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Abstract. Let G be a connected compact Lie group. Let (G,K1, θ1) and
(G,K2, θ2) be two compact Riemannian symmetric pairs. Then the natural

left group action of K2 on a compact Riemannian symmetric space M = G/K1

is called the Hermann action. Suppose that G is semi-simple and θ1 ◦ θ2 =
θ2 ◦ θ1. Assume that rank(G/K1) is equal to the cohomogeneity of K2 on

M = G/K1. Naoyuki Koike ([9], [10]) has provided the three conditions on
orbits of the Hermann action on M and he proved that if an orbit of the

Hermann action satisfies one of the three conditions, then the induced metric

on the orbit is proportional to the metric induced from the Killing-Cartan form
of G, and in the case when the orbit is a minimal orbit satisfying one of the

three conditions, he showed a simplified formula of its Jacobi linear operator

in terms of the Casimir operators of K2 and G/K1. Moreover he gave some
examples of minimal orbits satisfying his conditions. In this note we mention

our recent results on the classification of all minimal orbits of the Hermann

action satisfying one of Koike’s conditions (I), (II), (III) (which were slightly
improved). This is a joint work with Mr.Minoru Yoshida.

Introduction

Let K be a connected compact Lie group with Lie algebra k and let M be a
complete Riemannian manifold. Suppose that K acts isometrically on M . For an
orbit N of K on M and a point a ∈ M , define an (infinite dimensional) path space

Ω(M,N ; a) := {γ : [0, 1] → M | H1-maps, a(0) ∈ N, γ(1) = a}.
The concept of variational completeness for the Lie group action was introduced
by Bott-Samelson ([1]). Assume that the group action of K on M is variationally
complete. If a ∈ M is regular, then the energy functional

E : Ω(M,N ; a) ∋ γ 7−→ 1

2

∫ 1

0

∥γ′(t)∥2dt ∈ R

is a perfect Morse function and a homology basis can be constructed explicitly.
LetG be a connected compact Lie group. Suppose that (G,K1, θ1) and (G,K2, θ2)

be two compact Riemannian symmetric pairs. Then the natural left group action
of K2 on a compact Riemannian symmetric space M = G/K1 is shown to be vari-
ationally complete first by Robert Hermann ([4]) and further it is known to be
hyperpolar ([3]). This group action is called the Hermann action. General orbits
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of the Hermann action on a compact symmetric space are compact homogeneous
submanifold with nice properties that the mean curvature vector field is parallel
with respect to the normal connection and the normal connection coincides with
the induced connection from the canonical connection as a reductive homogeneous
space ([7]).

Suppose that G is semi-simple and θ1 ◦ θ2 = θ2 ◦ θ1. Assume that rank(G/K1)
is equal to the cohomogeneity of K2 on M = G/K1. Naoyuki Koike ([9], [10])
has provided the three conditions on an orbit of the Hermann action on M and he
proved that if an orbit of the Hermann action satisfies one of the three conditions,
then the induced metric on the orbit is proportional to the metric induced from the
Killing-Cartan form of G, and thus it is a normal homogeneous metric. In the case
when the orbit is a minimal orbit satisfying one of the three conditions, he showed
a simplified formula describing its Jacobi linear operator in terms of the Casimir
operators of K2 and G/K1. Moreover he gave some examples of orbits satisfying
his conditions.

In this note we shall mention our recent results on the classification of all minimal
orbits of the Hermann action satisfying one of Koike’s conditions (I), (II), (III)
(which were slightly improved). This is a joint work of the author and Mr. Minoru
Yoshida who is my former master student at Osaka City University. The results of
this note are contained in his master thesis (March, 2017).

This note is organized as follows: In Section 2, we begin with the definition of the
Hermann action on compact symmetric spaces and review some nice properties of
the Hermann action and its orbits. In Section 3, we recall the Lie algebraic setting
associated to the Hermann action on compact symmetric spaces. In Section 4, we
explain the Koike’s conditions on orbits of the Hermann action and the Koike’s
theorems. In the final section we describe our recent results on the classification
problem of minimal orbits of the Hermann actions satisfying the Koike’s conditions.

