Maximal antipodal subgroups of the compact Lie group G_2 of exceptional type

Osami Yasukura (University of Fukui)

This article is founded by the joint work [6] with M.S. Tanaka and H. Tasaki.

1 Maximal antipodal sets of a symmetric space

Let M be a connected compact Riemannian symmetric space. And $I(M)_0$ the identity connected component of the isometry group. For $x \in M$, the geodesic symmetry at x is denoted as s_x .

DEFINITION (Chen-Nagano [1])

(1) An antipodal set in M is defined to be a subset A of M such that $s_x y = y$ for all $x, y \in A$.

(2) The 2-number $\sharp_2 M$ of M is defined to be the supremum of cardinality $\sharp A$ of an antipodal set A in M.

(3) A great antipodal set A_2 in M is defined to be an antipodal set in M such that $\sharp A_2 = \sharp_2 M$.

(4) An antipodal set A in M is said to be maximal iff A' = A for all antipodal subset A' in M such that $A' \supseteq A$.

(5) Two antipodal sets A, A' in M are said to be *congruent* iff $\alpha A = A'$ for some $\alpha \in I(M)_0$.

2 Poles and polars of a symmetric space

For $x \in M$, put $F(s_x, M) := \{y \in M \mid s_x y = y\}$. Then $F(s_x, M) \setminus \{x\} = \{o_i \mid 1 \leq i \leq a\} \cup (\cup_{j=1}^b M_j^+)$ as a disjoint union of some *poles* (*i.e.*, zerodimensional connected components) $\{o_i \mid 1 \leq i \leq a\}$ and *polars* (*i.e.*, positive-dimensional connected components) M_j^+ $(1 \leq j \leq b)$ for some nonnegative integers a, b, where a = 0 or b = 0 means that $\{o_i \mid 1 \leq i \leq a\}$ or $\cup_{j=1}^b M_j^+$ is an empty set, respectively. LEMMA 1. For $x \in M$, if b = 1 and a = 0 or 1, then the assignment

$$A_1 \mapsto A'_1 := \{x\} \cup \{o_i \mid 1 \le i \le a\} \cup A_1$$

from the set of all maximal antipodal sets in M_1^+ to that in M induces a surjection between their congruent class.

Proof. Let A be a maximal antipodal set in M containing x. Then $A_1 := A \setminus \{x, o_i \mid 1 \leq i \leq a\} \subseteq F(s_x, M) \setminus \{x, o_i \mid 1 \leq i \leq a\} = M_1^+$ as a maximal antipodal set in M_1^+ such that $A'_1 = A$.

3 Maximal antipodal subgroups of a Lie group

Let M be a connected compact Lie group being a Riemannian symmetric space by a bi-invariant metric on M. Then any two conjugate subgroups of M are congruent in M, and vice varsa if M is a simple Lie group.

REMARK (Chen-Nagano[1, Remarks 1.2, 1.3]). Any maximal antipodal set A in M containing the unit element e is a discrete abelian subgroup of M, which is isomorphic to $(\mathbf{Z}_2)^t$ with $2^t < \infty$.

4 Connected Lie group G_2 of exceptional type

Let G_2 be a connected compact simple Lie group of type G_2 . And $S^2 \cdot S^2$ the quotient space $(S^2 \times S^2)/\mathbb{Z}_2$ of $S^2 \times S^2$ by a natural action of $\mathbb{Z}_2 := \{\pm(1,1)\}$ on $S^2 \times S^2$ [1, 3.8]. Then the following theorem 1 was given by Nagano without proof.

THEOREM 1 (Nagano [2, p.66]). Put $M := G_2$. Then $F(s_e, G_2) \setminus \{e\} = M_1^+ \cong G_2/SO(4)$. For $o \in M_1^+$, $F(s_o, M_1^+) \setminus \{o\} = M_{1,1}^+ \cong S^2 \cdot S^2$.

