)〉 d f (ei)+

∑
i, j 〈τ( f ), B f (ei, e j)〉 B f (ei, e j).

Recall τ2( f ) = ∆(τ( f )) − ∑ j Rh(τ( f ), e j)e j, and f is biharmonic if τ2( f ) = 0. Here
{ei} is a local orthon. frame field on (M, g).

Lemma Let f : (M, gθ) → (N, h), an admissible (i.e., B f (X, T) = 0, X ∈ H(M))

isometric immer. whose pseudo mean curvature vector field is parallel, i.e., ∇
⊥
Xτb( f ) =

0 (∀ X ∈ H(M)). Then, we have
∆b(τb( f )) = −∑i, j 〈τb( f ), Rh(d f (Xi), d f (X j))d f (X j)〉 d f (Xi)
−∑i〈τb( f ), Rh(d f (Xi), d f (T))d f (T)〉 d f (Xi)
+
∑

i, j 〈τ( f ), B f (Xi, X j)〉 B f (Xi, X j).
Here, recall τb,2( f ) = ∆b(τb( f ))−∑ j Rh(τb( f ), X j)X j, and f is biharmonic if τb,2( f ) = 0.
Here, {Xi} is a local orthonormal frame field on H(M), T is the characteristic vector field
of a strictly p.convex CR manifold (M, gθ).

Theorem 6 Let f be an isometric immersion of a CR manifold (M2n+1, gθ) into

S2n+2(1), and ∇
⊥
Xτb( f ) = 0 (∀ X ∈ H(M)) not harmonic. Then, f is pseudo bihar-

monic iff |B f |H(M)×H(M)|2 = 2n.
Theorem 7 Let f be an isom. immer. of a CR manifold (M2n+1, gθ) into the

complex projective space (Pn+1(c), h, J) of holo. sect. curv. c > 0, and ∇
⊥
Xτb( f ) =

0 (∀ X ∈ H(M)) not harmonic. Then, f is pseudo biharmonic if and only if either
(1) J(d f (T)) ∈ d f (TM) & |B f |H(M)×H(M)|2 = (2n+3)c

4 , or
(2) J(d f (T)) ⊥ f (M) & |B f |H(M)×H(M)|2 = 2nc

4 .

§6 Geometry of foliated Riemannian manifolds. Let F = ∪λ∈ΛLλ be a foliation
over a Riemannian manifold (M, g). For each leaf L = Lλ (λ ∈ Λ) of F , Let Q = Qλ :=
TM/L = TM/Lλ, π : TM → Q = TM/L, the projection, L⊥ ⊂ TM, the transversal
subbundle, and σ : Q → L⊥, the corresponding bundle isomorphism.

Let ∇M, the Levi-Civita connection of (M, g), and ∇, the transverse Levi-Civita con-
nection on Q. Let ϕ, a foliated map of (M, g,F ) into (M′, g′,F ′), i.e., ∀ leaf L of F ,
∃ a leaf L′ of F ′, ϕ(L) ⊂ L′. σ : Q → L⊥, a bundle map such that π ◦ σ = id. Let

dTϕ := π′ ◦ dϕ ◦ σ; Q → Q′ be a bundle map: Q
σ→ L⊥ ⊂ TM

dϕ
→ TM′

π′→ Q′. Here,
Q∗ ⊂ T∗M, π : TM → Q = TM/L, π′ : TM′ → Q′ = TM′/L′. Then, it holds that
dTϕ ∈ Γ(Q∗ ⊗ ϕ−1Q′).
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(First variation) (cf. Chiang-Wolak, Jung) The transversal energy is defined by
Etr(ϕ) := 1

2

∫
M |dTϕ|2 vg. For a C∞ foliated variation {ϕt} with ϕ0 = ϕ and dϕt

dt |t=0 =

V ∈ ϕ−1Q′,
d
dt

∣∣∣∣∣
t=0

Etr(ϕt) = −
∫

M〈V, τtr(ϕ)〉 vg.

Here, τtr(ϕ) is the transversal tension field defined by
τtr(ϕ) :=

∑q
a=1

(∇̃Ea dTϕ)(Ea).
Here, ∇̃ is the induced connection in Q∗ ⊗ ϕ−1Q′ from the Levi-Civita connection of

(M′, g′), and {Ea}qa=1
is a local orthonormal frame field on Q.

A C∞ foliated map ϕ : (M, g,F ) → (M′, g′,F ′) is said to be transversally harmonic
if τtr(ϕ) ≡ 0.