We shall discuss this classification problem in detail in the forthcoming paper
[15].

1. Hermann actions on compact symmetric spaces

Let G be a connected compact Lie group. Let (G,K1, θ1) be a Riemannian
symmetric pair and (G,K2, θ2) be another Riemannian symmetric pair. The left
group action of K2 ⊂ G on a compact symmetric space M = G/K1 defined by

K2 ×M ∋ (a, bK1) 7−→ abK1 ∈ M

is called the Hermann action. In the case when K1 = K2, the Hermann action is
nothing but the isotropy action of K1 = K2 on M = G/K2.

Fundamental propeties of the Hermann action are as follows:

Theorem 1.1 ([4]). The Hermann action is variationally complete.

The isometric action of a Lie group on a Riemannian manifold is called hyperpolar
if there is a closed flat totally geodesic submanifold (flat section) to which any orbit
meets orthogonally.

Theorem 1.2 ([3]). The Hermann action is hyperpolar.

We should mention the following Conlon’s results.
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Theorem 1.3 ([2]). The hyperpolar action of a compact Lie group on a complete
Riemannian manifold is variationally complete.

The orbits of the Hermann action have nice properties from the viewpoint of
submanifolds in Riemannian geometry.

Theorem 1.4 ([7]). Any orbit of the Hermann action has parallel mean curvature
vector field with respect to the normal connection.

Theorem 1.5 ([7]). The normal connection of each orbit of the Hermann action
coincides with the induced connection from the canonical connection as a reductive
homogeneous space.

Compare with [8] and [11].

2. Lie algebraic setting

Define an AdG-invariant inner product of g as ⟨·, ·⟩ := −Bg(·, ·). Here Bg(·, ·)
denotes the Killing-Cartan form of g. Denote by ki and mi the eigenspaces of dθi
with eigenvalues 1 and−1, respectively. Then we have the canonical decompositions

g = k1 ⊕m1 = k2 ⊕m2

as symmetric Lie algebras. By using the inner product (m1, ⟨·, ·⟩), we define a G-
invariant Riemannian metric h on M = G/K1 and thus (M,h) is a Riemannian
symmetric space. Let π : G → M = G/K1 denote the natural projection. Then
the Hermann action of a symmetric group K2 on (M,h) is isometric.

Suppose that the Hermann action satisfies the commutativity condition

θ1 ◦ θ2 = θ2 ◦ θ1.
Then we have an orthogonal direct sum decomposition

g = (k1 ∩ k2)⊕ (k1 ∩m2)⊕ (k2 ∩m1)⊕ (m1 ∩m2),

and its complexification

gC = ((k1 ∩ k2)⊕ (m1 ∩m2))
C ⊕ ((k1 ∩m2)⊕ (k2 ∩m1))

C,

Moreover choose a maximal abelian subspace a of m1∩m2. Here note that Exp(a)
is a section of the Hermann action as a hyperpolar action ([3]).

Let

ad : a → gl(gC),

ad : a → gl((k1 ∩ k2)⊕ (m1 ∩m2))
C,

ad : a → gl((k1 ∩m2)⊕ (k2 ∩m1))
C

be three Lie algebra homomorphisms from a.
Let

V = gC, ((k1 ∩ k2)⊕ (m1 ∩m2))
C or ((k1 ∩m2)⊕ (k2 ∩m1))

C.

For a real linear function β : a → R, we define a complex vector subspace Vβ of V
by

Vβ := {X ∈ V | ad(H)(X) =
√

− 1β(H)X for ∀H ∈ a}.
For V = gC, define

Σ̃ := {β : a → R real linear function, β ̸= 0, Vβ ̸= 0}.
3



For V = ((k1 ∩ k2)⊕ (m1 ∩m2))
C, define

Σ := {β : a → R real linear function, β ̸= 0, Vβ ̸= 0}.

