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§1 (1) Introduction, biharmonic isometric
immersions

@ B.Y. Chen, Some open problems and conjectures
on submanifolds of finite type,
Soochow J. Math., 17 (1991), 169-188.
o Consider an isometric immersion
S (M™, g) = (IR¥, go) and
J(x) = (fi(x),++ , fi(x)) (x € M). Then,
o Af = (Afl,---,Afk)=mH.
e H:=L1¥" B(e,e), mean curvature vector field,

i=1
B(X,Y) := D:,(f.Y) = [A(VyY),

the second fundamental form.
D =~ > /o 1 bk v b b Villows b 10 i1
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§1 (2) Introduction, biharm. isometric
immersions

Q % S (M g)— (lR",go) isminimalifH = 0.
@ Chen defined that f is to be biharmonic if

AH = A(Af) = 0.

o Thm (Chen) If dim M = 2,
any biharmonic submanifold is minimal.
@ B.Y. Chen's Conjecture:

Any biharmonic isometric immersion into (¥, go)

must be minimal,
Pnckosd ( tumsben wict socied el YaZewm, Nowensber 202008 4010
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§1 (3) Introduction. first variation formula

@ Forasmooth map f : (M, g) = (N, h),
the energy functional is:  E(f) := } [, ldf1P v,.
@ The first variation formula is:

el mipys= f’ (T Vv,

dtli=o
@ Here, V, = £|-ofi(x) € TyN, (x € M), and

2(f) = Z B(f)(ei e),
i=1

BUXY) := V) df(Y)=df(VeY), X. Y € X(M).

@ [ :(M,g) = (N,h)is harmonic if t(f) = 0.
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§1 (4) Introduction. second variation formula

@ The second variation formula for the energy
functional E(e) for
a harmonic map [ : (M, g) = (N, h) is:
d!

dr*li=o

E(f) = fM W), Vv,
@ where
J(V) i= AV = R(V),

AV:=V YV, R(V) = Y RN(V,df(e)df(e).
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§1 (5) Introduction. k - harmonic maps

e The k-energy functional due to Eells-Lemaire is
Ex(f) =4 [ 1d+ 6 fPrvg (k= 1,2,:0),
Ex(f) =3 [ dfPve Ea)) =3 [ It0DF vy
@ The first variation for k;(f) (G.Y. Jiang, Chin. Ann,
Math. 7A ('86), Note Mat. 28 ('09), 209-232) is:
L oE2f0) = = [i4m2), VI,
20 )= J(r()) = AT(f) = R(T(f)).
o f:(M,g) = (N,h)is biharmonicif 7(f) = 0.
e S.Maeta,Osaka J. Math.49('12),1035-1063;
S.Maeta,N.Nakauchi&H.Urakawa, Monat. Math,

177('15),551-567;N.Nakauchi&H.Urakawa,Note
AR P
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§3 (2) Principal G-bundles

@ The (adapted Riemannian metric): We take
a Riemannian metric g on the total space P of
a principal G-bundle xr : P — M,
g =n"h + (@), w()),
where w is a g-valued 1-form on P called a
connection form, and (-, ) is an Ad(G)-invariant
inner product on g satisfying that
w(A®) = A A€y,
R, w = Adta™") w, aeaG.
@ Then, g X Yy) = h(nW,,n.Z,) + (A, B),
for X, =A% +Wi, Yu=B"%+2Zy,

‘AIB eqW,.,.Z,€H,).
provieal U darvied wr ot Matvea
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§2 Biharmonic maps on principal G-bundles

o Problem Letx: (P, g) — (M, h) be a principal
G-bundle. If  is biharmonic, is x harmonic ?

e Th1. (Wang & Ou,11) Let m, (M*(c), g) = (N*, ),
a Riemannian submersion. If i is biharmonic, then
x is harmonic, and x is a harmonic morphism.

o Th2. Letn: (P,g) = (M, h), acompact principal
G-bundle & the Ricci tensor of (M, h) is neg. def.
Then, if & is biharmonic, then it is harmonic,

o Th3. Letx : (P, g) = (M,h), a principal GG-bundie
& Ricci tensor of (M, k), non-positive. Assume
(P, g), complete, , finite energy & finite bienergy.

Then, if x is biharmonic, then it is harmonic.

R o - v o U borvbon rud vt sl Vdawa, Merlew 14 VY6
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§3 (3) Principal G-bundles

@ Assume that the projection zr : (P, g) = (M, h) is

biharmonic, J(r(x)) = 0, where

Q
t(m) i= ) (Vamei = 7.(Voe)), (1)
JV:=AV=R(V) (VeT@'TN), (2
AV = = YV, (VoY) = Vo, V), (3)
R(V) := Z R"(V, 7, ep)m.e;, (4)

1
{¢;) is a local orthonormal frame field on (P, g).
4 ¢ St Wl Yt Nevwrebw 29, 016
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§3 (1) Principal G-bundles

e Let P = P(M,G), a principal bundle.
A compact Lie group G acts on P by
(G, )3 (a,u) > u - a€l.
o The vertical subsp. G, := {(A°,[A e g} C T, P,
Y A € g, the fund. vector field A* € X(P) def. by
=4

A T " u«.xp(l A)eT,P.

o Assume a Rlemanman metric g on P satisfies
R, g = gforalla € G. Then, we have

(a) T.P = G, & H, (ortho. decomp.)
(h) G, = (A" A €g),and
(c) RecHy =My a€l, uel

Here H, c T, P is the horizontal subspace.
DR . - -2 10 e st o Vom0
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§3 (4) Principal G-bundles

@ Since J(r(x)) = 0, we have

= f (J(r(m), (M) v, = f;_ (VVr(m.r(x)) Ve
P

- j,. 3 R (), me)maen T Ve (5)
i

@ Thus, we have
[ (Vr(m), V() v, = [, T R¥x(x), €))e], T(m)) v,
= [ ), i)y v = J, Ric"(r(x) v,y (6)
o where {e } is a local or(honormal frame field,

p is the Ricci tensor, and
Ric"(X), X € TM, is the Ricci curvature of (M, h).

prncndl C-tumbon st wacke Mmd  aeme Namnher 33 2018 2.
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§3 (5) Principal G-bundles

@ By the assumption that the Ricci curvature of
(M, h) is negative definite,

Ric"(r(n)) < 0,

so that the right hand side of (6) is non-positive
@ Since the left hand side of (6) is non-negative,
so that the both hand sides must vanish,
@ Then, we have

Ric"(r(x)) =0 and Gr(n) =0.

R o o 1 L4 et ad vt bl Yidama Moo 31 3018
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§3 (6) Principal G-bundles

@ Thus, T(x) = 0, namely,

n: (Pg)— (M, h)is harmonic.
Therefore, we obtain:

o Theorem2 Letrxr: (Pg)— (M, h)bea
principal GG-bundle over a compact Riemannian
manifold (M, h) whose Ricci tensor of (M, h) is
negative definite.

o If ris biharmonic, then it is harmonic.

bienergy. If xr is biharmonic, then it is harmonic
R = o = (4715 (+boruhs avh vkt taced  Yediwaa Moot 24 2310

@ Theorem3 Letx: (P g) — (M, h), a principal
G-bundle & Ricci tensor of (M, k), non-positive.
Assume (P, g), complete, =, finite energy & finite

it
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§3 (7) Principal G-bundles

For these works, see

Hajime Urakawa,

Michigan Math. J., 68 (2018), 19-31.

N - o bt e Wt 8 200

Biharmonic maps on principal G-bundles over complete
Riemannian manifolds of nonpositive Ricci curvature,

LAl

§4 (0) The warped products

We treat the next, harmonic maps and biharmonic
maps on (he warped product which is a recent work:

Hajime Urakawa, Harmonic maps and biharmonic
maps on principal bundles and warped products,

J. Korean Math. Soc., 55 (2018), no. 3, 553-574,
accepted in 2018, January.
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§4 (1) The warped products

@ (Definition of the warped product) l.e., the product
manifold P = M x F for two Riemannian manifolds
(M, h), (F, k), and f € C™(M) on M, define the
Riemannian metric

g=n"h+f*k. (16)

e The projectionn: P=MxF>3 (x,y) » x €M
is a Riemannian submersionx : (P, g) = (M, h),
called the warped product of (M, h), (F, k) and a
warping function f € C*(M).

