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This article is founded by the joint work [6] with M.S. Tanaka and
H. Tasaki.

1 Maximal antipodal sets of a symmetric space

Let M be a connected compact Riemannian symmetric space. And I(M)0
the identity connected component of the isometry group. For x ∈ M , the
geodesic symmetry at x is denoted as sx.

Definition (Chen-Nagano [1])
(1) An antipodal set in M is defined to be a subset A of M such that

sxy = y for all x, y ∈ A.
(2) The 2-number ♯2M ofM is defined to be the supremum of cardinality

♯A of an antipodal set A in M .
(3) A great antipodal set A2 in M is defined to be an antipodal set in

M such that ♯A2 = ♯2M .
(4) An antipodal set A in M is said to be maximal iff A′ = A for all

antipodal subset A′ in M such that A′ ⊇ A.
(5) Two antipodal sets A,A′ in M are said to be congruent iff αA = A′

for some α ∈ I(M)0.

2 Poles and polars of a symmetric space

For x ∈ M , put F (sx,M) := {y ∈ M | sxy = y}. Then F (sx,M)\{x} =
{oi | 1 ≤ i ≤ a} ∪ (∪b

j=1M
+
j ) as a disjoint union of some poles (i.e., zero-

dimensional connected components) {oi | 1 ≤ i ≤ a} and polars (i.e.,
positive-dimensional connected components) M+

j (1 ≤ j ≤ b) for some non-
negative integers a, b, where a = 0 or b = 0 means that {oi | 1 ≤ i ≤ a} or
∪b
j=1M

+
j is an empty set, respectively.
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Lemma 1. For x ∈M , if b = 1 and a = 0 or 1, then the assignment

A1 7→ A′
1 := {x} ∪ {oi | 1 ≤ i ≤ a} ∪A1

from the set of all maximal antipodal sets in M+
1 to that in M induces a

surjection between their congruent class.

Proof. Let A be a maximal antipodal set in M containing x. Then A1

:= A \ {x, oi | 1 ≤ i ≤ a} ⊆ F (sx,M) \ {x, oi | 1 ≤ i ≤ a} = M+
1 as a

maximal antipodal set in M+
1 such that A′

1 = A.

3 Maximal antipodal subgroups of a Lie group

Let M be a connected compact Lie group being a Riemannian symmetric
space by a bi-invariant metric on M . Then any two conjugate subgroups of
M are congruent in M , and vice varsa if M is a simple Lie group.

Remark (Chen-Nagano[1, Remarks 1.2, 1.3]). Any maximal antipodal
set A in M containing the unit element e is a discrete abelian subgroup of
M , which is isomorphic to (Z2)

t with 2t <∞.

4 Connected Lie group G2 of exceptional type

Let G2 be a connected compact simple Lie group of type G2. And S2 · S2

the quotient space (S2 × S2)/Z2 of S2 × S2 by a natural action of Z2 :=
{±(1, 1)} on S2 × S2 [1, 3.8]. Then the following theorem 1 was given by
Nagano without proof.

Theorem 1 (Nagano [2, p.66]). Put M := G2. Then F (se, G2)\{e} =
M+

1
∼= G2/SO(4). For o ∈M+

1 , F (so,M
+
1 )\{o} =M+

1,1
∼= S2 · S2.

Lemma 2. Put M := S2 · S2 ∋ [x⃗, y⃗] := {±(x⃗, y⃗)} and x±i := [e⃗i,±e⃗i]
(i = 1, 2, 3) for an arbitary orthonormal frame {e⃗1, e⃗2, e⃗3} of R3. Then any
maximal antipodal set in M is congruent to A := {x±i | i = 1, 2, 3}.

Proof. F (sx1 ,M) \ {x1} = {x−1} ∪ M+
1 ; M+

1 := (S2 ∩ e⃗⊥1 )2 /Z2. By
virtue of Lemma 1 (a = 1), any maximal antipodal set in M is congruent
to A′

1 := {x±1} ∪ A1 for some maximal antipodal set A1 containing x2 in
M+

1 . Then A1\{x2} ⊆ {x−2} ∪ (S2 ∩ e⃗⊥1 ∩ e⃗⊥2 )2/Z2 = {x−2, x±3}, so that
A′

1 ⊆ A which is antipodal. Since A′
1 is maximal, A′

1 = A.

By virtue of Lemma 1, the following result is then obtained.
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Theorem 2 ([6]). Let A be the maximal antipodal set in (S2 × S2)/Z2

defined in Lemma 2. Moreover, let φ : (S2×S2)/Z2 −→M+
1,1 be an isometry

giving an isometry (S2 × S2)/Z2
∼= M+

1,1 mentioned in Theorem 1. Put
B := φ(A), B′ := {o} ∪B and B′′ := {e, o} ∪B. Then

(1) Any maximal antipodal set in M+
1 is congruent to B′; and

(2) Any maximal antipodal subgroup of G2 is conjugate to B′′.

5 Explicit description of G2

The explicit description of G2 is given after Yokota as follows: Let H be the
quaternions with the unit element 1 and the Hamilton’s triple i, j,k with
the conjugation b̄ := b01−b1i−b2j−b3k (b = b01+b1i+b2j+b3k ∈ H). By
Cayley-Dickson process, the octanions are given as O := H×H with the R-
bilinear product xy := (mn−ba, an+bm) for x = (m, a) and y = (n, b) ∈ O.
By the octanionic conjugation x̄ := (m̄,−a) ∈ O, a positive-definite R-
bilinear inner product is defined as (x | y) := (xȳ + yx̄)/2 ∈ R. Put

G := {α ∈ GLR(O) | α(xy) = (αx)(αy)}

as the automorphism group of the R-algebra O. Then α1 = 1, αx = αx̄
and (αx | αy) = (x | y) for α ∈ G and x, y ∈ O. Moreover, put ImO :=
{x ∈ O | x̄ = −x} ∼= R7, S6 := {x ∈ ImO | (x | x) = 1} ∋ (i, 0) and
H := {α ∈ G | α(i, 0) = (i, 0)}.