For V = ((k1 ∩m2)⊕ (k2 ∩m1))
C, define

W := {β : a → R real linear function, β ̸= 0, Vβ ̸= 0}.

Then we have Σ̃ = Σ ∪ W . Moreover, for a simple root system Π̃ of Σ̃, we equip

a lexicographic order on a∗ relative to a basis of a∗. Let Σ̃+ denote the set of all

positive elements of Σ̃ with respect to this linear order, and set

Σ+ := Σ̃+ ∩ Σ,

W+ := Σ̃+ ∩W.

Define

P0 := {H ∈ a | β(H) ∈ (0, π) for ∀β ∈ Σ+,

β(H) ∈
(
−π

2
,
π

2

)
for ∀λ ∈ W+}.

Theorem 2.1 (See [5]). For every orbit N of the Hermann action on M , there
exists a unique element Z0 ∈ P0 (up to the Weyl group action) such that N =
K2(Exp(Z0)).

3. Kioke’s conditions and theorems

Suppose that Z0 ∈ P0, g0 := expZ0, M = K2g0K1 = K2(Exp(Z0)). In [9],
[10] Naoyuki Koike (Tokyo U. of Sci.) introduced Conditions (I), (II) and (III) on
Z0 ∈ P0 as follows:

Condition (I)

Σ+ ∩W+ = ∅

{β(Z0) | β ∈ Σ+} ⊂
{
0,

π

3
,
2π

3
, π

}
,

{β(Z0) | β ∈ W+} ⊂
{
±π

2
,±π

6

}
.

Condition (II)

Σ+ ∩W+ ⊂
{π

4

}
,

{β(Z0) | β ∈ Σ+} ⊂
{
0,

π

4
,
3π

4
, π

}
,

{β(Z0) | β ∈ W+} ⊂
{
±π

2
,±π

4

}
.

Condition (III)

Σ+ ∩W+ = ∅,

{β(Z0) | β ∈ Σ+} ⊂
{
0,

π

6
,
5π

6
, π

}
,

{β(Z0) | β ∈ W+} ⊂
{
±π

2
,±π

3

}
.
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Remark that Σ+ ∩W+ ⊂
{

π
4

}
is different from [9], [10] in Condition (II) and it

was slightly improved by M. Yoshida.

Theorem 3.1 ([9], [10]). For Z0 ∈ P0, set N := K2ExpZ0. Suppose that rk(G/K1) =
cohom(K2 ↷ N). Assume that Z0 ∈ P0 satisfies just one of the above three con-
ditions (I), (II) and (III). Then the induced Riemannian metric g on M coincides
with a K2-invariant Riemannian metric on M obtained from the restriction of a
positive definite inner product c ⟨·, ·⟩ of k2 to a vector subspace mk2 . Here c is given
as

c =


3
4 (I),
1
2 (II),
1
4 (III).

(3.1)

Theorem 3.2 ([9], [10]). For Z0 ∈ P0, set N := K2ExpZ0. Suppose that rk(G/K1) =
cohom(K2 ↷ N). Assume that Z0 ∈ P0 satisfies just one of the three conditions
(I), (II) and (III). If N = K2ExpZ0 is a minimal orbit, then the Jacobi differential
operator of N is given as

J̃(V ) = −CK2(Ṽ ) + CG/K2
◦ Ṽ .

for each V ∈ C∞(T⊥N).

Some examples of minimal orbits of the Hermann action on compact symmetric
spaces satisfying one of Conditions (I), (II) and (III) were given in [9], [10].

Problem. Classify all minimal orbits of the Hermann action on compact symmetric
spaces satisfying one of Conditions (I), (II) and (III)

4. Classification

In our recent work we have determined all Z0 ∈ P0 which satisfy one of Condi-
tions (I), (II) and (III) and correspond to minimal orbits ([15]).

