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Abstract. For a hyperbolic knot K in S3, at most finitely many Dehn surg-

eries yield non-hyperbolic 3-manifolds. As a typical case of such an exceptional
surgery, a toroidal surgery is one that yields a closed 3-manifold containing an
incompressible torus. The slope corresponding to a toroidal surgery is known

to be integral or half-integral. In this note, we review most known results
concerning toroidal surgery, and present some new results and conjectures.

1. Introduction

Let K be a knot in the 3-sphere S3, and let E(K) be its exterior. For a slope r
(the isotopy class of an essential simple closed curve) on ∂E(K), the closed manifold
obtained from r-surgery is denoted by K(r). In the usual way ([28]), slopes are
parameterized by the set Q ∪ {1/0}. Here, 1/0 corresponds to the meridian slope.
If a slope corresponds to an integer, then it is said to be integral , otherwise non-
integral.

Suppose that K is hyperbolic, that is, the complement S3 − K admits a Rie-
mannian metric of constant sectional curvature −1 which is complete and of finite
volume. Then Thurston’s hyperbolic Dehn surgery theorem implies that all but
finitely many surgeries yield hyperbolic manifolds [32]. These exceptional cases are
called exceptional surgeries. A closed 3-manifold is said to be toroidal if it con-
tains an incompressible torus. If K(r) is toroidal, then such surgery is referred to
as a toroidal surgery, and the corresponding slope is also called a toroidal slope.
Assuming the Geometrization Conjecture, if K(r) fails to be hyperbolic then it is
either reducible, toroidal, or a small Seifert fibered manifold ([13]). The famous
cabling conjecture states that the first case never happen. For many classes of
knots, this conjecture is confirmed. But the other two cases are not empty. The
simplest example is the figure-eight knot. This has exactly three integral toroidal
slopes 0, −4 and 4. The slope 0 is equal to the boundary slope of any Seifert sur-
face. (In general, the closed surface obtained by capping a minimal genus Seifert
surface off with a meridian disk of the attached solid torus is an incompressible,
non-separating surface by Gabai [10]. Hence any genus one knot has toroidal slope
0.) Also, ±4-surgery gives a graph manifold which is the union of two Seifert fibered
manifolds over the disk with two exceptional fibers. For the figure-eight knot, it
is known that the slopes ±1,±2,±3 yield small Seifert fibered manifolds. There
is another interesting conjecture that only integral slope can yield a Seifert fibered
manifold from hyperbolic knots ([13]).

In this note, we focus on toroidal surgery on hyperbolic knots. Although many
known results and new ones are stated, their proofs will be omitted. In the rest of
this section, we review some known facts concerning toroidal surgery.

The most important result is the next one showing a strong constraint on toroidal
slopes.

Theorem 1.1 (Gordon-Luecke [14, 15]). If r = m/n is a toroidal slope for a
hyperbolic knot in S3, then |n| ≤ 2.

2000 Mathematics Subject Classification. Primary 57M50; Secondary 57M25.
1



2 MASAKAZU TERAGAITO

This means that a toroidal slope is either integral or half-integral. The half-
integral case will be discussed in the next section.

Boyer and Zhang [1] showed that only 2-bridge knots and pretzel knots with
three strands admit toroidal slopes among alternating knots, and the slope is an
integer divisible by 4. Furthermore, according to the classification of Dehn surgery
on 2-bridge knots by Brittenham and Wu [3], most 2-bridge knots do not have
toroidal surgery as follows:

Theorem 1.2 (Brittenham-Wu [3]). Let K be a hyperbolic 2-bridge knot in S3. If
K admits a toroidal slope r, then K corresponds to a continued fraction [b1, b2] =
1/(b1 − 1/b2). Furthermore,

(1) If |b1|, |b2| > 2 and both b1 and b2 are even, then r = 0.
(2) If |b1|, |b2| > 2 and b1 is odd, b2 is even, then r = 2b2.
(3) If b1 = 2n (|n| > 1) and b2 = ±2 (i.e., K is a twist knot but the figure-eight

knot), then r = 0,∓4.
(4) If b1 = 2 and b2 = −2 (i.e., K is the figure-eight knot), then r = 0,±4.

In (1), (3) and (4) of this theorem, the slope 0 obviously comes from a genus one
Seifert surface. The other toroidal slopes come from the boundary slope of once-
punctured Klein bottle bounded by the knot. Also, Patton [26] gave a description
of what types of manifolds arise from toroidal Dehn surgery on 2-bridge knots. In
particular, all are graph manifolds.

