Discriminant Kernels based Support Vector Machine

Akinori Hidaka
Tokyo Denki University

Abstract—Recently the kernel discriminant analysis (KDA)
has been successfully applied in many applications. KDA is one
of the nonlinear extensions of Linear Discriminant Analysis
(LDA). But the kernel function is usually defined a priori and
it is not known what the optimum kernel function for nonlinear
discriminant analysis is.

Otsu derived the optimum nonlinear discriminant analysis
(ONDA) by assuming the underlying probabilities similar with
the Bayesian decision theory. Kurita derived discriminant ker-
nels function (DKF) as the optimum kernel functions in terms of
the discriminant criterion by investigating the optimum discrim-
inant mapping constructed by the ONDA. The derived kernel
function is given by using the Bayesiarposterior probabilities.
For real applications we can define a family of discriminant
kernel functions by changing the estimation method of the
Bayesianposterior probabilities.

In this paper, we propose and evaluate the support vector
machine (SVM) in which the discriminant kernel functions are
used. We call this SVM the discriminat-kernel-based support
vector machine (DKSVM). In the experiments, we compare the
proporsed DKSVM with the usual SVM.

I. INTRODUCTION

Takio Kurita
Hiroshima University

However the linear model used in the LDA is not suitable
to estimate theposterior probabilities because the outputs
of the linear model can not satisfy the constraints on the
probabilities. To overcome this drawback, Kurita et al. [8]
proposed Logistic discriminant analysis (LgDA) in which
the posteriori probabilities are estimated by using the multi-
nominal logistic regression instead of the linear model.

This theory of ONDA suggests that many novel nonlinear
discriminant mappings can be constructed if we change
the estimation methods of thgosterior probabilities. For
example, Kurita et al. [7] proposed the neural network
based NDA in which the outputs of the trained multi-
layered Perceptron (MLP) were used as the estimates of the
posteriori probabilities because the outputs of the trained
MLP for classification problems can be regarded as the
approximations of thgosteriori probabilities [14].

Kurita showed that the best kernel function is derived from
the optimum discriminant mapping constructed by ONDA
by investigating the dual problem of the eigenvalue problem
of ONDA [9]. The derived kernel function, called the dis-

INEAR discriminant analysis (LDA) [5] is one of the criminant kernel function (DKF), is also given by using the
well known methods to extract the best discriminatingosteriori probabilities. This means the class information is
features for multi-class classification. LDA is useful fornaturally introduced in the kernel function. As like ONDA,
linear separable cases, but for more complicated casestheé DKF is also optimum in terms of the discriminant

is necessary to extend it to nonlinear.

criterion. Kurita also showed that a family of DKFs can be

Recently the kernel discriminant analysis (KDA) has beedefined by changing the estimation method of the Bayesian
successfully applied in many applications [10], [2], [1]. KDAposterior probabilities [9].
is one of the nonlinear extensions of LDA and constructs a Since the discriminant kernel function is optimum in terms
nonlinear discriminant mapping by using kernel functionsof the discriminant criterion, it is expected to be effective for
Usually the kernel function is defined a priori, and it isother classification models such as support vector machine
not known what the best kernel function for nonlinea(SVM). In this paper, we propose to use the DKF as the ker-
discriminant analysis (NDA) is. Also the class informationnel function of the SVM. We call this the discriminat-kernel-

is usually not introduced in such kernel functions.

based support vector machine (DKSVM). In the experiments,

On the other hand, Otsu derived the optimum nonlineave compare the porposed DKSVM with the usual SVM
discriminant analysis (ONDA) by assuming the underlyingusing several data sets in UCI machine learning repository.

probabilities [11], [12], [13] similar with the Bayesian de-

The rest of this paper is organized as follows: Section

cision theory[3]. He showed that the optimum nonlineatl reviews LDA, KDA and ONDA. The discriminant kernel
discriminant mapping was obtained by using Variationalunctions are introduced in Section Ill. Section IV shows
Calculus and was closely related to Bayesian decision theooyr DKSVM. The experiments are described in Section V.

(The posterior probabilities). The optimum nonlinear dis-
criminant mapping can be defined as a linear combination of
the Bayesiarposterior probabilities and the coefficients of

Finally, Section VI concludes the paper.