[ e e e el Vi, Mwerke 3918 1110
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§4 (2) The warped products

o The tension field () := £"™*(V, 1, — 7.(V¥,e0)
of the warped product & : (P, g) = (M, h) with
g=n"h+ [k f€C(M),m=dimM,is given:

v/
T(mw) = [T. (:=dimF, V f := gradf,

{ei) is a locally defined o.n. frame field on (P, g).
@ The bitension field is 12() := At(x) — R"(r(x)),

ZV = - Z{G,‘(G,‘V) - Gv-,‘ﬁ]- (17)

R"V = Z R"(V, b ) TN Ve l‘(Ir"TM).

—mmmumm Yurowa Vot 29 2018 1) 10
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§4 (3) The warped products

@ The bitension field T,(r) of the warped product x is

Ta(7) = K(r(x»—p”(r(n»—ﬁg,mn). (18)
° gis the rough Laplacian acting on I'(x™'TM),
V is the induced connection from the Levi-Civita
connection V" of (M, h), and
p" is the Ricci transform of (M, h).
@ |f the warped product x is biharmonic, Ta(r) = 0

Ji(r(n) = Ngr(n). (19)

Jia = A -pt, Jacobl operator of the id. of (M, h).

Pt Yuzsas leeevbee 303018 18/ 104

§4 (4) The warped product

o It (M, k) is a compact Riemannian manifold whose
the Ricci transform p” is non-positive, then the
Jacobi operator Jyy by

Ju(V) := AV = p"(V), V e T(TM)

is a non-negative operator acting on I'(T'M).
o Therefore, if (M, h) is a compact Riemannian
manifold of non-positive Ricci curvature p”, then

f(V'r Vi N

(20)

0< f (Jialr(m), T(m)) vy

—

§4 (6) The warped product

e For f € C*(IR) and (F, k), the warped product
7 (Pg) = (K df*) with g = x°(d*) + f* k over
(I, dt?), is biharmonic, Ta(x) = 0 if and only if
"= f+=t+2)f* =0
@ To solve the ODE (24), put

(24)
fl
u:=(logf) = —.
/
@ Then, (24) is equivalent to
(25

+ -g(uz)' = 0. )

u
_«-—w-«-
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§4 (7) The warped product
o A general solution u of (25) is
I3

u(t) = a tanh Ia 3 l+h], (26)

where a and b are arbitrary constants. Then,
o Theorem For a compact Riemannian manifold
(F, k) and a C* function f on [k given by

{
flt) = c exp (f a tanh Ia-;-r +hldr) (27)
L

where @ # 0, b, ¢ > 0 are arbitrary conslants,
o the warped product z : (R x, F, g) = (I, d¢?) with
g = n°de? + f* k, is biharmonic but not harmonic.

=) Vi
b
which is a restriction to f € C*(M). (21)
-—--wwumu Ve, lverbel 36 0016 201108
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§4 (5) The warped product
e Let (P, g) = F %, &, the warped product with the
tiber space (F, k) over the standard line (I, dr?),
g =" (di)+ [ k. (22)
o
- vf lhvf_ f'n ZhI'
T2(7) —.lkl((T)—( v Y L = —((7) ~-{*V l/'f
fy v e 3
= —((I—) _(’2(&_‘,;.
£ I

-%(f"' LPrl=31"ff+ =+ 2)}""). (23)

AL
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§5 (1) Pseudo harmonic maps

o For two Riemannian manifolds (M*"*1, g,), (N, h),
and for f € C~(M, N), let the pseudo energy be

|
Ey(f) = f Zu (Xi, Xi) v,

where {X;} is an o.n. frame field on (H(M), gs).
@ (the first variation formula)
Lt By = = fi b)), V) vy,

¥ By(Xi, X;), the pseudo tension

o r=h
fleld, B/(X,Y), the second fundamental form.
_&-Mn&mnwm Y s, Nowervdoer 7% 3
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§5 (2) Pseudo harmonic maps
@ (the second variation formula)
5‘},|l=or:,u,) = [, hTs(V). V) vy,
JoVy = &V = Ry(V),
AWV = = 32 (Vx(VxV) = Vo, 0 V),
Ry(V) = B, RMV, df(X)df(X).

Here, v is the induced connection of V", V is the
Tanaka-Webster connection.
@ The pseudo bienergy is

1
Epalf) = Sj:, h(to(f), Tl N Ve Vi, = OA(dO)".
h""”“‘ﬂ arwwn lmbor 30 2010 38) 108

where

&R sEes
§6 (2) First variation, Chiang-Wolak, Jung

@ The transversal energy Ey(p) := § [, ldrol? vy.
e V (™ foliated variation {y,} with ¢y = ¢ and
Fleo =V €™,
“ _Eute) = - JoVetin(@)) v
@ Here, Ty(¢) is the transversal tension field def. by
Tulp) := B (Ve dro)(E.).
Here, V is the induced connection in Q* ® ¢~'Q’

from the Levi-Civita connection of (M”, g’), and
{ E‘,):__I is a local orthonormal frame field on Q.

o AC™ foliated map ¢ : (M, g, %) = (M',g',F")is
said to be transversally harmonic if Ty(p) = 0.

N v < G rnden e vckr hrnt Vatama N 4 20N

§5 (3) Pseudo biharmonic maps

@ (the first variation formula of E, z)
ﬁ';lh__o"-'b.z(f:) = = [, h 2N, V) vy,

@ where 132(f) is the pseudo bitension field given by

ts2(f) = A () — Zf:‘l R* (o (), df (X)) (X)).
e AC”map f: (M,ge = (N,h)is

pseudo biharmonic if p2(f) = 0.
@ A pseudo harmonic map is pseudo biharmonic.
@ (CR analogue of the g. Chen's conjecture):

If (N, h) has non-positive curvature, then
every pseudo biharmonic isometric immersion

[+ (M, go) = (N, h) must be pseudo harmonic.
_—-mmumw Vadmen, Woverlost 25, 2014
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§6 (3) Second variation formula

e For every transversally harmonic map
p: Mg, T)—= (M, g F'),
let ¢, : M — M’, any foliated variation of ¢ with

iy, i,
V = S =000 W = 5 ln=00 and goo = @,

& Etr(p) = J:"(-Iu',p(v” W)v,,

i (£,0)=(0,0)

o Here, for V Er_(‘P"'Q').
Jir, o(V) := V*IV-V .V = traceg R (V, drp)dre
= Z::.‘f’u‘-’r. ~Vy. )V
~ 21 RV, drp(E,)drp(E.).
o We want the condition to have [ (V. V,V)v, = 0.

e el Vi, N e

-

—

§6 (1) Geometry of foliated maps

o Let g, a foliated map of (M, g, F) into (M", ¢’, F'),
e, Vieaf Lol 6 Jaleaf L' of 7', (L) c L.

o or: ¢ = IL* abundle map sth. a0 o =id
o Letdry := n' o dyp o or; ) — ' be a bundie map:

05 1rcTM S TIM 5 Q.
Here, Q' cT°'M,n: TM = Q = TM/L,

n: TM - Q' =TM'[L'.
@ Then, dre € T(Q" ® ¢~'Q').

O

R+ 7 o G tcrvhes wc veeter arnd_ Ve, Nrvmniar 55 3010
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§6 (4) Transversal bitension field and
transversally biharmonic maps

o The transversal bitension field Ty () of a smooth
foliated map ¢ is defined by
Tau(p) 1= S (Tulp)-

o The transversal bienergy E, ¢ of a smooth foliated
map g is defined by Eyr(¢) = 1 [y, Iru(@)F vy

@ A smooth foliated map
o (Mg, F)— (M, g',F’)is said to be
transversally biharmonic if Ta4r(¢) = 0.