As noted in the next section, all hyperbolic knots with non-integral toroidal
surgery have tunnel number one. In contrast with this, Eudave-Muñoz and Luecke
[9] showed

Theorem 1.3 (Eudave-Muñoz and Luecke [9]). For any integer n, there exists a
hyperbolic knot Kn in S3 such that Kn admits an integral toroidal slope and its
tunnel number is at least n.

In [25], Osoinach gave a remarkable construction and showed

Theorem 1.4. There exist infinitely many hyperbolic knots Ki for i = 1, 2, . . .
in S3 such that Ki(0) is homeomorphic to the toroidal manifold obtained from 0-
surgery on the connected sum of two figure-eight knots. Moreover, there is no upper
bound for the minimal numbers {ti} of intersection between the core of the attached
solid torus of Ki(0) and an incompressible torus in Ki(0).

Also, Osoinach constructed an infinite family of hyperbolic knots such that their
0-surgeries give the same hyperbolic 3-manifold. This is the first result that infin-
itely many knots can yield the same manifold by a surgery of the same non-trivial
slope.

There are some results on toroidal Seifert fibered surgery. First, Boyer and Zhang
[2] proved that such slope must be integral. Recently, Gordon and Luecke [17],
and Eudave-Muñoz [8] independently found infinitely many examples of hyperbolic
knots which admit such surgery. Their examples yield Seifert fibered manifolds
over the projective plane with two exceptional fibers. It is still open whether a
Seifert fibered manifold over the sphere with more than three exceptional fibers
can arise by surgery on a hyperbolic knot, or not. In the opposite direction, Motegi
[24] showed that if the order of the symmetry group Sym∗(K) is greater than two,
for example, if K admits two strong inversions, or a strong inversion and a cyclic
period, then the knot K has no toroidal Seifert fibered surgery.

Miyazaki and Motegi [23] studied toroidal surgery on periodic knots. They
showed that a toroidal surgery on a hyperbolic knot with period two is integral,
and that a hyperbolic, periodic knot K with period p > 2 admits a toroidal slope
r if and only if K has genus one and p = 3, r = 0.
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2. Non-integral case

Eudave-Muñoz [6] constructed an infinite family of hyperbolic knots k(l, m, n, p)
that admit non-integral toroidal surgeries. In fact, either n = 0 or p = 0, and thus
there are essentially two families k(l, m, n, 0) and k(l, m, 0, p) with three parameters.
(There are some prohibited values for these parameters.) The most famous example
is the (−2, 3, 7)-pretzel knot which is k(3, 1, 1, 0). He gave a family of prime tangles
B(l, m, n, p) of two strings such that some sums with rational tangles produce a
trivial knot and a double composite knot. Taking a double branched cover of
the tangle, the knot exterior k(l, m, n, p) is obtained. Although there is an explicit
description of the knots using a surgery presentation [6], that is a little complicated.

The Eudave-Muñoz knots are strongly-invertible, tunnel number one, and fibered
[8]. Each of them admits a non-integral toroidal slope r as follows [8]:

(1) r = l(2m− 1)(1− lm) + n(2lm− 1)2 − 1
2 for k(l, m, n, 0);

(2) r = l(2m− 1)(1− lm) + p(2lm− l − 1)2 − 1
2 for k(l, m, 0, p).

The r-surgery yields a toroidal manifold which contains an incompressible torus
meeting the attached solid torus in two meridian disk. Also, the resulting manifold
is the union of two Seifert fibered manifolds over the disk with two exceptional
fibers.

Surprisingly, Gordon and Luecke [16] proved that these are the only knots with
non-integral toroidal surgeries.

Theorem 2.1 (Gordon-Luekce [16]). Let K be a hyperbolic knot in S3 that ad-
mits a non-integral toroidal surgery. Then K is one of the Eudave-Muñoz knots
k(l, m, n, p) and the toroidal slope is r described above.

As Eudave-Muñoz wrote in [6], there are some repetitions among his knots. For
example, k(2,−1, n, 0) = k(−3,−1, n, 0) = k(2, 2, 0, n). Hence it would be a good
problem to classify the knots.

Relating to this, we hit on a simple question: What is the simplest hyperbolic
knot with non-integral toroidal slope? We here adopt the bridge index to measure
the complexity of knots. Then it is well known that no 2-bridge knot admits non-
integral toroidal surgery [18]. Independently of Theorem 2.1, we can show

Theorem 2.2 (Ishigami-Teragaito [22]). The (−2, 3, 7)-pretzel knot is the only
hyperbolic 3-bridge knot that admits non-integral toroidal surgery.