(Second variation formula) For every transversally harmonic map ϕ : (M, g,F ) →
(M′, g′,F ′), let ϕs,t : M → M′ be any foliated variation of ϕ with V = ∂ϕs,t

∂s |(s,t)=(0,0),

W = ∂ϕs,t

∂t |(s,t)=(0,0) and ϕ0,0 = ϕ, we have
∂2

∂s∂t

∣∣∣∣∣
(s,t)=(0,0)

Etr(ϕs,t) =
∫

M〈Jtr, ϕ(V),W〉 vg,

Here, for V ∈ Γ(ϕ−1Q′),
Jtr, ϕ(V) := ∇̃∗∇̃V−∇̃τV − traceQRQ′ (V, dTϕ)dTϕ

= −∑q
a=1

(∇̃Ea∇̃Ea −∇̃∇Ea Ea )V −∑q
a=1

RQ′(V, dTϕ(Ea))dTϕ(Ea).
We want the condition to have

∫
M〈∇̃τV,V〉 vg = 0. The transversal bitension field

τtr,2(ϕ) of a smooth foliated map ϕ is defined by τ2,tr(ϕ) := Jtr,ϕ(τtr(ϕ)). The transver-
sal bienergy E2,tr of a smooth foliated map ϕ is defined by E2,tr(ϕ) := 1

2

∫
M |τtr(ϕ)|2 vg.

A smooth foliated map ϕ : (M, g,F ) → (M′, g′,F ′) is said to be transversally bihar-
monic if τ2,tr(ϕ) ≡ 0.

§7 Rigidity of pseudo biharmonic maps. We want to show
Theorem 8 Let ϕ be a pseudo biharmonic map of a complete strictly pseudo-

convex CR manifold (M, gθ) into another Riemannian manifold (N, h) of non-positive
curvature. If Eb,2(ϕ) < ∞ and Eb(ϕ) < ∞, then ϕ is pseudo harmonic.

(Proof of Theorem 8) The proof of Theorem 8 is divided into four steps.
(The first step): Take a cut-off function η on M as

0 ≤ η(x) ≤ 1, η(x) = 1 on Br(x0), η(x) = 0 outside B2r(x0), and |∇gθη| ≤ 2
r on M.

The pseudo bitension field τb,2(ϕ) of a map ϕ : (M, gθ) → (N, h) is:

τb,2(ϕ) = ∆b(τb(ϕ)) − ∑2n
i=1 Rh(τb(ϕ), dϕ(Xi))dϕ(Xi). For a pseudo biharmonic map

ϕ : (M, gθ) → (N, h), because of RN ≤ 0,∫
M〈∆b(τb(ϕ)), η2 τb(ϕ)〉 vgθ =

∫
M η

2∑2n
i=1〈R

h(τb(ϕ), dϕ(Xi))dϕ(Xi), τb(ϕ)〉 vgθ ≤ 0.

Here, ∆b = (∇
H

)∗ ∇
H

, where ∇
H
X = ∇XH , and X = XH + gθ(X, T)T (XH ∈ H(M)) and

∇ is the induced connection on Γ(ϕ−1TN).
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(The second step) Thus, we have

0≥
∫

M
〈∆b(τb(ϕ)), η2τb(ϕ)〉 =

∫
M
〈∇

H
τb(ϕ),∇

H
(η2τb(ϕ))〉

=

∫
M

2n∑
i=1

〈∇Xiτb(ϕ),∇Xi (η
2 τb(ϕ))〉

=

∫
M

{
η2 〈∇Xiτb(ϕ),∇Xiτb(ϕ)〉 + Xi(η2)〈∇Xiτb(ϕ), τb(ϕ)〉}

=

∫
M
η2
∣∣∣∇Xiτb(ϕ)

∣∣∣2 + 2
∫

M
〈η∇Xiτb(ϕ), Xi(η) τb(ϕ)〉.

Thus, letting Vi := η∇Xiτb(ϕ), Wi := Xi(η) τb(ϕ),∫
M
η2
∣∣∣∇Xiτb(ϕ)

∣∣∣2≤ − 2
∫

M
〈η∇Xiτb(ϕ), Xi(η) τb(ϕ)〉 = −2

∫
M

2n∑
i=1

〈Vi,Wi〉. (#)

Use Cauchy-Schwarz inequality in (#), ±2〈Vi,Wi〉 ≤ ε |Vi|2 + 1
ε |Wi|2 (∀ ε > 0).

We have

(#) ≤ ε
∫

M

2n∑
i=1

|Vi|2 +
1
ε

∫
M

2n∑
i=1

|Wi|2.

Therefore, we have, putting, ε = 1
2 ,∫

M
η2

2n∑
i=1

∣∣∣∇Xiτb(ϕ)
∣∣∣2 ≤1

2

∫
M

∑
i

η2
∣∣∣∇Xiτb(ϕ)

∣∣∣2 + 2
∫

M

∑
i

ei(η)2 |τb(ϕ)|2.