The Hermann group actions on compact irreducible symmetric spaces with θ1 ◦
θ2 = θ2 ◦ θ1 are classified as folllows (O. Ikawa [5], [6], [14]):

(1) K1 = K2, isotropy actions of Type I symmetric spaces.
(2) K1 = K2, isotropy actions of Type II symmetric spaces.
(3) θ1 ̸∼ θ2 (A),
(4) θ1 ̸∼ θ2 (B),
(5) θ1 ̸∼ θ2 (C).

Here θ1 ̸∼ θ2 means that θ1 and θ2 can be transformed each other by an inner
automorphism of g. It is known that Cases (3), (4) and (5) correspond to symmetric
triads (O. Ikawa).

4.1. K1 = K2, Type I.

Theorem 4.1 ([15]). Type AI: G = SU(n), K1 = K2 = SO(n). If Z0 ∈ P0

satisfies one of Conditions (I), (II) and (III) and corresponds to a minimal orbit,
then Z0 ∈ P0 satisfies Condition (I) and is given as one of the following

(1) n = 3k (k ≥ 1), αk(Z0) = α2k(Z0) =
π
3 , αi(Z0) = 0 for i ̸= k, 2k.

(2) n = 3k (k ≥ 1), αl(Z0) = αl+k(Z0) = αl+2k(Z0) =
π
3 for each l ∈ N (l +

2k ≤ r), αi(Z0) = 0 for i ̸= l, l + k.l + 2k.
5



In each case the dimension of the corresponding orbit is equal to 3k2.

Theorem 4.2 ([15]). Type AIII: G = SU(p+ q), K1 = K2 = S(U(p)× U(q)). If
Z0 ∈ P0 satisfies one of Conditions (I), (II) and (III) and corresponds to a minimal
orbit, then Z0 ∈ P0 satisfies Condition (I) and is given as one of the following

(1) p = q = 3k, αk(Z0) = α3k(Z0) = π
3 , αi(Z0) = 0 for i ̸= k, 3k. The

dimension of the corresponding orbit is equal to 12k2.
(2) p = q = 3k, α2k(Z0) =

π
3 , αi(Z0) = 0 for i ̸= k.3k. The dimension of the

corresponding orbit is equal to 12k2.
(3) p + q = 3k, αk(Z0) = π

3 , αi(Z0) = 0 for i ̸= k. The dimension of the

corresponding orbit is equal to 3k2.

Theorem 4.3 ([15]). Type BI: G = SO(p + q), K1 = K2 = SO(p) × SO(q), set
k = p − q and p + q is odd, p ≥ q. If Z0 ∈ P0 satisfies one of Conditions (I), (II)
and (III) and corresponds to a minimal orbit, then Z0 ∈ P0 satisfies Condition (I)
and is given as one of the following

(1) p + q = 3l − 1 (2 ≤ l ≤ q − 1), αl(Z0) =
π
3 , αi(Z0) = 0 for i ̸= 1, q. The

dimension of the corresponding orbit is equal to 3
2 l(l − 1).

(2) p + q = 3k + 2, α1(Z0) = αq(Z0) = π
3 , αi(Z0) = 0 for i ̸= 1, q. The

dimension of the corresponding orbit is equal to 3
2k(k + 1).

(3) p+q = 3l−1 (2 ≤ l ≤ q−1), α1(Z0) = αl(Z0) =
π
3 , αi(Z0) = 0 for i ̸= 1, l.

The dimension of the corresponding orbit is equal to 3
2 l(l − 1).

Theorem 4.4 ([15]). Type CI: G = Sp(n), K1 = K2 = U(n). If Z0 ∈ P0

satisfies one of Conditions (I), (II) and (III) and corresponds to a minimal orbit,
then Z0 ∈ P0 satisfies Condition (I) and is given as one of the following

(1) n = 3l + 2, α2l+1(Z0) =
π
3 , αi(Z0) = 0 for i ̸= 2l + 1. The dimension of

the corresponding orbit is equal to 3(2l + 1)(l + 1).
(2) n = 3k− 1, αk(Z0) = αn(Z0) =

π
3 , αi(Z0) = 0 for i ̸= k, n. The dimension

of the corresponding orbit is equal to 3k(2k − 1).