Proposition 1. (1) G acts transitively on S6 such that H ∼= SU(3),
so that G/H ∼= S6. As the result, G is a connected and simply connected
14-dimensional compact Lie group.

(2) Take an isomorphism f : SU(3) −→ H given by (1). If T 2 is
a maximal torus of SU(3), then G = ∪α∈G αf(T 2)α−1. As the result,
rank G = rank H = 2.

Proof. (1) The first part was directly proved by Yokota [3, pp.250–251].
The last part follows from the first one.

(2) Since G is connected, G ⊆ SO(ImO) ∼= SO(7). Since any element
of SO(7) admits a fixed-point in S6, any α ∈ G admits some p ∈ S6 such
that αp = p. By (1), βp = (i, 0) for some β ∈ G. Then (βαβ−1)(i, 0) =
(i, 0). Hence, βαβ−1 = f(A) for some A ∈ SU(3). For some B ∈ SU(3),
BAB−1 ∈ T 2. Hence, (f(B)β) α (f(B)β)−1 ∈ f(T 2).

Put Sp(1) := {q ∈ H | |q| = 1}, ψ : Sp(1)× Sp(1) −→ GLR(O);

ψ(p, q)(m, a) := (qmq, paq).
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Moreover, put e = ψ(1, 1), γ := ψ(1,−1), Gγ := {α ∈ G | αγ = γα}. An
explicit description of the polar decomposition of the automorphism group
of the real split octanions was given by Yokota [4], by which the following
proposition 2 was also obtained (cf. [5, 1.3.3, 1.3.4] for a precise proof).

Proposition 2 (1) ψ(Sp(1)× Sp(1)) = Gγ ,

(2) ker ψ = {±(1, 1)}, Gγ ∼= SO(4).

Corollary. G is a connected, simply connected, compact, simple Lie
group of type G2 with z(G) = {e}.

Proof. (1) z(G) = {e} (Yokota, arXiv:0902.0431v1, Theorem 1.11.1):
In fact, z(G) ⊂ z(Gγ) = z(ψ(Sp(1) × Sp(1))) = {ψ(1,±1)} = {e, γ} and
γ ̸∈ z(G) by dimGγ = 6 < 14 = dimG. (2) By the step (1) and Proposition
1 (2), G is semisimple of type A1 ⊕ A1, A2 or G2 of dimension 6, 8 or 14.
Hence, G is simple of type G2 by Proposition 1 (1).

6 Explicit description of polars in G2

By Corollary, G is denoted also as G2. By explicit description of polars in
G2, the results of Theorems 1 and 2 are directly examined as follows:

Theorem 3 ([6]).
(1) F (se, G)\{e} =M+

1 = {gγg−1 | g ∈ G} ∼= G2/SO(4).

(2) For o := γ ∈M+
1 , F (so,M

+
1 )\{o} =M+

1,1 and

M+
1,1 = {ψ(p, q) | p2 = q2 = −1} ∼= (S2 × S2)/Z2.

(3) Any maximal antipodal set in M+
1,1 is congruent to

B := {ψ(p,±p) | p = i, j,k}.

(4) Any maximal antipodal set in M+
1 is congruent to

B′ := {ψ(1,−1)} ∪B.

(5) Any maximal antipodal subgroup of G2 is conjugate to

B′′ := {ψ(1,±1)} ∪B.

Proof. (1) Put T 2 := {A = diag(α1, α2, α3) | A ∈ SU(3)}, which is
a maximal torus of SU(3). Then F (se, T

2) = {diag(±1,±1,±1) ∈ T 2} =
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{e} ∪ {Aidiag(1,−1,−1)A−1
i | i = 1, 2, 3} for some Ai ∈ SU(3) (i = 1, 2, 3).

By virtue of Proposition 1 (2), γ ∈ F (se, G)\{e} = ∪g∈G gf(F (se, T
2))g−1

\{e} = ∪g∈G{gγg−1 | g ∈ G} ∼= G/Gγ , which is connected since G is con-
nected. Hence, G2/SO(4) ∼= F (se, G)\{e} =M+

1 .
(2) F (sγ ,M

+
1 )\{γ}=M+

1 ∩Gγ\{γ}= {ψ(p, q) | (p2, q2) = ±(1, 1)}\{e, γ}
= {ψ(p, q) | (p2, q2) = −(1, 1)} ∼= (S2 × S2)/Z2, because of e = ψ(1, 1),
γ = ψ(1,−1) and {p ∈ Sp(1) | p2 = −1} = {p ∈ Sp(1) | p = −p̄}
= {p = p1i+ p2j + p3k |

∑3
i=1 p

2
i = 1}.

(3) follows from Lemma 2 because of (2). (4) (resp. (5)) follows from
Lemma 1 with a = 0 because of (3) (resp. (4)) and (1).

Remark. (1) The result ♯2(S
2 · S2) = 6, ♯2G2/SO(4) = 7 and ♯2G2 = 8

of Chen-Nagano [1, Examples 3.13] is refined by Theorem 3 since B (resp.
B′ or B′′) is a great antipodal set in S2 · S2 (resp. G2/SO(4) or G2) as
unique maximal antipodal set up to congruence.

(2) Lemma 1 provides a priori or clear-sighted geometric method to
Theorems 2 and 3. Posteriorly or arithmetically, Theorem 3 (5) is verified
by calculations of weights of B′′ on O = R8.
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