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This article is founded by the joint work [6] with M.S. Tanaka and
H. Tasaki.

1 Maximal antipodal sets of a symmetric space

Let M be a connected compact Riemannian symmetric space. And I(M)g
the identity connected component of the isometry group. For x € M, the
geodesic symmetry at x is denoted as s, .

DEFINITION (Chen-Nagano [1])

(1) An antipodal set in M is defined to be a subset A of M such that
spy =y for all x,y € A.

(2) The 2-number oM of M is defined to be the supremum of cardinality
fA of an antipodal set A in M.

(3) A great antipodal set Ay in M is defined to be an antipodal set in
M such that §A = oM.

(4) An antipodal set A in M is said to be mazimal iff A’ = A for all
antipodal subset A’ in M such that A’ D A.

(5) Two antipodal sets A, A’ in M are said to be congruent iff €A = A’
for some a € I(M)o.

2 Poles and polars of a symmetric space

For z € M, put F(sz, M) :={y € M | spy = y}. Then F(sy, M)\{z} =
{oi |1 <i<a}U (U;’-Zle) as a disjoint union of some poles (i.e., zero-
dimensional connected components) {o; | 1 < ¢ < a} and polars (i.e.,
positive-dimensional connected components) M j+ (1 < j <b) for some non-
negative integers a, b, where a = 0 or b = 0 means that {o; | 1 <i < a} or
U?ZlM j’ is an empty set, respectively.
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LEMMA 1. Forx e M, ifb=1 and a =0 or 1, then the assignment
Al'—>A/1 ::{x}U{0i|1§z’§a}UA1

from the set of all maximal antipodal sets in M1+ to that in M induces a
surjection between their congruent class.

Proof. Let A be a maximal antipodal set in M containing x. Then A
= A\ {z,0; | 1 <i<a} C F(sp, M)\ {z,0; | 1 <i<a}=Masa
maximal antipodal set in M~ such that A} = A. O

3 Maximal antipodal subgroups of a Lie group

Let M be a connected compact Lie group being a Riemannian symmetric
space by a bi-invariant metric on M. Then any two conjugate subgroups of
M are congruent in M, and vice varsa if M is a simple Lie group.

REMARK (Chen-Nagano[l, Remarks 1.2, 1.3]). Any mazimal antipodal
set A in M containing the unit element e is a discrete abelian subgroup of
M, which is isomorphic to (Z3)" with 2t < oo.

4 Connected Lie group G, of exceptional type

Let G be a connected compact simple Lie group of type Go. And S? - 52
the quotient space (S? x S2)/Z5 of S? x S? by a natural action of Zg :=
{£(1,1)} on S? x S2 [1, 3.8]. Then the following theorem 1 was given by
Nagano without proof.

THEOREM 1 (Nagano [2, p.66]). Put M := G3. Then F(s.,G2)\{e} =
M = G2/SO(4). For o € M{", F(s,, Mi")\{o} = M} = §%. 52

LEMMA 2. Put M := S?- 8% 3 [Z,9] := {£(Z, )} and z4; := [€;, €]
(i = 1,2,3) for an arbitary orthonormal frame {€y, &, €3} of R3. Then any
mazimal antipodal set in M is congruent to A := {zy;|i=1,2,3}.

Proof. F(sz, M)\ {z1} = {z_1} U M M{" := (S?né&f)? /Zs. By
virtue of Lemma 1 (a = 1), any maximal antipodal set in M is congruent

to A} := {11} U A; for some maximal antipodal set A; containing x9 in
M;". Then Aj\{za} C {z_2}U(S?Nef Neéy)?/Zy = {x_2, 743}, so that
A € A which is antipodal. Since A} is maximal, A} = A. O

By virtue of Lemma 1, the following result is then obtained.



THEOREM 2 ([6]). Let A be the mazimal antipodal set in (S* x S%)/Z4
defined in Lemma 2. Moreover, let ¢ : (S?x S?)/Zy — M1+,1 be an isometry
giving an isometry (S* x S?)/Zy = Mf:l mentioned in Theorem 1. Put
B:=¢(A), B':={o}UB and B" := {e,0} UB. Then

(1) Any mazimal antipodal set in Mf’ s congruent to B'; and

(2) Any mazimal antipodal subgroup of Gy is conjugate to B".

5 Explicit description of G,

The explicit description of G is given after Yokota as follows: Let H be the
quaternions with the unit element 1 and the Hamilton’s triple 2, 7, k with
the conjugationl_) :=bgl—b1i—baj —bsk (b="bol+bii+bej+bsk € H). By
Cayley-Dickson process, the octanions are given as O := H x H with the R-
bilinear product xy := (mn—ba, an+bm) for x = (m,a) and y = (n,b) € O.
By the octanionic conjugation Z := (m,—a) € O, a positive-definite R-
bilinear inner product is defined as (z | y) := (xy + yz)/2 € R. Put

G :={a € GLr(O) | a(zy) = (az)(ay)}

as the automorphism group of the R-algebra O. Then al = 1, az = aZF
and (az | ay) = (z | y) for @« € G and z,y € O. Moreover, put ImO :=
{reO|z=-2} 2R, S :={zcImO| (z|x) =1} > (4,0) and
H:={aecG|a(:0)=(¢0)}.

PROPOSITION 1. (1) G acts transitively on S such that H = SU(3),
so that G/H = S. As the result, G is a connected and simply connected
14-dimensional compact Lie group.