Theorem 4.5 ([15]). Type CII: G = Sp(p+ q), K1 = K2 = Sp(p)×Sp(q), p ≥ q,
set k = p− q. There is no Z0 ∈ P0 satisfying one of Conditions (I), (II) and (III)
and corresponding to a minimal orbit,

Theorem 4.6 ([15]). Type DI: G = SO(p+ q), K1 = K2 = SO(p)×SO(q), p ≥ q
and p + q is even. If Z0 ∈ P0 satisfies one of Conditions (I), (II) and (III) and
corresponds to a minimal orbit, then Z0 ∈ P0 satisfies Condition (I) and is given
as one of the following

(1) p = q = 4, α1(Z0) = α3(Z0) = π
3 , α1(Z0) = α4(Z0) = π

3 , α4(Z0) =
α3(Z0) =

π
3 or α1(Z0) = α3(Z0) = α4(Z0) =

π
3 . αi(Z0) = 0 for i ̸= 1, q.

The dimension of the corresponding orbit is equal to 9.
(2) p = q = 3l − 1, αl(Z0) = αq−1(Z0) =

π
3 , αi(Z0) = 0 for i ̸= l, q − 1. The

dimension of the corresponding orbit is equal to 6l2 + 3l.
(3) p = q = 3l − 1, αl(Z0) = αq−1(Z0) =

π
3 , αi(Z0) = 0 for i ̸= l, q − 1. The

dimension of the corresponding orbit is equal to 6l2 + 3l.
(4) p + q = 3f − 1 (2 ≤ f ≤ q), αf (Z0) = π

3 , αi(Z0) = 0 for i ̸= f . The

dimension of the corresponding orbit is equal to 3
2f(f − 1).

(5) p + q = 3f − 1 (2 ≤ f ≤ q), αf (Z0) = π
3 , αi(Z0) = 0 for i ̸= f . The

dimension of the corresponding orbit is equal to 3
2f(f − 1).
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Theorem 4.7 ([15]). Type EI: G = E6, K1 = K2 = Sp(4). If Z0 ∈ P0 satisfies
one of Conditions (I), (II) and (III) and corresponds to a minimal orbit, then
Z0 ∈ P0 satisfies Condition (I) and is given as one of the following

(1) α4(Z0) = π
3 , αi(Z0) = 0 for i ̸= 4. The dimension of the corresponding

orbit is equal to 27.
(2) α1(Z0) = α6(Z0) = π

3 , αi(Z0) = 0 for i ̸= 1, 6. The dimension of the
corresponding orbit is equal to 24.

Theorem 4.8 ([15]). Type EII: G = E6, K1 = K2 = SU(6) · SU(2). If Z0 ∈ P0

satisfies one of Conditions (I), (II) and (III) and corresponds to a minimal orbit,
then Z0 ∈ P0 satisfies Condition (I) and is given as one of the following

(1) α2(Z0) = π
3 , αi(Z0) = 0 for i ̸= 2. The dimension of the corresponding

orbit is equal to 27.
(2) α2(Z0) = π

3 , αi(Z0) = 0 for i ̸= 4. The dimension of the corresponding
orbit is equal to 24.

Theorem 4.9 ([15]). Type EIII: G = E6, K1 = K2 = Spin(10) · U(1). There is
no Z0 ∈ P0 satisfying one of Conditions (I), (II) and (III) and corresponding to a
minimal orbit.

Theorem 4.10 ([15]). Type EIV : G = E6, K1 = K2 = F4. If Z0 ∈ P0 satisfies
one of Conditions (I), (II) and (III) and corresponds to a minimal orbit, then
Z0 ∈ P0 satisfies Condition (I) and is just given by α1(Z0) = α2(Z0) = π

3 . The
dimension of the corresponding orbit is equal to 24.