Thus, we have∫
M
η2
∑

i

∣∣∣∇Xiτb(ϕ)
∣∣∣2 ≤ 4

∫
M
|∇η|2 |τb(ϕ)|2≤ 16

r2

∫
M
|τb(ϕ)|2. (∗)

(The third step) By completeness, we can r → ∞. Eb,2(ϕ) = 1
2

∫
M |τb(ϕ)|2 < ∞

implies that the right hand side of (∗) goes to zero if r → ∞. Therefore, we have∫
M
∑2n

i=1

∣∣∣∇Xiτb(ϕ)
∣∣∣2 = 0. Thus, we obtain ∇Xτb(ϕ) = 0 (∀X ∈ H(M)).

(The fourth step): Assume Eb(ϕ) < ∞ and Eb,2(ϕ) < ∞. Define a 1-form on M by

α(X) :=
{ 〈dϕ(X),τb(ϕ)〉 (X ∈ H(M)),

0 (X = T).
Then we have
div(α) =

∑
j(∇gθ

X j
α)(X j) + (∇gθ

T
α)(T) =

∑
j{X j(α(X j)) − α(πH(∇gθ

X j
X j))}

=
∑

j{X j(α(X j)) − α(∇X j X j)} = −δbα. (1)
And also

−δbα = X j 〈dϕ(X j), τb(ϕ)〉 − 〈dϕ(∇X j X j), τb(ϕ)〉

= 〈∇X j (dϕ(X j)) − dϕ(∇X j X j), τb(ϕ)〉 + 〈dϕ(X j),∇X jτb(ϕ)〉
= 〈τb(ϕ), τb(ϕ)〉 = |τb(ϕ)|2. (2)

Thus, we have ∫
M
|div(α)| =

∫
M
|τb(ϕ)|2 = 2 Eb,2(ϕ) < ∞.
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Furthermore, we have∫
M
|α| =

∫
M

(∑
j

〈dϕ(X j), τb(ϕ)〉2)1/2 ≤ ∫
M

(∑
j

|dϕ(X j)|2 |τb(ϕ)|2)1/2
=

∫
M
|dbϕ| |τb(ϕ)| ≤ 2

√
Eb(ϕ)

√
Eb,2(ϕ) < ∞.

Then, we have
∫

M |div(α)| < ∞ and
∫

M |α| < ∞. By Gaffney’ s theorem,
and completeness of (M, g), we have 0 =

∫
M div(α) =

∫
M |τb(ϕ)|2 = 2 Eb,2(ϕ). I.e.,

τb(ϕ) = 0. Thus, ϕ is pseudo harmonic. �

§8 Rigidity of transversally biharmonic maps.
The generalized Chen’s conjecture for foliated Riemannian manifolds: For

any transversally biharmonic map from a foliated Riemannian manifold into another
foliated Riemannian manifold whose transversally sectional curvature is non-positive.
Then, it must be transversally harmonic.

We want to show
Theorem 9 Let ϕ be a C∞ foliated map of a foliated Riemannian manifold (M, g,F )

into a foliated Riemannian manifold (M′, g′,F ′) satisfying the conservation law and
transversally volume preserving. Assume that (M, g) is complete and the transversal
sectional curvature of (M′, g′,F ′) is non-positive. Then, if ϕ is transversally biharmonic
with finite transversal energy and finite transversal 2-energy, then ϕ is transversally
harmonic.

Let ϕ : (M, g,F ) → (M′, g′,F ′), C∞ fol. map. Let α(X, Y) (X, Y ∈ Γ(L)), s.
fundamental form of F α(X, Y) = π(∇Q

X
Y), (X, Y ∈ Γ(L)), where π : TM → Q,

Q = TM/L, and L, the tangent bundle of F . The tension field τ of F is τ =∑p
i, j=1

gi jα(Xi, X j), ({Xi}pi=1
spanns Γ(L)). Here, F is transversally volume preserv-

ing if div(τ) = 0, ϕ satisfies conservation law if {Ea} (a = 1, . . . , q), a local or-
thonormal frame field of Γ(Q), div∇̃S(ϕ)(·) = ∑(∇̃Ea S(ϕ))(Ea, ·) = 0, where S(ϕ) =
1
2 |dTϕ|2 gQ − ϕ∗gQ′ is the transversal stress-energy.

Gaffney’s Theorem Let (M, g), a complete Riemannian manifold, and X, a C1

vector field on M.
(1) If

∫
M |X| vg < ∞, and

∫
M div(X) vg < ∞, then,

∫
M div(X) vg = 0.

(2) If f ∈ C1(M), and X, a C1 vector field on M satisfy
div(X) = 0,

∫
M X f vg < ∞,

∫
M | f |

2 vg < ∞, and
∫

M |X|
2 vg < ∞.

Then, we have:
∫

M X f vg = 0.