Ll
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§7 (1) Rigidity of pseudo biharmonic maps

e We want to show
Theorem 1. Let ¢ be a pseudo biharmonic map
of a complete strictly pseudoconvex C'R manifold
(M, g4 into a Riemannian manifold (N, &) of
non-positive curvature.
o If Epa(p) < oo and Ey(p) < oo,
then g is pseudo harmonic.

N 7 v i vt (3 Vrvhes wad v Wil VUi lieember 2 2908
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§7 (2) Refs. on pseudo (bi-)harmonic maps

@ (1) (pseudo harmonic): E. Barletta, S. Dragomir &
H. Urakawa, Pseudoharmonic maps from a
non-degenerate CR manifolds into a Riemannian
manifold,

Indiana Univ. Math. J., 50 (2001), 719-746.

@ (2) (pseudo biharm.): S. Dragomir, S. Montaldo,
Subelliptic biharmonic maps,

J. Geom. Anal., 24 (2014), 223-245.

@ (3) (C'K rigidity): H. Urakawa, CR rigidity of pseudo
harmonic maps and pseudo biharmonic maps,
Hokkaido Math. J., 46 (2017), 141-187.

TSN
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§8 (1) Rigidity of transversally biharmonic

maps

@ The generalized Chen'’s conjecture
for foliated Riemannian manifolds:

For every transversally biharmonic map from a
foliated Riemannian manifold into another foliated
Riemannian manifold whose transversally
sectional curvature is non-positive,

o Then, it must be transversally harmonic.

We want to show

/10
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§8 (2) Rigidity of transversally biharmonic
maps.

@ Theorem 2. Let be a €™ foliated map of
a foliated Riemannian manifold (M, g, %) into
a foliated Riemannian manifold (M’ g’, 7')
satisfying conservation law and

transversally volume preserving.

o Assume that (M, g) is complete and
the transversal sectional curvature of (M’, g’. F"')
is non-positive.

o Then, if ¢ is transversally biharmonic with finite
transversal energy and finite transversal 2-energy,

then g is transversally harmonic.
MM.‘Q: Vurwws Nevenher 29 2010
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§8 (3) Rigidity of transversally biharmonic

maps.

o letg: (M, g, F) - (M, g’ F"),aC™ fol. map.
e Leta(X,Y) (X,Y € I'(L)), the sec. {. form of 7,
a(X,Y) = VYY), (X,Y €eI'(L)),
n: TM - Q,0Q = TM/L, L, tangent bundle of 7.
The tension field T of F,
T= ):Zj:‘ gla(Xi, X)), ({X,-}f’==l spanns I'(L)).
o 7 is trans. volume preserving if div(t) = 0.
o ¢ satisfies conservation law if {E,} (@ = 1,...,4),
a local o.n. frame field of I'(Q),
divgS@)(-) = LV, S@)(Eq, ) =0,

S(ﬁ) = -ildrglzgo — ¢" 8, lransver. stress-energy.
el U barnd el Vadwws, Nwwrbw 20 318 Bh (0
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§8 (4) Rigidity of transversally biharmonic
maps

This work is due to

S. Ohno, T. Sakai, and H. Urakawa,

Rigidity of transversally biharmonic maps between
foliated Riemannian manifolds,

Hokkaido Mathematical Journal, Vol. 47 (2018), 1-18,

(accepted in Hokkaido Mathematical Journal,
October 27, 2016.)
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§9 (1) The Riemannian submersions

o Let us recall the Riemannian submersion setting:
A C* mapping of (P, g) into (M, h) is a
Riemannian submersion if (0) x, surjective,
Mdr=n,: T,P = Ty, M, surjective,
2)71,P ="V, ®H,, orthogonal decomposition,
3) V, = Ker(n, ,,), and
4) ”ol'll. ¢ (Huy 8u) = (TrnM, hyqyy), Onto
isometry, (VYu € P).

@ A Riemannian metric g on P is adapted if
g = n"h + k where k is the Riemannian metric on
each fiber 7' (x), (x € M). We call ‘V,, the
vertical subspace, ‘H,, the horizontal subspace.

ol (rbridan R AL

[ ST S
§9 (2) Adapted local o.n. frame fields

o We assume dim(‘V,) = 1 (u € P), for simplicity.

o Let {e1, e, ..., €}, an adapted L.o.n. frame field,
being e,, = €,41, vertical, {ej,...,e,}, the basic o.n.
frame field on (P, g) corresp. to an o.n. frame field
{e, &, ..., g)on(M,g). Here, Z = X* € X(P)
is basic if Z is the horizontal lift of X € X(M).

o |V, Z]is vertical on P if Z is basic and V is vertical
(cf. O'Neill, Michigan M.J.13 (1966), 459-469). So,
[eiyens1] = Ki€psry ki € CZ(P) (i = 1,...,n).

@ Being X', the horizontal lift on I’ of X € X(M),
[X*,Y*]is m-related to [X, Y] € X(M). Letus write
leie;) = X320 DY ex, D € C7(P) (1 S, j S m).

T v = el (4 b wad et Larad Yuias Movantos 84 501
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§9 (3) The tension field and bitension field

o n: (P g)— (M, h)isto be harmonic if t(x) = 0,
and biharmonic if T2(x) = J(r(x)) = 0.

e The Jacobi operator J for the projection o by
J(V):=AV=R(YV), Velx'TM).

0AV:=-3" {v,,(v,y) ¥ vv,‘,,v} = AuV+AyY,

T Fa-tu)
A'VV = Z:El ‘VA;"(GA:"(V) 7 ;v” A, V}

Here, {"‘,fax' a local o.n. frame field o;{(l', g) s.th,
{e,)" ., alocal o.n. horizontal field, and () LI

the one on the vertical sp. ‘V, (p=m+ k, k= 1).
R » v b (o s and v b bira Vatimea Wowrrbar 21 300 010
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§9 (4) The tension field and the bitension
field (2)

o We obtain:
Theorem Lelnx: (Pg)— (M,h)bea
Riemannian submersion over (M, &). Then,
(1) The tension field r(x) of x is given by
T(7) = - Z:":l K6 Here x, € C2(P), (i = 1,...,n).
@ (2) The bitension field r,(x) of & is given by

- = n h n
) = -A (X, Ke) + V. %

l)::-l K =1 Kjej
+Ric"( 2, Ki€)-

_umnqdm-—nu-m Vutowa. Novarnder 29 2004

el

[ S S |
§9 (5) The Riemannian submersions (1)

We obtain:
Theorem 1 Letx: (P, g) — (M,h)be acompact
Riemannian submersion over a weakly stable Einstein
manifold (M, g) whose Ricci tensor p” satisfies
p" = ¢1d for some constant c.

Assume that x is biharmonic, i.e.,

p—
rm) =-A X + v';,x + Ric"(X) = 0,

where X = E".'_' ki€, and assume that  div(X) = 0.

Then, we have

N h
A X=c¢X, and VxX=0.