Theorem 4.11 ([15]). Type EV : EV : G = E7, K1 = K2 = SU(8). If Z0 ∈ P0

satisfies one of Conditions (I), (II) and (III) and corresponds to a minimal orbit,
then Z0 ∈ P0 satisfies Condition (I) and is given as one of the following

(1) α3(Z0) = π
3 , αi(Z0) = 0 for i ̸= 3. The dimension of the corresponding

orbit is equal to 45.
(2) α5(Z0) = π

3 , αi(Z0) = 0 for i ̸= 5. The dimension of the corresponding
orbit is equal to 45.

Theorem 4.12 ([15]). Type EV I: G = E7, K1 = K2 = SO(12)·SU(2). If Z0 ∈ P0

satisfies one of Conditions (I), (II) and (III) and corresponds to a minimal orbit,
then Z0 ∈ P0 satisfies Condition (I) and is just given by α2(Z0) =

π
3 and αi(Z0) = 0

for i ̸= 2. The dimension of the corresponding orbit is equal to 24.

Theorem 4.13 ([15]). Type EV II: G = E7, K1 = K2 = E6 · SO(2). There is
no Z0 ∈ P0 satisfying one of Conditions (I), (II) and (III) and corresponding to a
minimal orbit.

Theorem 4.14 ([15]). Type EV III: G = E8, K1 = K2 = Spin(16). There is
no Z0 ∈ P0 satisfying one of Conditions (I), (II) and (III) and corresponding to a
minimal orbit.

Theorem 4.15 ([15]). Type EIX: G = E8, K1 = K2 = E7 · SU(2). If Z0 ∈ P0

satisfies one of Conditions (I), (II) and (III) and corresponds to a minimal orbit,
then Z0 ∈ P0 satisfies Condition (I) and is just given by α2(Z0) =

π
3 and αi(Z0) = 0

for i ̸= 2. The dimension of the corresponding orbit is equal to 81.

Theorem 4.16 ([15]). Type FI: G = F4, K1 = K2 = Sp(3) · SU(2). If Z0 ∈ P0

satisfies one of Conditions (I), (II) and (III) and corresponds to a minimal orbit,
7



then Z0 ∈ P0 satisfies Condition (I) and is just given by α2(Z0) =
π
3 and αi(Z0) = 0

for i ̸= 2. The dimension of the corresponding orbit is equal to 18.

Theorem 4.17 ([15]). Type FII: G = F4, K1 = K2 = Spin(9). There is no
Z0 ∈ P0 satisfying one of Conditions (I), (II) and (III) and corresponding to a
minimal orbit.

Theorem 4.18 ([15]). Type G: G = G2, K1 = K2 = SO(4). If Z0 ∈ P0 satisfies
one of Conditions (I), (II) and (III) and corresponds to a minimal orbit, then
Z0 ∈ P0 satisfies Condition (I) and is just given by α1(Z0) =

π
3 and α2(Z0) = 0.

The dimension of the corresponding orbit is equal to 3.

4.2. K1 = K2, Type II.

Theorem 4.19 ([15]). An−1: U = SU(n). If Z0 ∈ P0 satisfies one of Condi-
tions (I), (II) and (III) and corresponds to a minimal orbit, then Z0 ∈ P0 satisfies
Condition (I) and is given as one of the following

(1) n = 3k (k ≥ 1), αk(Z0) = α2k(Z0) =
π
3 , αi(Z0) = 0 for i ̸= k, 2k.

(2) n = 3k (k ≥ 1), αl(Z0) = αl+k(Z0) = αl+2k(Z0) =
π
3 for each l ∈ N (l +

2k ≤ r), αi(Z0) = 0 for i ̸= l, l + k.l + 2k.

In each case the dimension of the corresponding orbit is equal to 3k2.

Theorem 4.20 ([15]). Bn: U = SO(2n + 1). If Z0 ∈ P0 satisfies one of Condi-
tions (I), (II) and (III) and corresponds to a minimal orbit, then Z0 ∈ P0 satisfies
Condition (I) and is given as one of the following

(1) 2n = 3l − 2 (2 ≤ l ≤ n, l ∈ N), α1(Z0) = αl(Z0) = π
3 , αi(Z0) = 0 for

i ̸= 1, l. The dimension of the corresponding orbit is equal to 3
2 l(l − 1).