We use the following lemma:
Lemma (S. D. Jung) For every C∞ foliated map ϕ : (M, g,F ) → (M′, g′,F ′), we

have div∇̃S(ϕ)(X) = −〈τb(ϕ), dTϕ(X)〉, X ∈ Γ(Q). In particular, if ϕ satisfies the
conservation law, i.e., div∇̃S(ϕ)(·) = 0, then 〈τb(ϕ), dTϕ(X)〉 = 0 (X ∈ Γ(Q)).

By Gaffney’s theorem, we have
Lemma IfF satisfies the transversally volume preserving, i.e., div(τ) = 0, where τ

is the tension field of the second fundamental form of a foliation F . Then
∫

M τ( f ) vg =

0, ( f ∈ V∞(M)).

(Proof of Theorem 9) The proof of Theorem 9 is divided into six steps.
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(The first step) Take a cut-off function η on M as

0 ≤ η(x) ≤ 1, η(x) = 1 on Br(x0), η(x) = 0 outside B2r(x0), and |∇gη| ≤ 2
r on M.

The transversal tension field τtr(ϕ) satisfies that
τ2,tr(ϕ) := Jtr,ϕ(τtr(ϕ)) = ∇̃∗ ∇̃τtr(ϕ) −∇̃ττb(ϕ) −trQRQ′(τtr(ϕ), dTϕ)dTϕ = 0.

Here ∇̃ is the induced connection on ϕ−1Q′ ⊗ T∗M.
(The second step) For a transversally biharmonic map ϕ : (M, g) → (N, h), F ,

transv. volume preserv., div(τ) = 0, we have if r → ∞,∫
M〈∇̃ττb(ϕ), η2 τb(ϕ)〉 → 1

2

∫
M τ〈τb(ϕ), τb(ϕ)〉 = 0.∫

M〈∇̃
∗∇̃(τtr(ϕ)), η2 τtr(ϕ)〉 vg =

∫
M η

2∑q
a=1
〈RQ′(τtr(ϕ), dTϕ(Ea))dTϕ(Ea), τtr(ϕ)〉 vg

≤ 0
since the transversal sectional curvature KQ′(Πϕ,a) of (M′, g′,F ′) corresponding to
each plane Πϕ,a spanned by τtr(ϕ) and dTϕ(Ea) (1 ≤ a ≤ q) is non-positive.

(The third step) Thus, we have

0≥
∫

M
〈∇̃∗∇̃(τtr(ϕ)), η2τtr(ϕ)〉 =

∫
M
〈∇̃τtr(ϕ), ∇̃(η2τtr(ϕ))〉

=

∫
M

q∑
a=1

〈∇̃Eaτtr(ϕ), ∇̃Ea (η2 τtr(ϕ))〉

=

∫
M

{
η2 |∇̃Eaτtr(ϕ)|2 + Ea(η2)〈∇̃Eaτtr(ϕ), τtr(ϕ)〉}

=

∫
M
η2
∣∣∣∇̃Eaτtr(ϕ)

∣∣∣2 + 2
∫

M
〈η ∇̃Eaτtr(ϕ), Ea(η) τtr(ϕ)〉.

By letting Va := η ∇̃Eaτtr(ϕ), Wa := Ea(η) τtr(ϕ),∫
M
η2
∣∣∣∇̃Eaτtr(ϕ)

∣∣∣2≤ − 2
∫

M
〈η ∇̃Eaτtr(ϕ), Ea(η) τtr(ϕ)〉 = −2

∫
M

q∑
a=1

〈Va,Wa〉. (#)

Use Cauchy-Schwarz inequality in (#): ±2〈Va,Wa〉 ≤ ε |Va|2 + 1
ε |Wa|2 (∀ ε > 0).

We have

(#) ≤ ε
∫

M

q∑
a=1

|Va|2 +
1
ε

∫
M

q∑
a=1

|Wa|2.

Therefore, we have, putting, ε = 1
2 ,∫

M
η2

q∑
a=1

∣∣∣∇̃Eaτtr(ϕ)
∣∣∣2 ≤1

2

∫
M

∑
a
η2
∣∣∣∇̃Eaτtr(ϕ)

∣∣∣2 + 2
∫

M

∑
a

Ea(η)2 |τtr(ϕ)|2.

Thus, we have∫
M
η2
∑

a

∣∣∣∇̃Eaτtr(ϕ)
∣∣∣2 ≤ 4

∫
M
|∇η|2 |τtr(ϕ)|2≤ 16

r2

∫
M
|τtr(ϕ)|2. (∗)

(The fourth step) By completeness, we can r → ∞. E2,tr(ϕ) := 1
2

∫
M |τtr(ϕ)|2 < ∞

which implies that the right hand side of (∗) goes to zero if r → ∞. Therefore, we have∫
M
∑q

a=1

∣∣∣∇̃Eaτtr(ϕ)
∣∣∣2 = 0. Thus, we have ∇̃Xτtr(ϕ) = 0 (∀X ∈ Q).