—-—-ma*nu—v—n Yucomn, Nowribee 36 BN 4111
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§9 (6) The Riemannian submersions (2)

@ Theorem2. Letrx: (P, g)— (M,h), acompact
Riemannian submersion over a compact Hermitian
symmaetric space (M, h) = (K/H, ), K, a compact
semi-simple Lie group, H, a closed subgroup of K,
and h, an invariant metricon M. Let ¥ € I be an
invariant vector field on M. Then, div(X) = 0, and

-ty
AX=cX, and ViX=0.
o Corollary. It x = (P, g) = (M", h), §'- bundle over

a compact Herm, symm. sp. (M, &), then we have
T(?M) = = Z;,, xj€j. Assume X = 3" xs; £0isa
Killing v. field. Then s is biharm. but not harmonic.
Y v s G s
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§9 (7) The Riemannnian submersions (3)

e (M. Obata) Let (M, k), a compact Kahler-Einstein,
Ay(h) > 0, the first eigenvalue. Then, A,(h) 2 2c.
If Ai(h) = 25']. eigenfun., then V£, analytic v. 1.,
Ju(Vf) 2= A (Vf) = 2Ric*(V)) = 0.

o Theorem3 Letn: (P g) — (M.h), acompact
Riemannian submersion. For X = r(x), assume
X = V[, where f € C°(M), withA"f = 2¢ f.

o letX=Vf= 2:;' K€ € X(M), (c,-};"l. o.n. frame,
{e.]:'_*l’. o.n. on (P, g), with vertical v.f. ¢,.,;. Then,

@ X, an analytic vector field on M, Ju(X) = 0,

—r
A X=X, V:,X =0, and div(X) = X e

_n—-nq-uu- sl v orst  Yubowa Vemarde 20,3018 40108
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§9 (10) The Riemannian submersions (6)
@ We have a 8" bundle:
n: P=8, = M=K|IT =8U@2)/$' = P*C).
o Let (-, ), the inner product on It defined by
(X,Y) =={Ir(XY) X, Y €1,

?=su2) = {X € gl(2, C)I'Y + X =0,Tr(X) = 0},

and let &, the SU(2)-invariant Riemannian metric
on M = K/T = P*(C) induced from (-, - ), where

'={[T0 _‘;'__w]mem}.
{

m= [0 -zllzec}. and t=te@m.
z 0

_—mm——-— Vurmes Voo 78 IR w11

§9 (8) The Riemannian submersions (4)

e (M, h) = (K/T, h), Kahler-Einstein flag mfd. with
Ric" =cld(¢c>0),and T c K = SU(r + 1),
amaximal torus, Ay : T = 8', a homomorphism,

t‘b ﬁl’, 0

'{I . [y elﬁ m‘“l”l""""”ul”ﬂl)

0 o Va1 6,0,

e Ford=ApletP =8, =SU("+|)XS'/~.
the §' bundle over K/T, where the equivalence

relation is given by:  (x*, e V17) ~ (x, e V-10)
iff x'=xt and V-1 ez"m“,{t(;”)‘

—'

ol Gurabes avd vk bl Walmes Wovesber 85 010 MR

—

§9 (11) The Riemannian submersions (7)
o Let {H,, X,, Xz}, an o.n. basis of tw.r.t. (-, -) by

_[v=1 0 o v=1
=1 -w’—_ll'x'-l‘/-'-—l ol'

X, which satisfy that

_10 -1
10
[Hy, X1] = 2Xa, [Xa, Hh) = 2X,, [Xy, X2] = 2H,.
@ Let us take a local coordinate around k € SU(2),
SU(2) 3 kexp(s Xy + (X)) expludy) v (5, t,u).
@ Let us take a locally defined o.n.frame field {e,)?g o
on SU(2) by
€ = aF'"—. + h:f;—';.c'; = c:;'; + l!:%.(‘) =¢
for constants a, b, ¢, d, A, B, C.
I vt b1l (darns et voche lnvel Vi, Nowarioe 29, 3814

Cot=utAxe B 8
o'

Tm

$9 (9) The Riemannian submersions (5)
e Let - ,
2rN=160
K=SU@2)cT= [" e_ho,,_—,,, | 0€ )R}.

dim(M) = dim(K/T) = 2.

o Foray,, a e Zand { = a, — a;, let
eln V=10 0

l{[ H T E] 0 e_uma L 4

and T acts on SU(2) x ' by

2eY=1t0 es!

(x, ¥ w/fl'{) . a:= (xa,e* VE1Z0 20 v’.‘u)’
‘_,brV—_M 0 i
a=|" v €T X ESU@ €

R o prrcionl G s wvt voce It Vitawd, Mevesber 24 5010
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§9 (12) The Riemannian submersions (8)

@ ForX =r1(n) = "(Kl?l + K{é). {ey, e, €3) satisfy
V,=Resp, Hy=Reyp @ Rexp(peP) and
[eises] =xiex (i=1,2),
where x; € (' (P) salisly
Ky = Cl(l - Nu(aA + bB),
Kz = Cl( = Nu(cA + dB),
diviX) =1k +e2x2 = 0.
0 X =1(m) = =(K16 + K2&)
~CU( - Dul(aA + bB)E + (cA + dB)g).
e Hl=01,X=1m)=0,7:85, = Pr'(C) is harm.

w—hi
Hez2 X=1@ 0, AX=iX ViX=0,

18, = PYT)is biharmonic, but not harmonic.
previpal G tareen vt vedy st Matawn owersber 28 2010 )
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§9 (13) Harmonic maps and biharmonic
Riemannian submersions

The above example, Theorem 2, and its Corollary are
the first examples of
proper biharmonic compact Riemannian submersions
over compact Riemannian symmetric spaces.

This work is due to:

Hajime Urakawa, Harmonic maps and biharmonic
Riemannian submersions,
Note di Mat., 39 (1) (2019),1-24,
a preprint, 2018, February.

TR -+~ - £rv-cow (s st cac b barel Wit mes Mrvasier 73 2010
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§10 (3) Proof of Proposition 1.

@ For an Hermitian vector bundle
n: (E,g)— (M,h),dimE = m,dimM = n,
recall the defs. of r(xr), Ta(n):

—h
T = 2 {vn”l — X (V”n"l)}‘
Ta(m) = At(r) - Z;"Bl R (v(x), maej)m.e;,
BTy —_\n h It
= éf(ﬂ) jer R0, €)e
= Ar() - Ric" (x(x)), (N

where {e.-):’_'__l, {e;);’ﬂ. loc. o.n. on (E, g), (M, h) s.th.
me; = e; (1<j<n, nle)=0n+1=<j<m).

T - o 11k b dert ow b it Viwes Aaveviee 3 000
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§10 (1) Biharmonic Hermitian vector bundles
over compact Kaehler manifolds and
compact Einstein manifolds

o Thm1 Letx: (E,g)— (M, h), avector bundle
over a compact Kaehler Einstein Riemannian
manifold. If xr is biharmonic, then it is harmonic.

o Thm2 Letx: (E,g) — (M,h), abharmonic
vector bundle over a compact Einstein manif. with
Ric" = ¢ (¢ > 0). Then, either (i) & is harmonic,
(i) fo := (r(n), ()}, constant, or
(i) 0 < 25 ¢ € A(M, h) < {5, where

<X = W(L’fnvh)zlfufnzvh <L

vt C-brninn and vetor bond  Yusmes, bt 39 2040
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§10 (4) Proof of Proposition 1.

o Let (M", h), compact Kaehler Einstein manifold,
Ric" = ¢Id. Dueto (1), 7 : (E,g) = (M, h),
biharmonic iff

Atr(r) = ¢ t(n). (2)

Then, since the Laplacian A" = — Z(e;’ = Vee)

on C(M), we have
A" (r(m), () _ _

= 2(At(m), 7(m)) = 257 (Ver(m), Ve r(m)
< 2 (At(n), 7(m)), (3)

because of (V,;r(n). G,;‘r(?r)) >0.

[ETTs g o ]
§10 (2) Biharmonic Hermitian vector bundles
over compact Kaehler manifolds and
compact Einstein manifolds

Proposition 1
e Letm: (E,g) = (M,h), avector bundle over a
compact Kaehler Einstein manifold (M, h).
Assume that xr is biharmonic. Then, we have:
o (i) lh_g tension field r(x) satisfies that
Vyrr) =0 (¥ X' € X(M)).
@ (i) The pointwise norm |r(x)|* is constant, say d.
@ (iii) The bienergy £,(r) satisfies that
Ex(m) := § [, lr(m)P vy = § Vol(M, h).
_-n—dmn-—m Vazmen Novwrber 28 3018

N1/
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§10 (5) Proof of Propisition 1.

@ Assume that x : (E, g) — (M, h), biharmonic.
By (2) and (3), we have

AMr(r), T(m) < 2¢ (v(m), 7(m)). ()
o Recall the theorem of Obata (cf. Urakawa’s book):

Thm Assume that (M, h) is a compact Kaehler
manifold (M, k) with Ricci transform p* satisfying
h(p" (), u) 2 chiu,u), (u € T, M), (some ¢ > 0).
Then, (M, k) 2 2¢. (5

If the equality holds in (5), then A admits a
non-zero holomorphic vector field.