LEMMA 2. Put $M := S^2 \cdot S^2 \ni [\vec{x}, \vec{y}] := \{\pm(\vec{x}, \vec{y})\}$ and $x_{\pm i} := [\vec{e}_i, \pm \vec{e}_i]$ (i = 1, 2, 3) for an arbitrary orthonormal frame $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ of \mathbb{R}^3 . Then any maximal antipodal set in M is congruent to $A := \{x_{\pm i} \mid i = 1, 2, 3\}.$

Proof. $F(s_{x_1}, M) \setminus \{x_1\} = \{x_{-1}\} \cup M_1^+; M_1^+ := (S^2 \cap \vec{e}_1^{\perp})^2 / \mathbb{Z}_2$. By virtue of Lemma 1 (a = 1), any maximal antipodal set in M is congruent to $A'_1 := \{x_{\pm 1}\} \cup A_1$ for some maximal antipodal set A_1 containing x_2 in M_1^+ . Then $A_1 \setminus \{x_2\} \subseteq \{x_{-2}\} \cup (S^2 \cap \vec{e}_1^{\perp} \cap \vec{e}_2^{\perp})^2 / \mathbb{Z}_2 = \{x_{-2}, x_{\pm 3}\}$, so that $A'_1 \subseteq A$ which is antipodal. Since A'_1 is maximal, $A'_1 = A$.

By virtue of Lemma 1, the following result is then obtained.

THEOREM 2 ([6]). Let A be the maximal antipodal set in $(S^2 \times S^2)/\mathbb{Z}_2$ defined in Lemma 2. Moreover, let $\varphi : (S^2 \times S^2)/\mathbb{Z}_2 \longrightarrow M_{1,1}^+$ be an isometry giving an isometry $(S^2 \times S^2)/\mathbb{Z}_2 \cong M_{1,1}^+$ mentioned in Theorem 1. Put $B := \varphi(A), B' := \{o\} \cup B$ and $B'' := \{e, o\} \cup B$. Then

(1) Any maximal antipodal set in M_1^+ is congruent to B'; and

(2) Any maximal antipodal subgroup of G_2 is conjugate to B''.

5 Explicit description of G_2

The explicit description of G_2 is given after Yokota as follows: Let \boldsymbol{H} be the quaternions with the unit element 1 and the Hamilton's triple $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ with the conjugation $\bar{b} := b_0 1 - b_1 \boldsymbol{i} - b_2 \boldsymbol{j} - b_3 \boldsymbol{k}$ ($b = b_0 1 + b_1 \boldsymbol{i} + b_2 \boldsymbol{j} + b_3 \boldsymbol{k} \in \boldsymbol{H}$). By Cayley-Dickson process, the octanions are given as $\boldsymbol{O} := \boldsymbol{H} \times \boldsymbol{H}$ with the \boldsymbol{R} -bilinear product $xy := (mn - \bar{b}a, a\bar{n} + bm)$ for x = (m, a) and $y = (n, b) \in \boldsymbol{O}$. By the octanionic conjugation $\bar{x} := (\bar{m}, -a) \in \boldsymbol{O}$, a positive-definite \boldsymbol{R} -bilinear inner product is defined as $(x \mid y) := (x\bar{y} + y\bar{x})/2 \in \boldsymbol{R}$. Put

$$G := \{ \alpha \in GL_{\mathbf{R}}(\mathbf{O}) \mid \alpha(xy) = (\alpha x)(\alpha y) \}$$

as the automorphism group of the **R**-algebra **O**. Then $\alpha 1 = 1$, $\overline{\alpha x} = \alpha \overline{x}$ and $(\alpha x \mid \alpha y) = (x \mid y)$ for $\alpha \in G$ and $x, y \in O$. Moreover, put ImO := $\{x \in O \mid \overline{x} = -x\} \cong \mathbb{R}^7, S^6 := \{x \in \text{Im}O \mid (x \mid x) = 1\} \ni (i, 0) \text{ and}$ $H := \{\alpha \in G \mid \alpha(i, 0) = (i, 0)\}.$

PROPOSITION 1. (1) G acts transitively on S^6 such that $H \cong SU(3)$, so that $G/H \cong S^6$. As the result, G is a connected and simply connected 14-dimensional compact Lie group.