(2) Take an isomorphism f : SU(3) — H given by (1). If T? is
a mazimal torus of SU(3), then G = Useq af(T?)a™t. As the result,
rank G = rank H = 2.

Proof. (1) The first part was directly proved by Yokota [3, pp.250-251].
The last part follows from the first one.

(2) Since G is connected, G C SO(ImO) = SO(7). Since any element
of SO(7) admits a fixed-point in S®, any o € G admits some p € S® such
that ap = p. By (1), Bp = (3,0) for some 8 € G. Then (BaB71)(3,0) =
(4,0). Hence, BaB~! = f(A) for some A € SU(3). For some B € SU(3),
BAB™!' € T?. Hence, (f(B)3) a (f(B)B)~! € f(T?). O

Put Sp(1) :={q € H | [q| = 1}, ¢ : Sp(1) x Sp(1) — GLR(O);

¥(p, q)(m,a) := (gmq, pag).



Moreover, put e = 1(1,1),y := ¢(1,-1), G7 := {a € G | ay = ya}. An
explicit description of the polar decomposition of the automorphism group
of the real split octanions was given by Yokota [4], by which the following
proposition 2 was also obtained (cf. [5, 1.3.3, 1.3.4] for a precise proof).

ProposITION 2 (1) ¥(Sp(1) x Sp(1)) = G7,

(2) ker p = {£(1,1)}, GT =2 SO(4).

COROLLARY. G is a connected, simply connected, compact, simple Lie
group of type Go with z(G) = {e}.

Proof. (1) z(G) = {e} (Yokota, arXiv:0902.0431v1l, Theorem 1.11.1):
In fact, 2(G) C (G7) = 2((Sp(1) x Sp(1))) = {B(1, £1)} = {e,} and
v ¢ z(G) by dimGY = 6 < 14 = dimG. (2) By the step (1) and Proposition
1 (2), G is semisimple of type A1 @ A, Az or Gy of dimension 6, 8 or 14.
Hence, G is simple of type G2 by Proposition 1 (1). O

6 Explicit description of polars in G,

By Corollary, GG is denoted also as G5. By explicit description of polars in
(G2, the results of Theorems 1 and 2 are directly examined as follows:

THEOREM 3 ([6]).
(1) F(se, G)\{e} = My = {979~ | g € G} = G2/SO(4).
(2) For o :=~ € M, F(s,, M{")\{0} = Mf’rl and

M ={¢(p,q) | p* = ¢ = -1} = (5? x §%)/Z,.
(3) Any mazimal antipodal set in M1+,1 18 congruent to
B:={¢(p,£p) |p=1i.3,k}.
(4) Any mazimal antipodal set in M is congruent to
B = {y(1,-1)} U B.
(5) Any mazimal antipodal subgroup of Go is conjugate to

B = {y(1,£1)} UB.

Proof. (1) Put T? := {A = diag(ai,as,a3) | A € SU(3)}, which is
a maximal torus of SU(3). Then F(s.,T?) = {diag(£1,+1,41) € T?} =



{e} U {A;diag(1, —1,—1)A; ' | i = 1,2,3} for some A; € SU(3) (i = 1,2,3).
By virtue of Proposition 1 (2), v € F(se,G)\{e} = Ugec 9f(F(se,T?))g™"
\{e} = Ugec{gvg™' | g € G} = G/G7, which is connected since G is con-
nected. Hence, G2/SO(4) & F(s.,G)\{e} = M;".
(2) F(sy, MV} = MG\ (9} = {0(m,0) | (%,0) = (1, D} fe, 7}
— {6p.a) | (Pa?) = ~(1,1)} = (82 x §)/Zs, because of ¢ = (1,1),
= ¢(1,-1) and {p € Sp(1) | p* = -1} = {p € Sp(1) | p = —p}
{p=p1i+poj+psk| > p? =1}
(3) follows from Lemma 2 because of (2). (4) (resp. (5)) follows from
Lemma 1 with a = 0 because of (3) (resp. (4)) and (1). O

REMARK. (1) The result #2(5? - S?) = 6, $2G2/SO(4) = 7 and $2G2 = 8
of Chen-Nagano [1, Examples 3.13] is refined by Theorem 3 since B (resp.
B’ or B") is a great antipodal set in S?-.S? (resp. G2/SO(4) or Gs) as
unique maximal antipodal set up to congruence.

(2) Lemma 1 provides a priori or clear-sighted geometric method to
Theorems 2 and 3. Posteriorly or arithmetically, Theorem 3 (5) is verified
by calculations of weights of B” on O = R®.

=2

References

[1] B.-Y. Chen and T. Nagano, A Riemannian geometric invariant and its
applications to a problem of Borel and Serre, Trans. Amer. Math. Soc.
308 (1988), 273-297.

[2] T. Nagano, The involutions of compact symmetric spaces, Tokyo J. Math.
(1988), 57-79.

[3] I. Yokota, Groups and Topology, Shokabo, 1971. (in Japanese)

[4] 1. Yokota, Non-compact simple Lie group G} of type Ga, J. Fac. Sci.
Shinshu Univ. 12(1977), 45-52.

[5] I. Yokota, Realizations of involutive automorphisms o and G? of excep-
tional linear Lie groups G, Part I, G = G9, F4 and Eg, Tsukuba J.Math.
14-1 (1990), 185-223.

[6] M. S. Tanaka, H. Tasaki and O. Yasukura, Maximal antipodal subgroups
of the compact Lie group Gs of exceptional type, in preparation.