II. OPTIMAL NONLINEAR DISCRIMINANT ANALYSIS

the linear combination are obtained by solving the eigenvalfe Linear Discriminant Analysis
problem of the matrices defined by using the Bayesian Linear Discriminant Analysis (LDA) [5] is defined as a

posterior probabilities.

method to find the linear combination of features which best

Also Otsu pointed out that LDA could be interpreted aseparates two classes of objects. LDA is regarded as one of
a linear approximation of this ultimate ONDA through thethe well known methods to extract the best discriminating

linear approximations of the Bayesipnsteriorprobabilities.

features for multi-class classification.



Let an m—D feature vector bex = (1,...,,,)7. Radial Basis functionsk (z,y) = exp(—|jz — y|[*/20?)
ConsiderK classes denoted byC1,...,Ck}. Assume that are often used as the kernel function for KDA. However
we haveN feature vectors{x;|i = 1,...,N} as training it is not noticed what the best kernel function for nonlinear
samples and they are labeled as one of Ahelasses. Then discriminant analysis is. Also the class information is usually
LDA constructs a dimension reducing linear mapping fronmot introduced in these kernel functions.
the input feature vectar to a new feature vectay = A"«
where A = [a;4] is the coefficient matrix.

The objective of LDA is to maximize the discriminant Otsu derived the optimal nonlinear discriminant analysis
criterion J = tr($733) whereS; and3: are respectively (ONDA) by assuming the underlying probabilities [11], [12],
the total covariance matrix and the between-class covarianide]- This assumption is similar with the Bayesian decision

C. Optimal Nonlinear Discriminant Analysis

matrix of the new feature vectonrs theory. Similar with LDA, ONDA constructs the dimension
The optimal coefficient matrix4 is then obtained by reducing optimum nonlinear mapping which maximizes the
so|ving the f0||owing genera”zed eigenva|ue pr0b|em discriminant criterionJ. Namely ONDA finds the Optimum
T nonlinear mapping in terms of the discriminant criterién
YpA=YpAN  (ATXrA=1) @) By using Variational Calculus, Otsu showed that the opti-
where A = diag(\1,...,Az) is a diagonal matrix of eigen mal nonlinear discriminant mapping is obtained as
values and shows the unit matrix. The matric®s andX 5 K
are respectively the total covariance matrix and the between- Y= Z P(Cklz)uy (5)
class covariance matrix of the input feature vecters k=1

B. Kernel Discriminant Analysis where P(Cy|z) is the Bayesiarposterior probability of the
The kernel discriminant analysis (KDA) is one of the non_claska given the mputa:. The vectprwk(k = L. o K)
. : ; X are class representative vectors which are determined by the
linear extensions of LDA. Consider a nonlinear mappihg followina generalized eigenvalue broblem

from a input feature vectat to the new feature vectdr(x). 99 g P

For the case ofl—D feature extraction, the discriminant I'U = PUA (6)
mapping can be given as= a” ®(x). Since the coefficient

; L = [v;ii] i X i
vector a can be expressed as a linear combinations of t here " [vi] is a K x K matrix whose elements are

training samples ag = ZiN:la,@(:ci), the discriminant efined by
mapping can be rewritten as
PP ?V N Vij :/(P(Ci|$)_P(Oi))(P(Cj|$)_P(Cj))p(m)d$ (@)
y=> a;®(x;) (@) =) oK(zi,x) = o’ k(x), and the other matrices are defined as
i=1 i=1
) U = [ul,...,uK]T (8)
\(Nhere f§ (iﬂmw)( = P(z)"®(x) and k(z) = P = diag(P(C,),...,P(Ck)) (9)
K(xi,z),...,K(zy,x)) are the kernel function defined A = diag(x A 10
by the nonlinear mapping(x) and the vector of the kernel 1ag(Ar, - An) - (10)
functions, respectively. It is important to notice that the optimal nonlinear mapping
Then the discriminant criterion is given as is closely related to Bayesian decision theory, namely the
K posterior probabilities P(C|x).
0.2 aTE( )a . . . .
J= 123 =—"B — ©) By using the eigen vectors obtained by solving the gener-
or aTE(TK)a alized eigenvalue problem (6), we can construct the optimum