(2) Take an isomorphism $f : SU(3) \longrightarrow H$ given by (1). If T^2 is a maximal torus of SU(3), then $G = \bigcup_{\alpha \in G} \alpha f(T^2) \alpha^{-1}$. As the result, rank $G = \operatorname{rank} H = 2$.

Proof. (1) The first part was directly proved by Yokota [3, pp.250–251]. The last part follows from the first one.

(2) Since G is connected, $G \subseteq SO(\text{Im} \mathbf{O}) \cong SO(7)$. Since any element of SO(7) admits a fixed-point in S^6 , any $\alpha \in G$ admits some $p \in S^6$ such that $\alpha p = p$. By (1), $\beta p = (\mathbf{i}, 0)$ for some $\beta \in G$. Then $(\beta \alpha \beta^{-1})(\mathbf{i}, 0) =$ $(\mathbf{i}, 0)$. Hence, $\beta \alpha \beta^{-1} = f(A)$ for some $A \in SU(3)$. For some $B \in SU(3)$, $BAB^{-1} \in T^2$. Hence, $(f(B)\beta) \alpha (f(B)\beta)^{-1} \in f(T^2)$.

Put $Sp(1) := \{q \in \boldsymbol{H} \mid |q| = 1\}, \psi : Sp(1) \times Sp(1) \longrightarrow GL_{\boldsymbol{R}}(\boldsymbol{O});$

$$\psi(p,q)(m,a) := (qm\overline{q}, pa\overline{q})$$

Moreover, put $e = \psi(1, 1), \gamma := \psi(1, -1), G^{\gamma} := \{\alpha \in G \mid \alpha\gamma = \gamma\alpha\}$. An explicit description of the polar decomposition of the automorphism group of the real split octanions was given by Yokota [4], by which the following proposition 2 was also obtained (cf. [5, 1.3.3, 1.3.4] for a precise proof).

PROPOSITION 2 (1) $\psi(Sp(1) \times Sp(1)) = G^{\gamma}$,

(2) ker $\psi = \{\pm (1,1)\}, G^{\gamma} \cong SO(4).$

COROLLARY. G is a connected, simply connected, compact, simple Lie group of type G_2 with $z(G) = \{e\}$.

Proof. (1) $z(G) = \{e\}$ (Yokota, arXiv:0902.0431v1, Theorem 1.11.1): In fact, $z(G) \subset z(G^{\gamma}) = z(\psi(Sp(1) \times Sp(1))) = \{\psi(1, \pm 1)\} = \{e, \gamma\}$ and $\gamma \notin z(G)$ by dim $G^{\gamma} = 6 < 14 = \dim G$. (2) By the step (1) and Proposition 1 (2), G is semisimple of type $A_1 \oplus A_1$, A_2 or G_2 of dimension 6, 8 or 14. Hence, G is simple of type G_2 by Proposition 1 (1).

6 Explicit description of polars in G_2

By Corollary, G is denoted also as G_2 . By explicit description of polars in G_2 , the results of Theorems 1 and 2 are directly examined as follows:

Theorem 3([6]).

(1) $F(s_e, G) \setminus \{e\} = M_1^+ = \{g\gamma g^{-1} \mid g \in G\} \cong G_2/SO(4).$

(2) For $o := \gamma \in M_1^+$, $F(s_o, M_1^+) \setminus \{o\} = M_{1,1}^+$ and

$$M_{1,1}^{+} = \{\psi(p,q) \mid p^{2} = q^{2} = -1\} \cong (S^{2} \times S^{2}) / \mathbf{Z}_{2}$$

(3) Any maximal antipodal set in $M_{1,1}^+$ is congruent to

$$B := \{\psi(p, \pm p) \mid p = \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\},$$