(2) 2n = 3l − 2 (2 ≤ l ≤ n, l ∈ N), α1(Z0) = αl(Z0) =
π
3 , αi(Z0) = 0 for i ̸=.

The dimension of the corresponding orbit is equal to 3
2 l(l − 1).

Theorem 4.21 ([15]). Type Cn: U = Sp(n). If Z0 ∈ P0 satisfies one of Condi-
tions (I), (II) and (III) and corresponds to a minimal orbit, then Z0 ∈ P0 satisfies
Condition (I) and is given as one of the following

(1) n = 3l + 2, α2l+1(Z0) =
π
3 , αi(Z0) = 0 for i ̸= 2l + 1. The dimension of

the corresponding orbit is equal to 3(2l + 1)(l + 1).
(2) n = 3k− 1, αk(Z0) = αn(Z0) =

π
3 , αi(Z0) = 0 for i ̸= k, n. The dimension

of the corresponding orbit is equal to 3k(2k − 1).

Theorem 4.22. Type DIII: U = SO(2n). There is no Z0 ∈ P0 satisfying one of
Conditions (I), (II) and (III) and corresponding to a minimal orbit.

Theorem 4.23 ([15]). Type E6: U = E6. If Z0 ∈ P0 satisfies one of Condi-
tions (I), (II) and (III) and corresponds to a minimal orbit, then Z0 ∈ P0 satisfies
Condition (I) and is given as one of the following

(1) α4(Z0) = π
3 , αi(Z0) = 0 for i ̸= 4. The dimension of the corresponding

orbit is equal to 27.
(2) α1(Z0) = α6(Z0) = π

3 , αi(Z0) = 0 for i ̸= 1, 6. The dimension of the
corresponding orbit is equal to 24.

Theorem 4.24 ([15]). Type E7: U = E7. If Z0 ∈ P0 satisfies one of Condi-
tions (I), (II) and (III) and corresponds to a minimal orbit, then Z0 ∈ P0 satisfies
Condition (I) and is given as one of the following
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(1) α3(Z0) = π
3 , αi(Z0) = 0 for i ̸= 3. The dimension of the corresponding

orbit is equal to 45.
(2) α5(Z0) = π

3 , αi(Z0) = 0 for i ̸= 5. The dimension of the corresponding
orbit is equal to 45.

Theorem 4.25 ([15]). Type E8: U = E8. There is no Z0 ∈ P0 satisfying one of
Conditions (I), (II) and (III) and corresponding to a minimal orbit.

Theorem 4.26 ([15]). Type F4: U = F4. If Z0 ∈ P0 satisfies one of Conditions (I),
(II) and (III) and corresponds to a minimal orbit, then Z0 ∈ P0 satisfies Condition
(I) and is just given by α2(Z0) =

π
3 and αi(Z0) = 0 for i ≠ 2. The dimension of

the corresponding orbit is equal to 18.

Theorem 4.27 ([15]). Type G2: U = G2. If Z0 ∈ P0 satisfies one of Conditions
(I), (II) and (III) and corresponds to a minimal orbit, then Z0 ∈ P0 satisfies Con-
dition (I) and is just given by α1(Z0) =

π
3 and α2(Z0) = 0. The dimension of the

corresponding orbit is equal to 3.

4.3. Classification θ1 ̸∼ θ2 (A). This case is defined by the assumption that G
is simple and θ1 and θ2 cannot be transformed each other by an inner involutive
automorphism of g・E・E In this case there is no orbit of the Hermann action
satisfying Condition (I) or Condition (III).