(The fifth step): Define a 1-form α and a canonical vector field α# by α(X) :=
〈dϕ(π(X)), τtr(ϕ)〉, (X ∈ X(M)), 〈α#, Y〉 := α(Y), (Y ∈ X(M)). Let {Ei}pi=1

and



12

{Ea}qa=1
be locally defined orthonormal frame fields on leaves L and Q (dim Lx = p,

dim Qx = q, x ∈ M). Then, we have:
div(α#) =

∑p
i=1

g(∇g
Ei
α#, Ei) +

∑q
a=1

g(∇g
Ea
α#, Ea)

=
∑p

i=1
{Ei(α(Ei)) − α((∇g

Ei
Ei))
}
+
∑q

a=1
{Ea(α(Ea)) − α(∇g

Ea
Ea)} = −δtrα. (1)

By ∇̃Xτtr(ϕ) = 0 (∀X ∈ Q) and definition of α, we have
(1) = −δtrα =

〈dϕ(π( − ∑p
i=1
∇g

Ei
Ei)), τtr(ϕ)〉 +∑q

a=1
{Ea 〈dϕ(Ea), τtr(ϕ)〉

−〈dϕ(π(∇g
Ea

Ea)), τtr(ϕ)〉}
=
〈dϕ(π( − ∑p

i=1
∇g

Ei
Ei)), τtr(ϕ)〉

+
∑q

a=1
{〈∇̃Ea (dϕ(Ea)), τtr(ϕ)〉 + 〈dϕ(Ea), ∇̃Eaτtr(ϕ)〉 −〈dϕ(π(∇g

Ea
Ea
))
, τtr(ϕ)〉}

=
〈dϕ(π(−∑p

i=1
∇g

Ei
Ei)) +

∑q
a=1
{∇̃Ea (dϕ(Ea))− dϕ(π(∇g

Ea
Ea))}, τtr(ϕ)〉. (2)

(The sixth step): Assume Etr(ϕ) < ∞, and E2,tr(ϕ) < ∞. Since
∫

M div(α#) vg = 0,
we have:

0 =
∫

M div(α#) vg = −
∫

M〈dϕ(π(
∑p

i=1
∇g

Ei
Ei)), τtr(ϕ)〉 vg

+
∫

M〈
∑q

a=1
{∇̃Ea (dϕ(Ea)) − dϕ(π(∇g

Ea
Ea))}, τtr(ϕ)〉 vg

=
∫

M〈τtr(ϕ) + dϕ((
∑q

a=1
∇g

Ea
Ea)⊥), τtr(ϕ)〉 vg. (3)

Because for the above last equality in (3), we used
τtr(ϕ) =

∑q
a=1
{∇̃Ea (dϕ(Ea)) − dϕ(∇g

Ea
Ea)}

=
∑q

a=1
{∇̃Ea (dϕ(Ea)) − dϕ(π(∇g

Ea
Ea))} −dϕ((

∑q
a=1
∇g

Ea
Ea)⊥).

Then, we have
(3) :=

∫
M〈τtr(ϕ) + dϕ((

∑q
a=1
∇g

Ea
Ea)⊥), τtr(ϕ)〉 vg =

∫
M〈τtr(ϕ), τtr(ϕ)〉 vg. (4)

for ϕ : (M, g) → (N, h), satisfies the conservative law,
〈dTϕ(X), τtr(ϕ)〉 = 0 (X = (

∑q
a=1
∇g

Ea
Ea)⊥ ∈ Γ(Q)).

Here, W⊥ is the Q-component of a vector field W on M relative to the decomposition
TM = L ⊕ Q. �

§9. Legendrian submanifolds and Lagrangean submanifolds. For Legen-
drian submanifolds and Lagrangean submanifolds let us recall:

Theorem 10 Let Mm be an m-dimensional submanifold of a Sasakian manifold
(N2m+1, h, J, ξ, η). Then, M is Legendrian in N if and only if C(M) ⊂ C(N) is La-
grangian in a Kähler cone manifold (C(N), h, I).

(Proof) M is Legendrian in N if and only if h(ξ, X) = 0 and h(X, JY) = 0 for all X,
Y ∈ X(M). The Kähler form of C(N) is Ω = 2r dr ∧ η + r2 dη which satifies

Ω( f1Φ + X, f2Φ + Y) = r2{h(ξ, f1Y − f2X) + h(X, JY)}.
Thus, M is Legendrian if and only if the pullback of Ω to C(M) vanishes. Namely,
C(M) ⊂ C(N) is Lagrangian. �

Theorem 11 Let ϕ : (Mm, g) → N, a Legendrian submanifold of a Sasakian man-

ifold (N2m+1, h, J, ξ, η), and let ϕ : C(M) 3 (r, x) 7→ (r, ϕ(x)) ∈ C(N), the Lagrangian
submanifold of a Kähler cone manifold. Here, g = dr2 + r2 g, h = dr2 + r2h. Then,

(1) τ(ϕ) = τ(ϕ)
r2 , i.e., ϕ is harmonic if and only if ϕ is harmonic.