Y - e (/74 G urvbon arvrom e v Vs Mt 53 3004

i1t

__.(7._..



§10 (6) Proof of Proposition 1.

@ Then, we have
(M, h) = 2¢, and

A" (1(7), (7)) = 2¢ ((m), (7).
@ Therefore, we have

(Ve Ver(m) =0, e,

V‘\ur(rr) =0, (X' € X(M)).
@ Then, we have

X' (r(m), (m)) = Z(Vx-r(n). (7)) =0,

(6)
(N

§10 (9) Proof of Theorem 2.

@ Assume that r : (E, g) = (M, &) is biharmonic.
Recall that we have

AM(r(m), T(m)) < 2¢ (T(m), T(m)).
e |l.e., denoting fp := (r(m), (1)) € C*(M),
At fo € 2¢ fo.

(The first step) Assume that fy £ 0, and not a
constant. Then, [, fo* vy > 0, and

S fo A fodva [, 19fsl va

)

i.e., (r(m),7(r)) is constant. 22 [T )
e By (6),(7), (r(x),r(m)=0,ie.,t(x) =0. @]
D -+~ 1+t - brvhan ad cmchs bt Vasows Novmobad 35 2310 W50 R = v b C-duwins wt vochs st Wams Moversbr 38 9918 147108
[T e . [ T o
§10 (7) Proof of Theorem 1. §10 (10) Proof of Theorem 2,

Assume that x : (B, g) = (M, h)is biharmonic. ° (The second step) Let fl o= jﬂ - _‘{Tl’ll{r‘rv'% € Cm(M).

By Proposition 1, Vyr(r) =0 (X’ € X(M)). Then, @ Then, fyg Jrvn =0, (6)

= o Vfi = Vo, and IV = IVfol?, (7)

div(r(m) = X7 (Ver(m)e) = 0. =X l (. /..(.’.)’
¢ frdf'z""=fmf°zv"-’\7:l_(m-7' @®)

Forall f € C™(M),
0= [, fdivi(m) v, = - [ VL@ v,
We have

() = 0. ()

N e - b v i Ve Moo 8, 11 W56

@ (Schwarz Inequality) For all continuous functions f
and g on a compact Riemannian manifold (M, h),

: 2 ; i A
(i SO (X)) S [3 S i [y 8 Wi 9)
o The equality holds iff there exist constants 4, u
s.th. Af+pug=0

N -~ e ol et v bt Yoo, Nowwnbr 3. 2514

(10)
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§10 (8) Proof of Theorem 2.

o Recall the famous Lichnerowicz-Obata theorem.
@ Thm (Lichnerowicz-Obata)

Let (M, k) be a compact Riemannian manifold
(M, h) without boundary.

Assume that the Ricci curvature of (M, h), Ric”",
is bounded below by a positive constant ¢ > 0:

Ric" 2 c1d.
Then, the first eigenvalue A,(M, h) satisfies that

Qo zh(.‘".l”?.;l_'—l(.'.

_-n-—lm-m—-u Vatmwa, Mbvmmbas 28 3018 627008

T s SRl s |
§10 (11) Proof of Theorem 2.
(The third step)  Then, the first eigenvalue A,(M, h)
of (M, h) satisfies that, by (6), we have
1 Vi B A 2 VA
o My < A o W, an
g o Bt on-Seeied-
o By (5), the right hand side of (11) is smaller than or
equal to o
<2e—dfn gy (12)
v (aesann) ;
.ruﬁ VA= ST
where
(Jsors)’
X::mm, 0<X <] (‘3)

L)

TN -~ v e e s e 3 1




§10 (12) Proof of Theorem 2.

@ X < lifand only iI2
(fyy Jovs) < VoM, by [, fo* vay
and
0<X & 0< [, fova
o (M, h) < 2¢ 1y if and only if

& 0z fo

2
= A,tflh') s X.
@ With the Lichinerowicz-Obala, we have =1 <
s=] v fona)'
8= 2—"— s1- JMlhl sXs Vol(M.Jr) f:fo"h <L
Therefore, we have Theorem 2. o
o mbos e Mok

[ i e <t

Hajime Urakawa,

Biharmonic Hermitian vector bundles over compact
Kéhler manifolds and compact Einstein Riemannian
manifolds,

Note di Matematica,
accepted at November 12, 2019.

Mt Vot Nowarlint 34 0010
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§11 (1) Harmonic morphisms from positive
curvature spaces onto flag manifolds

o We want to give,
“an infinite family of distinct harmonic morphisms
with minimal circle fibers
from the 7-dimensional homogeneous
Allof-Wallach spaces of positive curvature
onto the 6-dimensional flag manifolds.”

o Fuglede (1978) and Ishihara (1979),
independently, initiated harmonic morphism:

@ a harmonic morphism xr : (P, g) = (M, h) is,
¥ a harmonic function f on V ¢ M (open subset),

f o x: x~Y(V) c P is harmonic.
ot o umchos st vector Wl Yidrmms, bt 39 3913

/e

—

§11 (2) Harmonic morphisms from positive
curvature spaces onto flag manifolds

@ Theorem Let (Mg s, 1) = (SUB)Y/ Ty 8:0),
k, L€Z, (k,0)=1; -1<t<0,0r0<t<4,
infinitely many distinct homog. the 7-dim.
Allof-Wallach spaces with positive sectional curv.,

o (M, h), the 6-dim. flag manifold (SU(3)/T, h).

@ Then, all the Riem. submersions with circle fibers,
o (Mg = (M, h) = (SUQB)/T, h) are
harmonic morphisms with minimal fibers.

@ Here, the subgroups Ty, and T of SU(3) and the
homogeneous space My, , are given as follows:

_mmm—--- vt e 2 4

L

§11 (3) Harmonic morphisms from positive
curvature spaces onto flag manifolds

Trei=4| 0 ¥ 0 | 0 el
0 0 e-—lnilkﬂlﬁ

et 0 0
cT:= | 61, 62 € R
0 0 c-h“o;w:)

0 e 0
c (r:=SUQ),

o and My ¢ := G[Ty, = SUQB)/Tx,, where
H‘(SU(3)/7‘,, N =T, (=K + 8+ k().
TN et Y, v 3, 25143810

]
elka 0 0

§11 (4) Harmonic morphisms from positive

curvature spaces onto flag manifolds

@ Prool of our Theorem is obtained by applying
Proposition (Fuglede, Ishihara, see Book, Baird &

Wood, p.123) A Riemannian submersion
n: (P, g) = (M, h) is a harmonic morphism iff x is
harmonic and has minimal fibers.

e Example Let K c I c G be compact Lie
groups. The projection x : ((:/K, g) — (G/H, k) is
a harmonic Riemannian submersion with totally
geodesic fibers if the metrics g and h, induced
from the Ad((7)-invariant product (, ) on the Lie

Mnr Allof Wallach [ mctrucs are nol"-




§11 (5) Harmonic morphisms from positive
curvature spaces onto flag manifolds

Let
X, Y € g =su(3),and

)Ix € U(Z)} c G = SU@3).

o (Allof-Wallach's metric g, on SU(3)/ Ty, ¢)
(X, Y)q := —-Re(Tr(XY)),
Gie=dlE 0

0 detx™")

o Let

(0 0 z
0 0 zl]lzx. ZzGC],
g—.Z-z -71 0
(2nikd 0 0
0 2xl0 0 ]IO € IR] x
0 0 =2milk + O)0

oiped i-bnsnon ol pwcher bl Vidaes 1
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§11 (8) Harmonic morphisms from positive
curvature spaces onto flag manifolds

0 7(n) = —dn (V.. tns1) = = L7 Ki€. (¥
v(m) = L7 (V] drle) - dn(V.e))
= 2:‘_‘ {V‘:‘dn(e.-) - dn{(V,.e))
+V7  dn(enn) - dn(V.,,,en1)
= =dn(Y,,, en1) = = L, Ki€i.
o Because, fori, j=1,...,n,dn(V, ¢;) = V:e,-. and
V‘:‘drr(e.) = V:m‘)dn(e;) — V: €. Thus, we have
o " {Vidnie) - dn (.e)) = 0.
o ¢4 = ey isvertical, da(e,sy) =0,
Vf”‘dn(e,.ﬂ) =10.