where o2 and 0% are respectively the total variance andonlinear disgrimin_ant mapping from agive_n input fea“'?re
the between-class variance of the discriminant feajuiand to the new discriminant fegtury as shown n the equa_tlon
E(TK ) and 2550 are respectively the total covariance matri>55) i ‘_’l_vﬁ can knowthort est|mr?te altl thpot_ster;orprott)at.nl—
and the between-class covariance matrix of the kernel feat}§S: TS means that we have to estimate s enor
vector k(x) (details are denoted in [9]) probabilities for real applications. It also implies a family of
The optimum coefficient vectax can be obtained by solv- nonlinear discriminant mapping can be defined by changing
(K)o the estimation method of thgosterior probabilities.

- i i & o —
ing the generah;et_j e|gepvalue probl o= EW an The important theoretical relationship between LDA, KDA
For the multi-dimension case, the kernel discriminant

mapping is given byy — ATk(z), where the coefficinet and ONDA is described in [9] but omitted in this paper.

matrix A is defined byA” = (a,...,ay). The optimum [1l. DISCRIMINANT KERNELS

coefficient matrixA is obtained by solving the eigenvalue o pual Problem of ONDA

problem L . .
E(BK)A _ EEAI/()AA. 4) In the KDA, usually the kernel function is defined a priori.

The polynomial functions or the Radial Basis functions are
Usually the kernel function is defined a priori in KDA. often used as the kernel functions but such kernel functions
The polynomial functionsK (z,y) = (z’y + 1)? or the are general and are not related to the discrimination. Thus



the class information is usually not introduced in these kern&his is called the discriminant kernel function (DKF).
functions. Also it is not known what the optimum kernel The derived DKF is defined by using the Bayesi@ws-
function for nonlinear discriminant analysis is. terior probabilities P(Cy|x). This means that the class
Kurita showed the optimum kernel function, called disinformation is explicitly introduced in this kernel function.
criminant kernel function (DKF), can be derived by investi-Also there is no kernel parameters. This means that we do
gating the dual problem of the eigenvalue problem of ONDAot need to estimate the kernel parameters.
[9]. The DKF is also optimum in terms of the discriminant L )
criterion. B. Discriminant Kernel Functions
The eigenvalue problem of ONDA given by the equation There are many ways to estimate the Bayegiasterior
(6) is the generalized eigenvalue problem. By multiplyingprobabilities. Depending on the estimation method, we can
P~1/2 from the left, this eigen equations can be rewritten agefine the corresponding DKF. Kurita proposed two ex-
the usual eigenvalue problem as amples of the DKFs which are based on the assumption
1/ p1/2 pl/2 1/2 of Gaussian distribution or the K-nearest-neighbor density
PR PP = PURUA. (11) estimation [9]. Likewise, the Bayesigquosteriorprobabilities
By denotingU = P'/2U, we have the following usual estimated by using the prediction result of support vector
eigenvalue problem as machine or multi-nominal logistic regression can be used to
12 p—1/2\FF _ T define a variant of the DKFs. In following subsections, DKFs
(P e U =UA (12) based on two estimation methods are described.
Then the optimum nonlinear discriminant mapping of

ODNA is rewritten as 1) Gaussian Discriminant Kernel FunctioriThe one of

. T p1/2E - the most simple methods to estimate the Bayepiasterior
y=U B(z)=U"P /"B(z) =U" ¢(x) (13)  probabilities is to assume the probability densities of each
where ¢(z) = P~1/2B(x) and B(z) = (P(Ci|z) — Class as multivariate Gaussian distribution. If the probability

P(Cy),...,P(Cx|z) — P(Ck))T. densities p(xz|C)) of each classC) can be defined as
For the case oV training samples, the eigenvalue problenimultivariate GaussiaV (x|, Xk ), that is

to determine the class representative vectors (12) is given 5)\}/ 5 1 e i
~ ~ T|Ty, = —F/—=¢ —=(r—T r—x
(@T®)U = UA, (ay N = eSS O [Tl ) @ a)
(19)
— T
Wh-ﬁ:eqa_fd)-(wl)"i"¢(mgl)) "of (14) is then given b and the parameters, andX;, are estimated from the training
e dual eigenvalue problem of (14) is then given by samples, the Bayesigosterior probabilities are given by
(®@dT)V = VA. (15) PONN (ol 5
P(Cila) = DON @20 ) (20)