(2) τ2(ϕ) := Jϕ(τ(ϕ)) = Jϕ(τ(ϕ))
r4 +

mτ(ϕ)
r2 =

τ2(ϕ)
r4 +

mτ(ϕ)
r2 .

I.e., ϕ is harmonic if and only if ϕ is harmonic and ϕ is biharmonic if and only if
Jϕ(τ(ϕ)) = mτ(ϕ).



13

Corollary Let ϕ : (Mm, g) → N be a Legendrian submanifold of a Sasakian

manifold (N2m+1, h, J, ξ, η), ϕ : C(M) → C(N), the Lagrangian submanifold of a Kähler
cone manifold. Then,
ϕ : (M, g) → N is proper biharmonic if and only is τ(ϕ) is an eigensection of Jϕ

with the eigenvalue m. Here, Jϕ is an elliptic operator of the form:

JϕW := ∆ϕW −
∑m+1

i=1
RC(N)(W, ϕ∗ei)ϕ∗ei, (W ∈ Γ(ϕ

−1
TC(N))),

and RC(N) is the curvature tensor of (C(N), h).

§10. Biharmonic maps and symplectic geometry. Our question is as follows:
What is a relation between biharmonic maps and symplectic geometry?

One can ask: “When are Lagrangian submanifolds biharmonic immersions into a
symplectic manifold? ”

Take as a symplectic manifold, a Kähler manifold: “When is its Lagrangian subman-
ifold biharmonic immersion? ”

Let (N, J, h) be a complex m-dimensional Kähler manifold, and consider a symplec-
tic form on N by ω(X, Y) := h(X, JY), X, Y ∈ X(N).

A real submanifold M in N of dimension m is called to be Lagrangian if the immer-
sion ϕ : M → N satisfies that ϕ∗ω ≡ 0, i.e.,

hx(Tx M, J(Tx M)) = 0 (∀ x ∈ M).

Problem: When is ϕ : (M, g) → (N, J, h) biharmonic? Here, g := ϕ∗h.

Then, we have
Theorem 12 (Maeta and Urakawa) Let (N, J, h), a Kähler manifold, and (M, g), a

Lagrangian submanifold. Then, it is biharmonic if and only if

Trg(∇AH) + Trg(A∇⊥• H(•)) −
∑
〈Trg(∇⊥ei

B) − Trg(∇⊥• B)(ei, •),H〉 ei = 0,

∆⊥H + TrgB(AH(•), •) +
∑

RicN(JH, ei)Jei −
∑

Ric(JH, ei)Jei

− J Trg AB(JH,•)(•) + m J AH(JH) = 0.

where m = dim M, and Ric, RicN are the Ricci tensors of (M, g), (N, h).

In particular, we have
Theorem 13 (Maeta and Urakawa) If (N, J, h) = Nm(4c), the complex space form of

complex dim m, with constant holomorphic curvature 4c(< 0, = 0, > 0), and (M, g),
a Lagrangian submanifold. Then it is biharmonic if and only if

Trg(∇AH) + Trg(A∇⊥• H(•)) = 0, ∆⊥H + TrgB(AH(•), •) − (m + 3)cH = 0.

B.Y. Chen introduced the following two notions on Lagrangian submanifold M in a
Kähler manifold N: H-umbilic: M is called H-umbilic if M has a local orthonormal
frame field {ei} satisfying that

B(e1, e1) = λ Je1, B(e1, ei) = µ Jei, B(ei, ei) = µ Je1, B(ei, e j) = 0 (i , j),

where 2 ≤ i, j ≤ m = dim M, B is the second f.f. of M ↪→ N, and λ, µ are local
functions on M.

PNMC: M has a parallel normalized mean curvature vector field if ∇⊥( H
|H|
)
= 0.

We have (cf. Maeta and Urakawa [MU])
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Theorem 14 Let ϕ : M → (Nm(4c), J, h) be a Lagrangian H-umbilic PNMC
submanifold. Then, it is biharmonic iff c = 1 and ϕ(M) is congruent to a submanifold
of Pm(4) given by

π
(√ µ2

1 + µ2
e−

i
µ x,

√
1

1 + µ2
eiµxy1, · · ·,

√
1

1 + µ2
eiµxym

)

where x, yi ∈ R with
∑m

i=1 yi
2 = 1. Here, π : S2m+1 → Pm(4) is the Hopf fibering, and

µ = ±
√

m+5±
√

m2+6m+25
2m , (λ = (µ2 − 1)/µ).