Gbbindies

e M, N

e fois

B S
§11 (6) Harmonic morphisms from positive
curvature spaces onto flag manifolds

o Let

Vii= e Ny Vyi=gt =m,

a=su@) =t ®V,®V;,

be the orthogonal direct decomposition of g

with respect to the inner product (, )o.
o For -1 <t < oo, let the new inner product {, ), by
(x1 + x2,¥1 + ya)e := (1 + £)xy, yido + (x2, ¥2)o,
xi, yi €V, (i =1, 2). The Allof-Wallach metric g,
is the corresp. G-invariant Riem. metric on G/T, ..
D+ = o4+ ctouh U burses wed vkt Ml Visdams, Moot 55, 3918
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§11 (9) Harmonic morphisms from positive
curvature spaces onto flag manifolds

@ By definition of the Levi-Civita connection V,
fori =:1;saem
2’\'(vf..|l..|' e) = 2g(en+lv'eh eni1l) = 2x;,
and
zk'(vr,..t’nlvenﬂ) = 0.
Therefore, we have
vc..."nd-l = E:::l Ki€y
and then,
dn (V,M,e,.“) = zfnl Ki€.

Thus, we obtain the desired equations (). 0O

nmns

_n-p-uun--n—m Witswn Woaseber 59, 500
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§11 (7) Harmonic morphisms from positive
curvature spaces onto flag manifolds

o Letmr: (P™ g) = (M", h), a Riem. submersion.
Assume dim(z~'(x)) = 1, (« € P, m(u) = x).
Let (€1, ...» €ns €4e1), @ local o.n. frame field s.th,
€qs1 = €, vertical, and {ey, ..., ¢,}, basic o.n.
frame field on (P, g) corresp. to an o.n. frame field
{1, ..., €)0ON(M,g). Here, Z € X(P) is basic if
Z is horizontal & nr-related to X € X(M).

e [V, Z], vert. if Z, basic & V, vert. ((O'Neill], p. 461).

o So, [ei,ens1] (1 S i S n) is vertical. Then,

ki €C(P) (1gign).

[en en+|] = KiCpusls
Popl -Anrvion ol yectsr Mnd Vi, Nverrhar 31 2010
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§11 (10) Harmonic morphisms from positive

curvature spaces onto flag manifolds

e g=1su3) =t ®&m m=V, @V, where
Vi = {Xo, X1, X2)z, V2 = (X3, Xy, X5, X¢)w, and
(0 1 0) (0 |

i 0)

OX]‘:L—l 00.X2=-l- i 00}
o 0 of Yo 0 0

0 0 1) 000
Xs=-|0o 0ol xi==-[o 0 o]
iy 0 o) ili 0 o)

0 0 0) 00 0)
Xs=L1lo 0o 1| xs=-2]0 0 i|
il -1 o ilo i o

il
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§11 (11) Harmonic morphisms from positive

curvature spaces onto flag manifolds
2U+k 0 0
° Yo==| 0 2m+t o |
A 0 2k+m
where I' := k* + £ + k€, and m := -k - €.
o The inner product {, ), on m for the Allof-Wallach
metric g, on My, = SU(3)/Ty, ( is the one which
takes as an orthonormal basis of m,

{ 1 % 1 % 1
Vi+er Vistr Vi+t

legre €55, ¢ e,e0), loc. o.n. frame f. on My, .
sevutmal (bhurthes ard vickon lorst  Yutowa, Wowarrhes 00, 2018 T3/ 1M

X2, X, X4, X5, Xs} g

[EE=Sps aaecr e wE==2)
§11 (12) Harmonic morphisms from positive
curvature spaces onto flag manifolds

@ We have, for each X € X(My, (),

glX, Vf:'e:,) = e gilXoeg) + giley, [X, e,)).

e Here, we have
etgilelyel) =0 (i=0,1,...,6),
gl(e:)y [Xve:)]) =0 VX=X;3(i=0,1,...,6).
@ Thus, we have
ei(X, V:‘e;) 20,18, V:,‘e:' = (0. Therefore,

vk"le; - 0’ and T(m) = —d;[(v:‘"e:') =0. O

T - o o+ vl 5 rwboe el vt bl Vaiann Movwbs 9 3010 141106

For further studies for biharmonic isometric
immersions, it should be developed the works of W.Y.
Hsiang into biharmonic maps. For examples,

e W.Y. Hsiang; On the compact homogeneous minimal
submanifolds,
Proc. Nat. Acad. Sci. USA, 56 (1966), 5-6.

e W.Y. Hsiang and H.B. Lawson, Minimal submanifolds
of low cohomogeneity,
J. Differential Geometry, 5 (1971), 1-58.

—mmmuu—m Vitmen, Nvwrber 38 2018 19004
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Sasaki manifolds, Kahler cone manifolds

@ Theorem 1 Let M™ be an m-dim. submanifold of
a Sasakian manifold (N*™*', h, J,£, 7). Then, M is
Legendrian in N it and only if C(M) c C(N) is
Lagrangian in a K&hler cone manifold (C(N), h, I).

o (Proof) M is Legendrian in N iff h(£, X) = 0 and
h(X,JY) = 0forall X, Y € X(M). The Kahler form
of C(N) is & = 2rdr A 5 + r* dy which satifsies

QDX LO+Y) = F{IE [Y=L2X)+0(X, TY)).

Thus, M is Legendrian
iff the pullback of 2 to C(M) vanishes, i.e.,

C(M) c C(N) is Lagrangian. 0
_u—m-u-—mwm Yutuwa \oveerder 70 2006 ToJ 108
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Main Theorem (1)

@ Main Theorem 2 Lety : (M™,g) - N,a
Legendrian submanifold of a Sasakian manifold
(N*™*', h, J, €, m), and let
@ : C(M) 3 (r,x) = (r,e(x)) € C(N), the
Lagrangian submanifold of a Kahler cone manifold.
Here, g = dr* + r*g, h = dr* + r*h. Then,

o (1) (@) = 3£, i.e., g is harmonic iff ¢ is harmonic.

el J 17

e ) " m 2 m
2p) 1= J5(r(p) = 252 4 BOE = I8 4 BTR

e le, pis harmonic iff @ is harmonic.
w is biharmonic itf J (r(g)) = mtig).

ISENETERY - -4 vim e oo e 1 20

e
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Main Theoem (2)

Corollary 3 Letg : (M™, g) — N be a Legendrian

submanifold of a Sasakian manitold (N*"*', h, J, €, 1),
@ : C(M) = C(N), the Lagrangian submanifold of a
Kahler cone manifold. Then,

@ : (M, g) = N is proper biharmonic if and only is
() is an eigensection of J; with the eigenvalue m.

Here, J5 is an elliptic operator of the form:
T;W = AgW = T REN(W.p e e,

(W e I 'TC(NY)), and ~

REM s the curvature tensor of (C(N), h).

g ~ . £ e (o bot i o= dw ol Vioma Nvewaer 13 5714
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Main Theorem (3)

@ Remarks. (1) Recall Takahashi's theorem (1966):

@ Theorem Let (M™, g) be a compact Riemannian
manifold, and ¢ : (M, g) = (S", ds:). an isomelric
immersion: @ = (@1,+++ y@us1), @i € C*(M).
Then,

wis minimal iff Ay, = meg; (i = 1,0+ ,m+ 1),

Here A, is the non-negative Laplacian of (M, g).

@ (2) Recall the work of T. Sasahara: Let (u,v)

= (e, ie™" sin(VZv), e cos( V2v))/ V2.