The argument goes as follows. For a 3-bridge hyperbolic knot K (with a non-
integral toroidal slope r), its 3-bridge position is a thin position. Hence, by Gabai’s
lemma [10], there is a level sphere Q̂ which intersects the punctured torus T , coming
from an incompressible torus T̂ in K(r), only in loops and essential arcs. The
standard construction ([4]) gives a pair of labelled graphs GQ and GT on Q̂ and
T̂ , respectively. In particular, GQ has just 6 vertices of degree 4, and GT has just
two vertices of degree 12. We analyze this pair combinatorially and topologically,
and finally conclude that there are only two possibilities for the configuration of the
pair. Then each configuration implies that the knot is the (−2, 3, 7)-pretzel knot
(or its mirror image). In addition, the technique used here can be easily applied to
show that no 2-bridge knot admits non-integral toroidal surgery.

Combined Theorem 2.2 with [33], we have

Corollary 2.3. The (−2, 3, 7)-pretzel knot is the only pretzel knot that admits non-
integral toroidal surgery.
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3. Bound in terms of genus

For non-integral case, it seems to be clear that not all half-integers appear as
a toroidal slope for some Eudave-Muñoz knot. However, for integral case, we can
show

Theorem 3.1 ([29]). For any integer r, there exists a hyperbolic knot K in S3

such that K(r) is toroidal. Furthermore, K has bridge index at most 3 and tunnel
number one.

The construction is based on Dean’s doubly-Seifert fibered construction [5]. In
fact, our knots are twisted torus knots, and the resulting toroidal manifolds are
graph manifolds, which are the union of two Seifert fibered manifolds over the disk
with two exceptional fibers.

Although there is no universal bound for integral toroidal slopes, we propose the
next conjecture based on many known examples.

Conjecture 3.2. If r is an integral toroidal slope for a hyperbolic knot K in S3,
then |r| ≤ 4g(K), where g(K) is the genus of K. Furthermore, if |r| = 4g(K), then
K bounds a once-punctured Klein bottle whose boundary slope is r.

For example, the (−2, 3, 7)-pretzel knot has toroidal slopes 16 and 20. Recall that
this knot has genus 5 and bounds a once-punctured Klein bottle whose boundary
slope 20 as one of the checkerboard surfaces of its standard diagram as a pretzel
knot. (Also, this knot bounds another once-punctured Klein bottle with boundary
slope 16. But this is a very special phenomenon. See [20, 27].)

As the first step in this direction, we showed that the conjecture is true for two
important classes of knots.

Theorem 3.3 ([30]). Let K be a genus one hyperbolic knot in S3. If r is a toroidal
slope for K, then r is an integer and |r| = 0, 1, 2 or 4. Furthermore, if |r| = 2
or 4, then K(r) contains an incompressible torus meeting the attached solid torus
in two meridian disks. Also, if |r| = 4, then K is a twist knot and it bounds a
once-punctured Klein bottle whose boundary slope is r.

We note that the integers 0 and 4 are realized as toroidal slopes of the figure-
eight knot, and the pretzel knot 946 = P (−3, 3, 3) has toroidal slope 2, which yields
a graph manifold. But it is open that the integer 1 can be realized by a genus one
hyperbolic knot.

Theorem 3.4 ([30]). Let K be an alternating hyperbolic knot in S3. If r is a
toroidal slope for K, then r is an integer and |r| ≤ 4g(K). Furthermore, if the
equality holds, then K bounds a once-punctured Klein bottle whose boundary slope
is r.

Since then, we have confirmed Conjecture 3.2 for genus two knots, non-two-bridge
Montesinos knots up to 10 crossings and Eudave-Muñoz’s K(`, n) [7].

The present status is the following.

Theorem 3.5. Let K be a hyperbolic knot in S3 with an integral toroidal slope r.
Let t denote the minimal number of intersection between an incompressible torus
in K(r) and the core of the attached solid torus. Then if t 6= 4, then |r| ≤ 4g(K).
If t = 4, then |r| ≤ 6g(K)− 3.

Note that t is even, since T̂ is separating when r 6= 0. When t ≥ 6, the argument
similar to that of [14] works well. The case t = 2 is complicated and lengthy. The
temporary upper bound for case t = 4 is easy to get by using only Scharlemann
cycles of length two. We expect that this part will be improved by a deeper analysis.
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Daniel Matignon at Université de Provence informed that he got a similar upper
bound.