(4) Any maximal antipodal set in M_1^+ is congruent to

$$B' := \{\psi(1, -1)\} \cup B.$$

(5) Any maximal antipodal subgroup of G_2 is conjugate to

$$B'' := \{\psi(1, \pm 1)\} \cup B.$$

Proof. (1) Put $T^2 := \{A = \text{diag}(\alpha_1, \alpha_2, \alpha_3) \mid A \in SU(3)\}$, which is a maximal torus of SU(3). Then $F(s_e, T^2) = \{\text{diag}(\pm 1, \pm 1, \pm 1) \in T^2\} =$

 $\{e\} \cup \{A_i \text{diag}(1, -1, -1)A_i^{-1} \mid i = 1, 2, 3\} \text{ for some } A_i \in SU(3) \ (i = 1, 2, 3).$ By virtue of Proposition 1 (2), $\gamma \in F(s_e, G) \setminus \{e\} = \cup_{g \in G} gf(F(s_e, T^2))g^{-1} \setminus \{e\} = \cup_{g \in G} \{g\gamma g^{-1} \mid g \in G\} \cong G/G^{\gamma}, \text{ which is connected since } G \text{ is connected. Hence, } G_2/SO(4) \cong F(s_e, G) \setminus \{e\} = M_1^+.$

 $(2) F(s_{\gamma}, M_{1}^{+}) \setminus \{\gamma\} = M_{1}^{+} \cap G^{\gamma} \setminus \{\gamma\} = \{\psi(p, q) \mid (p^{2}, q^{2}) = \pm(1, 1)\} \setminus \{e, \gamma\}$ = $\{\psi(p, q) \mid (p^{2}, q^{2}) = -(1, 1)\} \cong (S^{2} \times S^{2})/\mathbb{Z}_{2}$, because of $e = \psi(1, 1)$, $\gamma = \psi(1, -1)$ and $\{p \in Sp(1) \mid p^{2} = -1\} = \{p \in Sp(1) \mid p = -\bar{p}\}$ = $\{p = p_{1}i + p_{2}j + p_{3}k \mid \sum_{i=1}^{3} p_{i}^{2} = 1\}.$

(3) follows from Lemma 2 because of (2). (4) (resp. (5)) follows from Lemma 1 with a = 0 because of (3) (resp. (4)) and (1).

REMARK. (1) The result $\sharp_2(S^2 \cdot S^2) = 6$, $\sharp_2G_2/SO(4) = 7$ and $\sharp_2G_2 = 8$ of Chen-Nagano [1, Examples 3.13] is refined by Theorem 3 since *B* (resp. *B'* or *B''*) is a great antipodal set in $S^2 \cdot S^2$ (resp. $G_2/SO(4)$ or G_2) as unique maximal antipodal set up to congruence.

(2) Lemma 1 provides a priori or clear-sighted geometric method to Theorems 2 and 3. Posteriorly or arithmetically, Theorem 3 (5) is verified by calculations of weights of B'' on $O = \mathbb{R}^8$.

References

- B.-Y. Chen and T. Nagano, A Riemannian geometric invariant and its applications to a problem of Borel and Serre, Trans. Amer. Math. Soc. 308 (1988), 273–297.
- [2] T. Nagano, The involutions of compact symmetric spaces, *Tokyo J.Math.* (1988), 57–79.
- [3] I. Yokota, *Groups and Topology*, Shōkabō, 1971. (in Japanese)
- [4] I. Yokota, Non-compact simple Lie group G'_2 of type G_2 , J. Fac. Sci. Shinshu Univ. **12**(1977), 45–52.
- [5] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G = G_2, F_4$ and E_6 , Tsukuba J.Math. 14-1 (1990), 185–223.
- [6] M. S. Tanaka, H. Tasaki and O. Yasukura, Maximal antipodal subgroups of the compact Lie group G_2 of exceptional type, in preparation.