Then, g is a proper biharmonic Legendrian

immersion into (5%, ds?) (cf. T. Sasahara, 2005).
el (O mardbon sred vector i Yutews Kowerbae 20 100 s

This work is due to

H. Urakawa, Sasaki manifolds, Kdhler cone manifolds
and biharmonic submanifolds,
arXiv: 1306.6123v2.

lilinois Journal of Mathematics, Vol. 58, No. 2 (2014),
521-535.
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Biharmonic maps and symplectic geometry

@ Whatis a relation between biharmonic maps
and symplectic geometry?

@ One can ask: “When are Lagrangian
submanifolds biharmonic immersions into a
symplectic manifold? "

o Take as a symplectic manifold, a Kahler manifold:
“When is its Lagrangian submanifold biharmonic
immersion? "

Al

e T e R T e e R L]

TS CRSEae s )
Symplectic Setting for Biharmonic Maps

@ Let (N, J, h) be a complex m-dimensional Kahler
manifold, and consider a symplectic form on N by
w(X,Y) := h(X,JY), X,Y € X(N).

@ A real submanifold M in N of dimension m is
called to be Lagrangian if the immersion
w: M — N satisfies that p*w = 0, i.e.,

b (T M, J(T,M)) =0 (Yx € M).

@ Problem
When is ¢ : (M, g) = (N, J, h) biharmonic?
Here, g := °h.

IR - - s st vt s
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Biharmonic Lagrangian submanifolds (1)

Then, we have
@ Thm 2 (Maeta & Urakawa) Let (N, J, h), a Kahler
manifold, and (M, g), a Lagrangian submanifold.
@ Then, it is biharmonic iff (m = dim M)

Try(VAy) + Try(Ag:in(e))
= Zm,(v;m - Try(ViB)(ei,®), H)e; = 0,
A*H + Tr B(Ay(e), o)
+ 3 Ric“(UH,e)fe; - ) Rie(TH,e)Je,
= J TrgApgme(®) + mJAy(JH) = 0.
@ Ric, Ric" are the Ricci tensors of (M, g), (N, h).

Prmal O tunilen sl wecher el Yidawn, Sievber B 2014
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Biharmonic Lagrangian submanifolds (2)

In particular, we have
Thm 3 (Maeta & Urakawa)

o I{ (N, J, ) = N"(4c), the complex space form of
complex dim m, with constant holomorphic
curvature 4e(< 0, = 0, > 0), and,

(M, g), a Lagrangian submanifold.

@ Then it is biharmonic iff
Try(VAp) + Try(Ag:ip(e) = 0,
A*H + TryB(Ay(e), ) — (m + 3)cH = 0.

(7)
(8)

Al
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Biharmonic Lagrangian submanifolds (3)

@ B.Y. Chen introduced the following two notions on
Lagrangian submanif. M in a Kahler manifold N:

@ H-umbilic: M is called /7-umbilic if M has a local
orthonormal frame field {e;} satisfying that

Bleyey) = AJey, Bleye) =ple,
Ble,, ;) = pJey, Bleiye)) =0 (i #)),

where 2 < i,j < m = dim M, B is the second .
of M < N, and A, u are local functions on M.
e PNMC: M has a parallel normalized mean

curvature vector field it V*(iif) = 0.

R = - oo (- bmens wref s bt Wi, Abvwrber 34 3914
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Bubbling phenomena of harmonic maps and
biharmonic maps

o Forany C > 0, let

F =@ : (M™, g) = (N", ) smooth harmonic |
fielde 1 vy < €).

@ Forany C > 0, let
F = {p : (M™, g) = (N", h) smooth biharmonic |
[y lde|"v, SC & [, Ir(@)F vy < C).

@ Question: Are both # small or big?

@ QOur answer: a rather surprising.

e Both ¥ are smalll |l.e., both # cause bubblings,
kinds of compactness.  More precisely,

v el 5 trwben ) vk Sl Wt Mowrnbor 18 3014
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Our Main Theorem (Maeta & Urakawa)

e Thm Letp: M — (N™(4c), J,h) be a
Lagrangian H-umbilic PNMC submanifold.

@ Then, it is biharmonic iff ¢ = 1 and (M) is
congruent to a submanifold of P™(4) given by

J "2 ’
n( e nr,
142 1

where x, y; € It with 2:',',,)’52 =1.
@ Here, r : $¥*! - P™(d4) is the Hopf fibering, and

IS - - -1t o bt Vo 1 1

ze""yh. o
+u

[

Previous bubbling result of harmonic maps

o Thm Let (M, g), (N, h) be compact Riem. mfds.
dim M 2 3. Forany C > 0, let
F = {p : (M™, g) = (N", h) smooth harmonic |
fylde1™ v, S C).
o Then, V (@) € 7,18 = {xy,--+ . xe) CM, and
3 a harmonic map ¢.. : (M\S, g) = (N, k) s.th.
e (1) gy, = p inthe C>-topology on M\S (j = ),
@ (2) The Radon measures |dg; |" v, converges 10
a measure given by

t
g™ vy + ay by, (j = oo).
I
k=1

"

ot Vi, Novwrelor 20 ts BRIV

The above work is due to:

S. Maeta and H, Urakawa,

Biharmonic Lagrangian submanifolds in Kahler
manifolds,
Glasgow Math, J., Vol. 55 (2013), 465-480.

arXiv: 1203.4092v2 [math.DG].
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Bubbling of biharmonic maps

(with N. Nakauchi)

e Thm (Bubbling) Let (M, g), (N, I) be compact
Riem. mfds. dim M > 3. Forany C > 0, let
F = (@ : (M™, g) = (N", h) smooth biharmonic |
fi ldelmv, <C & [, I vy < C).
o Then,Vi{p) € F, 38 = [xy,:+ , X)) C M, and
3 a biharmonic map ., : (M\S,g) = (N, h) s.th.
o (1) gi, = ¢ inthe C>-topology on M\S (j = o),
o (2) Radon meas. |dg; |" v, converges 1o a meas.

Aol vg + ) axde, (= o).
1skst
T s el O ki ot v vt Vs, Mo 24 118




This is based on the following work:

N. Nakauchi and H. Urakawa,
Bubbling phenomena of biharmonic maps,

arXiv: 0912.4086v4 [Math.DG],
Journal of Geometry and Physics, Vol. 98 (2015),
355-375.
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Joint works with Norihito Koiso (1)

o B.Y. Chen's Conjecture: Any biharmonic
isometric immersion into (I&*, go) must be minimal.
o Letp : M™ »» (R™*', gy), a biharm. hypersurface,
@ A, the principal curvature, (i = 1,+++ ,m),
v;, the unit principal curvature vector fields.
Let r := ¥ A;. Then,
-3 is a simple principal curvature, say d,, = —%.
e Thm (Koiso-Urakawa) Let @ : M™ s (R"™*! gy),
a biharmonic hypersurf., with A; # A (i # ), and
gVoviv) #0 (Vi jyk=1,0+c ym=1),
V, the induced connect. w.r.t the induced metric g.
@ Then, M is minimal.

r
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Joint works with Norihito Koiso (2)

@ Thm (Koiso-Urakawa) Every Riemannian manifold
M, 1) can be embedded as a biharmonic but
not minimal hypersurface in a Riemannian manif.,
(M x I8, g() := g(t) + d*) with g(0) = g.

o Here gir) is a solution of the system of ODE's:

e g'(1)(X,Y) = dg()(X,Y)/[dt, C. (), contraction,
a(X,Y) = g(VyY,N) (X, Y € X(M)), N =alot,
(the unit normal vector field along M att = 0),
and B(X,Y) := g(O)(R(N, X)Y. N).
I N - > - (o v b i Vames Woawhon 30 2010

1 1 1
t===g'(t)y B===g"() + ~Co (£'(1) ® g’(1)),
i ZL( / zls 4 MUY K
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Joint works with Norihito Koiso (3)

See the above works in:

Norihito Koiso and Hajime Urakawa:

Biharmonic submanifolds in a Riemannian manifold,
Osaka J. Math., Vol. 55 (2018), 325-346,

(arXiv: 14089.5494v1 [math.DG] 23 Aug 2014,
accepted in Osaka J. Math., January 10, 2017.)

i
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Classif. of all biharm, homog. hypersurfaces
in compact symmetric spaces
(with S. Ohno, T. Sakai)

@ Thm Let (G, Ky, K5), any commut. symmetric triad,
i.e., (,acompactsimple Lie gr., G/K, (i = 1,2),
compact symm. sp., iwo involutions #;, 6,6, = 0,6,
K;, K, act on G/K,, (z/ K;, ol cohom. one, resp.

o K;-orbit, proper biharm ¢» K,-orbit, proper biharm.