In most examples of integral toroidal surgery, we see t = 2, indeed. But [7] gave
infinitely many hyperbolic knots K(`, n) with t = 4, and as stated in Theorem 1.4,
t can be arbitrarily high.

Ichihara [19] gave such an upper bound in a broader category.

Theorem 3.6 (Ichihara [19]). Let K be a hyperbolic knot in S3. If |r| > 3 ·
27/4g(K), then K(r) is an irreducible 3-manifold with infinite and word-hyperbolic
fundamental group.

It is known that an irreducible 3-manifold with infinite and word-hyperbolic
fundamental group is neither toroidal nor Seifert fibered. Thus if r is toroidal, then
|r| ≤ 3 · 27/4g(K) ≈ 10.09 g(K),

As a supporting evidence of Conjecture 3.2, we have a similar result on Klein
bottle surgery.

Theorem 3.7 (Ichihara-Teragaito [21]). Let K be a hyperbolic knot in S3. If K(r)
contains a Klein bottle, then r is an integer divisible by four and |r| ≤ 4g(K).
Furthermore, if |r| = 4g(K), then K bounds a once-punctured Klein bottle whose
boundary slope is r.

This upper bound is sharp for each genus. Theorem 1.2 (2) shows such examples.

4. The number of toroidal surgeries and distance

In the paper [6] that gave an infinite family of hyperbolic knots k(l, m, n, p) with
non-integral toroidal surgeries, Eudave-Muñoz [6] proposed the following:

Conjecture 4.1. A hyperbolic knot in S3 admits at most three toroidal surgeries.

As stated in Section 1, the figure-eight knot admits exactly three toroidal slopes
0 and ±4. Among k(l, m, n, p), the (−2, 3, 7)-pretzel knot, which is k(3, 1, 1, 0), has
three toroidal slopes 16, 20 and 37/2. Let us consider a hyperbolic knot K which
is not an Eudave-Muñoz knot. If K is not the figure-eight knot, then K admits
at most 6 integral toroidal surgeries by [11]. (For, there are only four hyperbolic
3-manifolds that admit two toroidal slopes with distance at least 6. Among them,
the figure-eight knot exterior is the only one that can be embedded in the 3-sphere.
Hence, if r and s are (integral) toroidal slopes for the knot exterior E(K), then
|r − s| ≤ 5.) Also, any Eudave-Muñoz knot admits at most 5 toroidal slopes. (Use
[11] again, and the fact that this knot has two integral (atoroidal) Seifert fibering
slopes [6].) Thus any hyperbolic knot admits at most 6 toroidal slopes.

We show

Theorem 4.2 ([31]). Let K be a hyperbolic knot in S3, which is not the figure-eight
knot. If K admits two integral toroidal slopes r and s, then |r − s| ≤ 4.

The argument is based on the combinatorial and geometrical analysis of a pair
of labelled graphs coming from the intersection between two essential punctured
tori. It heavily depends on the fact that both slopes are integral.

As a corollary of Theorem 4.2, we obtain a better upper bound for the number
of toroidal slopes.

Corollary 4.3. A hyperbolic knot in S3 admits at most 5 toroidal surgeries.

As a refinement of Conjecture 4.1, we propose

Conjecture 4.4. If a hyperbolic knot in S3 admits three toroidal surgeries, then it
is either the figure-eight knot or the (−2, 3, 7)-pretzel knot.
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The next is another corollary of Theorem 4.2. This follows immediately from
Theorem 2.1. Here, ∆(r, s) denotes the minimal geometric intersection number
between two slopes r and s.

Corollary 4.5. If a hyperbolic knot K in S3 admits two toroidal slopes r and s
with ∆(r, s) = 5, then K is an Eudave-Muñoz knot.

Among Eudave-Muñoz knots, the family k(2,−1, n, 0), n 6= 1, seems to be the
only one that realizes the distance 5, but this is an open question.

For the case ∆ = 4, we have another conjecture.

Conjecture 4.6. If a hyperbolic knot K in S3 admits two toroidal slopes r and s
with ∆(r, s) = 4, then K is either the (−2, 3, 7)-pretzel knot or a twist knot.

Any twist knot C[2n,±2] in Conway’s notation, except the trefoil, has toroidal
slopes 0 and ±4 as seen in Theorem 1.2.

The author would like to thank Mario Eudave-Muñoz for pointing out an error
in the manuscript.
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