§11. Bubbling phenomena of harmonic maps and biharmonic maps For any
C > 0, let F := {ϕ : (Mm, g) → (Nn, h) smooth harmonic |

∫
M | dϕ |

m vg ≤ C}.
For any C > 0, letF := {ϕ : (Mm, g) → (Nn, h) smooth biharmonic |

∫
M | dϕ |

m vg ≤
C &

∫
M |τ(ϕ)|2 vg ≤ C}.

Question: Are both F small or big? Our answer: a rather surprising: Both F
are small!. I.e., both F cause bubblings, kinds of compactness.

More precisely, recall previous bubbling result of harmonic maps:
Theorem 15 Let (M, g), (N, h) be compact Riem. manifold dim M ≥ 3. For any

C > 0, let F := {ϕ : (Mm, g) → (Nn, h) smooth harmonic |
∫

M | dϕ |
m vg ≤ C}.

Then, for every {ϕi} ∈ F , there exist S = {x1, · · · , x`} ⊂ M, and a harmonic map
ϕ∞ : (M\S, g) → (N, h) such that (1) ϕi j → ϕ∞ in the C∞-topology on M\S ( j →
∞), (2) the Radon measures |dϕi j |m vg converges to a measure given by |dϕ∞|m vg +∑`

k=1
ak δxk ( j → ∞).

Our bubbling of biharmonic maps with N. Nakauchi is :
Theorem 16 (Bubbling) Let (M, g), (N, h) be compact Riem. mfds. dim M ≥ 3.

For any C > 0, let F := {ϕ : (Mm, g) → (Nn, h) smooth biharmonic |
∫

M | dϕ |
m vg ≤ C

and
∫

M |τ(ϕ)|2 vg ≤ C}. Then, for every {ϕi} ∈ F , there exist S = {x1, · · · , x`} ⊂ M,
and a biharmonic map ϕ∞ : (M\S, g) → (N, h) such that (1) ϕi j → ϕ∞ in the C∞-
topology on M\S ( j → ∞), (2) the Radon measure |dϕi j |m vg converges to a measure
|dϕ∞|m vg +

∑
1≤k≤` ak δxk ( j → ∞).

§12. Joint works with N. Koiso. We state a joint work with N. Koiso and H.
Urakawa: Let ϕ : Mm # (Rm+1, g0), a biharm. hypersurface, λi, the principal curva-
ture, (i = 1, · · · , m), vi, the unit principal curvature vector fields. Let τ :=

∑
λi. Then,

− τ2 is a simple principal curvature, say λm = − τ2 . Then, we have
Theorem 17 (Koiso-Urakawa) Let ϕ : Mm # (Rm+1, g0), a biharmonic hypersur-

face, with λi , λ j (i , j), and g(∇vi v j, vk) , 0 (∀i, j, k = 1, · · · , m − 1), ∇, the
induced connection with respect to the induced metric g. Then, M is minimal.

Theorem 18 (Koiso-Urakawa) Every Riemannian manifold (M, g) can be embed-
ded as a biharmonic but not minimal hypersurface in a Riemannian manifold,

(M×R, g(t) := g(t)+dt2) with g(0) = g. Here g(t) is a solution of the system of the
ordinary differential equation’s: α = − 1

2 g′(t), β = − 1
2 g′′(t) + 1

4 Cg(t) (g′(t) ⊗ g′(t)).
Here g′(t)(X, Y) = ∂g(t)(X, Y)/∂t, and Cg(t)(·), is the contraction, α(X, Y) = g(∇XY, N)
(X, Y ∈ X(M)), N = ∂/∂t, is the unit normal vector field along M at t = 0, and
β(X, Y) := g(0)(R(N, X)Y, N).
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§13. Classification of biharmonic homogeneous submanifolds in compact
symmetric spaces.

Theorem 19 Let (G, K1, K2) be any commutative symmetric triad, i.e., G, a compact
simple Lie group, G/Ki (i = 1, 2), compact symmetric space, two involutions θi, θ1θ2 =

θ2θ1, and K2, K1 act on G/K1, G/K2, of cohomogeneity one, respectively.
Then, K2-orbit, proper biharmonic if and only if K1-orbit, proper biharmonic.
Furthermore, we have:

Case 1: 3 cases.
· (SO(1 + b + c), SO(1 + b) × SO(c), SO(b + c)),
· (SU(4), S(U(2) × U(2)), Sp(2)),
· (Sp(2),U(2), Sp(1) × Sp(1)).

In each case, there exists a unique proper biharmonic hypersurfaces K2-orbit in G/K1.
Case 2: 7 cases.
· (SO(2 + 2q), SO(2) × SO(2q), U(1 + q)) (q > 1),
· (SU(1 + b + c), S(U(1 + b) × U(c)), S(U(1) × U(b + c)) (b ≥ 0, c > 1),
· (Sp(1 + b + c), Sp(1 + b) × Sp(c), Sp(1) × Sp(b + c)) (b ≥ 0, c > 1),
· (SO(8), U(4), U(4)′),
· (E6, SO(10) · U(1), F4),
· (SO(1 + q), SO(q), SO(q)) (q > 1),
· (F4, Spin(9), Spin(9)).