Because

Lemma 4.1 ([5] Matsuki). θ1 ∼ θ2 if and only if Σ ∩W = ∅.
Theorem 4.28 ([15]). If G = SO(r + s + t),K1 = SO(r) × SO(s + t),K2 =
SO(r + s) × SO(t), (1 ≤ r < t, s ≥ 1), then there exists an orbit of the Hermann
action satisfying Condition (II) only in case r = 1. For s ≥ 2 there exists a minimal
orbit of the Hermann action only in case s = t and for s = 1 there exists a minimal
orbit of the Hermann action only in case t = 2 The dimensions of the corresponding
orbits are 2t− 2 and 2, respectively. Moreover the above minimal orbits are austere
submanifolds of M .

Theorem 4.29 ([15]). If G = SO(4r),K1 = U(2r),K2 = SO(2r) × SO(2r), (r ≥
1), then there exist orbits satisfying Condition (II) only in case r = 1 and however
there is no minimal orbit among them.

Theorem 4.30 ([15]). If G = SU(2r),K1 = S(U(r)×U(r)),K2 = SO(2r), (r ≥ 1),
then there exist orbits satisfying Condition (II) only in case r = 1 and however there
is no minimal orbit among them.

Theorem 4.31 ([15]). If G = SU(r+s),K1 = S(U(r)×U(s)),K2 = SO(r+s), (1 ≤
r < s), then there exists an orbit of the Hermann action satisfying Condition (II)
only in case r = 1. The dimension of the corresponding orbit is 2s − 2. Moreover
this orbit is an austere submanifolds of M and thus a minimal orbit.

Theorem 4.32 ([15]). If G = SU(4r),K1 = Sp(2r),K2 = S(U(2r)× U(2r)), (r ≥
1), then there exists an orbit of the Hermann action satisfying Condition (II) only
in case r = 1. However there is no minimal orbit of the Hermann action satisfying
Condition (II)

Theorem 4.33 ([15]). If G = Sp(2r),K1 = Sp(r)×Sp(r),K2 = U(2r), then there
exists an orbit of the Hermann action satisfying Condition (II) only in case r = 1.
A minimal orbit of the Hermann action satisfying Condition (II) is of dimension 3
and but it is an austere submanifold of M .
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4.4. Classification θ1 ̸∼ θ2 (B). This case is defined by the assumption that
there are a simple connected compact Lie group U and a Riemannian symmetric
pair (U,K, τ) such that

G = U × U,

K1 = ∆G = {(u, u) | u ∈ U},
θ1(u1.u2) = (u2.u1),

K2 = K ×K,

θ2(u1.u2) = (τ(u1), τ(u2)).

In this case we have only to treat the case of V (m1 ∩ k2) = 0. And we observe that
if there is an orbit satisfying Condition (II), then the root system of the symmetric
triad must be of dimension 1 and thus

(1) U = SU(n), K = SO(n),
(2) U = SU(p+ q), K = S(U(p)× U(q)),
(3) U = SO(p+ q), K = SO(p)× SO(q).

Theorem 4.34 ([15]). ] There exist minimal orbits of the Hermann action satis-
fying Condition (II) if and only if

(1) n = 2,
(2) p = q = 1, or
(3) p = 2, q = 1.

They all are austere submanifolds of M .

4.5. Classification θ1 ̸∼ θ2 (C). This case is defined by the assumption that there
are a simple connected compact Lie group U or U = SO(4) and an involutive outer
automorphism σ of u such that

G = U × U,

K1 = ∆G = {(u, u) | u ∈ U},
θ1(u1.u2) = (u2.u1),

K2 = {(u1, u2) ∈ U × U | (σ(u2), σ(u1)) = (u1, u2)},
θ2(u1.u2) = (σ(u2), σ(u1)).

Then we have θ1 ◦ θ2 = θ2 ◦ θ1. We have only to treat the case of V (m1 ∩ k2) = 0.
Similarly we observe that if there is an orbit satisfying Condition (II). then the
root system of the symmetric triad must be of dimension 1.

Theorem 4.35. In the case when U is simple, there is no minimal orbit of the
Hermann action satisfying Condition (II). In the case when U = SO(4) and K =
SO(2) × SO(2), all orbits satisfying Condition (II) are austere submanifolds and
thus minimal orbits.
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