@ Case 1: 3 cases.

(SO + b + ¢),SO(1 + b) x SO(c), SOb + ¢)),
(SU@), S(U2) x U2)), Sp(2)),
(Sp(2), U(2),Sp(1) x Sp(1)). In each case,

o 1, Rrogcr biharm. hypersurfaces K;-orbit in (/K.
Proctal Utundos sl ke bl Yusews, Vosesder 18 J0Te. W10
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Classif. of all biharm. homog. hypersurfaces

in compact symmetric spaces (2)

o Case 2: 7 cases.
(SO(2 + 2g), SO(2) x SO(2q), U(1 + q))
(SU(T + b + ¢), S(U(1 + b) x U(c)),
SUMMxUb+c¢) (hz20,c>1),
(Sp(1 + b + ¢), Sp(1 + b) x Sp(c),
Sp(1) xSph +¢)) (h20,¢>1),
(SO(8), U4, U4,
(Eq, SO(10) - U(1), Fy),
(SO(1 + q), SO(q), SO(g)) (g>1),
(Fgq, Spin(9), Spin(9)).
o 1, proper biharm. hyp. orb. of Kj-action on G/K;.
R« oo 5t G taawibee devd omchy el Vi et Newerehes 53 3019 4410

(g > 1),
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Classif. of all biharm. homog. hypersurfaces
in compact symmetric spaces (3)

o Case 3: 8 cases.
(SO(2¢), SO(c) X SO(c), SO(2¢ - 1))
(SU), Sp(2), SOM)),
(50(6), U(3), SO(3) x SO(3)),
(SU(1 + ¢), SO(1 + ¢), S(U(1) x U(g)) (g >1),
(SU2 +2q), S(U2) x U(2q)), Sp(1 +4q)) (¢ > 1),
(Sp(1 + ¢), Ul 4+ q), Sp(1) x Spig)) (g > 1),
(Eq, SU(6) - SU(2), Fy),
(Fy, Sp(3) - Sp(1), Spin(9)).
@ In this case, V biharm. reg. orbits of K;-action on
/K, (same as, K;-action on (G/K3) is minimal,
D + i v i brchen e vackn lared Vatmwa Whviws ot 713070

(c>1),
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Classif. of all biharm. homog. hypersurfaces
in compact symmetric spaces

This work is due to:

Shinji Ohno, Takashi Sakai and Hajime Urakawa,
Biharmonic homogeneous hypersurfaces in compact
symmelric spaces,

arXiv: 1507.01738v1 [math.DG] 7 Jul 2015,

Differential Geometry and Its Applications,
Vol. 43 (2015), 155-179.
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Classif. all biharmonic homog.
hypersurfaces in compact Lie groups (1)

@ Thm Let ((s, K;, K;) be a commutative compact
symmetric triad with dima = 1. Then,
all biharmonic regular orbits for (K; x K,)-actions
on (7 are classified as follows:

a (1): All cases admitting regular orbits of the
(K3 x K;)-action on (v which

"4, distinct proper biharmenic hypersurfaces”,
are one of the 15 cases in the next page.

@ (2): All cases which “all biharmonic regular orbits
of the (K, x K;)-action on ( must be harmonic”,
are one of the 4 cases in the page after the next.

N v~ (/e (- hrhan vd et W e 13 361
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(1) (G, Ky, K3), 3, proper biharm. hypersurf.

(SO + b+ ¢),SO(1 + b) X SO(¢),SOb + ¢))

< (SU@),Sp(2), SO4) - (SUE), S(U(2) x U(2)),Sp(2))
<(Sp(2),U(2),Sp(1) x Sp(1))

(SO + 2¢), SO2) X SO2q), U1 +¢)) (g>1)
ASUM 4+ D +c), S(U + b) x Ule), S(U() x Uh + ¢))
A(Sp(1 + b +¢),Sp(1 + b) x Sp(c), Sp(1) X Sp(b + ¢))
(SO + q).50(q),50(q)) (¢ >1)

(SU + ¢),50(1 + q),5(U() x Ulg))) (¢ > 52)
(SU@2 + 29),5(U22) x U(2¢)), Sp(1 +q)) (g > 1)
<(Sp(1 + q), U + ¢),5p(1) X Splq)) (¢ = 2, ¢ > 45)
(Eg, 80(10) - U(1), Fy)

“(Fyg,Spin9),Spin(9)) - (FgSp(3) - Sp(1), Spin(9))

Gl . ......
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(2) (G, K1, K3), any biharmnic regular orbit of
the (K; x K,)-action on G is harmonic

Recall the action of K; x K; on (x is

(ka, ky) - x :=koxky™ (k€ Kz, ky € Ky, x €G).

(2-1) (SO(6), U(3), SO(3) x SO(3)),

(2-2) (SU(1 + q), 80(1 + q),S(U(1) x Ulq))
(522 ¢>1),

(2-3) (Sp(1 + ), U(1 + q),Sp(1) x Sp(q))
(45 2 ¢ > 2),

(2-4) (E¢, SU(6) - SU(2), Fy).
_—-mm—*n_m Varawa. Ao 20, 18

1014

e e S |
compact symmetric triads (G, K, K3), the
K;-action on G/K,; is cohomogeneity two

Thm 1 Let (G, K,, K3), a compact symmetric triad

whose the K;-action on /K, is of cohomogeneity two.
Then, all singular orbil lypes are divided into

one of the following three cases:

(the codimension of all such orbits of K; in G/K, Z 2).

(i) 4, a unique proper biharmonic orbit,
(il) ; proper biharmonic orbils,
(ii1) any biharmonic orbit is harmonic.

Thm 2 The classification is given as follows:

_&-*NMN“M Waams, Nevencchat 70 3014

03108




[Fade i T C i ald 3]
(2) compact symm. triads (G, K, K3), the
K;-action on G/K, is cohomogeneity two

(1) Az: 12 cases (ii), (2) Ba: 6 cases (ii),
(3) C;: 15 cases (ii), (4) BC,: 12 cases (ii),
(5) G;: 4 cases (ii) and 2 cases (iii),

(6) I-B,: 2 cases (i), 4 cases in (ii),

(7) I-C;: 4 cases (1) and 8 cases (i),

(8) I-C;: 4 cases (i) and 8 cases in (ii),

(9) l-BC;-Af: 9 cases (i),  (10) II-BC;: 9 cases (iii),
(11) I-BC;-B;: 4 cases (ii) and 5 cases in (iii),
(12) I11-A;: 9 cases (iii), (13) ITI-B;: 3 cases (iii),

(14) IM-C;: 2 cases (i) and 7 cases in (iii),
(15) II-BC;: 9 cases (iii), (16) IMI-G: 2 cases (iii).
R et 7t st el st ml Watmwa Wovendrer 20, 27081991008
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Biharmonic homogeneous submanifolds in
compact symmetric spaces and compact
Lie groups

This work is due to:

Shinji Ohno, Takashi Sakai and Hajime Urakawa,
Biharmonic homogeneous submanifolds in compact
symmetric spaces and compact Lie groups,

arXiv: 1612.01063v1 [math.DG] 4 Dec 2016,
Hiroshima Math. J., 49 (2019), 47-115,
(accepted in 2018, January).
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Thank you very much
for your attentions !
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