In these cases, there exists a unique proper biharmonic hypersurface orbit of K2-action
on G/K1.
Case 3: 8 cases.
· (SO(2c), SO(c) × SO(c), SO(2c − 1)) (c > 1),
· (SU(4), Sp(2), SO(4)),
· (SO(6), U(3), SO(3) × SO(3)),
· (SU(1 + q), SO(1 + q), S(U(1) × U(q))) (q > 1),
· (SU(2 + 2q), S(U(2) × U(2q)), Sp(1 + q)) (q > 1),
· (Sp(1 + q), U(1 + q), Sp(1) × Sp(q)) (q > 1),
· (E6, SU(6) · SU(2), F4),
· (F4, Sp(3) · Sp(1), Spin(9)).

In this case, for all biharmonic regular orbits of K2-action on G/K1 (same as, K1-action
on G/K2) is minimal.

Theorem 20 Assume that (G, K1, K2) is a commutative compact symmetric triad
with dim a = 1. Then, all biharmonic regular orbits for (K2 × K1)-actions on G are
classified as follows: All cases admitting regular orbits of the (K2 × K1)-action on G
which there exist two distinct proper biharmonic hypersurfaces, are one of the 15 cases
in the following list.

(1) All (G, K1, K2) which have ∃2 proper biharmonic hypersurfaces
· (SO(1 + b + c), SO(1 + b) × SO(c), SO(b + c))
· (SU(4), Sp(2), SO(4)) · (SU(4), S(U(2) × U(2)), Sp(2))
· (Sp(2),U(2), Sp(1) × Sp(1))
· (SO(2 + 2q), SO(2) × SO(2q),U(1 + q)) (q > 1)
· (SU(1 + b + c), S(U(1 + b) × U(c)), S(U(1) × U(b + c))
· (Sp(1 + b + c), Sp(1 + b) × Sp(c), Sp(1) × Sp(b + c))
· (SO(1 + q), SO(q), SO(q)) (q > 1)
· (SU(1 + q), SO(1 + q), S(U(1) × U(q))) (q > 52)
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· (SU(2 + 2q), S(U(2) × U(2q)), Sp(1 + q)) (q > 1)
· (Sp(1 + q),U(1 + q), Sp(1) × Sp(q)) (q = 2, q > 45)
· (E6, SO(10) · U(1), F4)
· (F4, Spin(9), Spin(9))
· (F4, Sp(3) · Sp(1), Spin(9))
· (SO(8),U(4),U(4)′).
(2) (G, K1, K2), any biharmnic regular orbit of the (K2 × K1)-action on G is harmonic

Recall the action of K2×K1 on G is (k2, k1) · x := k2xk1
−1 (k2 ∈ K2, k1 ∈ K1, x ∈ G).

(2-1) (SO(6),U(3), SO(3) × SO(3)),
(2-2) (SU(1 + q), SO(1 + q), S(U(1) × U(q)) (52 ≥ q > 1),
(2-3) (Sp(1 + q),U(1 + q), Sp(1) × Sp(q)) (45 ≥ q > 2),
(2-4) (E6, SU(6) · SU(2), F4).
For compact symmetric triads (G, K1, K2) whose K2-action on G/K1 is cohomogene-

ity two, we have :
Theorem 21 Let (G, K1, K2), a compact symmetric triad whose the K2-action on

G/K1 is of cohomogeneity two. Then, all singular orbit types are divided into one of
the following three cases: (Note the codimension of all such orbits of K2 in G/K1 ≥ 2).

(i) There exists a unique proper biharmonic orbit,
(ii) there exist two proper biharmonic orbits,
(iii) any biharmonic orbit is harmonic.
Theorem 22 All the compact symmetric triads (G, K1, K2), the K2-action on G/K1

is cohomogeneity two as follows:
(1) A2: 12 cases (ii),
(2) B2: 6 cases (ii),
(3) C2: 15 cases (ii),
(4) BC2: 12 cases (ii),
(5) G2: 4 cases (ii) and 2 cases (iii),
(6) I-B2: 2 cases (i), 4 cases in (ii),
(7) I-C2: 4 cases (i) and 8 cases (ii),
(8) I-C2: 4 cases (i) and 8 cases in (ii),
(9) I-BC2-A2

1
: 9 cases (ii),

(10) II-BC2: 9 cases (iii),
(11) I-BC2-B2: 4 cases (ii) and 5 cases in (iii),
(12) III-A2: 9 cases (iii),
(13) III-B2: 3 cases (iii),
(14) III-C2: 2 cases (i) and 7 cases in (iii),
(15) III-BC2: 9 cases (iii),
(16) III-G: 2 cases (iii).
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