From the relation on the singular value decomposition of p(x)
the matrix @, thege two eigenvalue pr(_)blems (14)_ and (1_50vhere the probability density af is given by
have the same eigenvalues and there is the following relation
between the eigenvectots andV asU = ®TVA~1/2, K B
By inserting this relation into the nonlinear discriminant p(z) = ZP(C’C)N(“;‘:”’“’ Zk)- (21)
mapping (13), we have k=1
N This is the most simple way to estimate the Bayesian
A2V Tdp(x) = ZA%/%@(%)T(M?J) posterior probabilities and is known as parametric method.
i=1

Yy
Then the corresponding DKF (Gaussian-DKF) is given as
N K _ _
= Y aK(@,2) - ao (16)  Keuuss(@,y) = pCy) Y@@ SR Nyl@r, Be)
i=1 =1 p(x)p(y)
where (22)
K(xi,x) = () p(x) + 1 2) SVM Discriminant Kernel Function:The Bayesian
K posterior probabilities can also be estimated by using the
= Z P(Clzi) = P(Cw)(P(Crlz) — P(Ck)) +1 SVM classifier. Wu et al. proposed the Bayesipaste-
= P(Ck) rior probability estimation algorithm by SVM for multi-
K ‘ class problem [15]. For the input vectar, their al-
= ZP(CW;Z)P(C’J@. (17) gorithm outputs probabilistic vecto(P;(x),-- , Px(x))
k=1 (C) as the estimation of the Bayesigosterior probabilities
This shows that the kernel function of the optimum nonlineatP(C1|x), - - - , P(Ck|x)).
discriminant mapping is given by Then the corresponding DKF (SVM-DKF) is given as
K K
Ko, y) =3 DGHRIPCY) - g K y) =3 @) (23)

— P(Ck) “ P(Cy)



TABLE |

COMPARISON OF AVERAGED CLASSIFICATION ACCURACY FORLOTEST SETS

breast-canceff german splice iris wine vehicle vowel
# of classes 2 2 2 3 3 4 11
# of samples 683 1000 3175 150 178 846 990
# of features 10 24 60 4 13 18 10
LSVM 96.84 % 75.95 % | 84.17 % | 96.27 % | 98.00 % | 79.47 % | 79.82 %
LSVM-DKF 96.80 % 75.74 % | 84.31 % | 96.47 % | 97.83 % | 79.50 % | 80.52 %
Gaussian-DKF 94.74 % 73.69 % | 88.50 % | 98.04 % | 98.67 % | 84.61 % | 86.10 %
TABLE Il
COMPARISON OF AVERAGED CLASSIFICATION ACCURACY FORLO TEST SETS
breast-cancerf german splice iris wine vehicle vowel
RBFSVM 96.41 % 74.90 % | 91.10 % | 96.86 % | 96.67 % | 84.28 % | 98.16 %
RBFSVM-DKF 96.53 % 75.25 % | 91.03 % | 96.86 % | 97.17 % | 84.07 % | 98.18 %

Wu’s probability estimation algorithm [15] is available in
libsvm [4] by using the training option ’-b 1'.

Next, we compare the classification accuracy of RBF
SVM and RBF-DKF SVM. For RBF SVM, the soft mar-

gin ¢ and the kernel parameter are optimized by grid
IV. DISCRIMINANT KERNEL SVM search where: — 2-90,9-27 224 ... 927 930 and g —

Once the discriminant kernel function is derived, the—20 9-18 9-16 ... 918 920 Each grid is evaluated by 4-

DKF can be used as a kernel function of any kernel basqgd cross validation. The accuracies are shown in Table II.

approach. In this paper, we propose discriminant kerm@Br SvM and RBFSVM-DKF show almost same perfor-

based support vector machines (DKSVM). We introduce twgyance.

DKSVMs as follows: At last, we visualize the kernel matrices of LSVM,
1) DKSVM using Gaussian-DKF:In this method, Gaussian-DKF, RBF SVM and RBF-DKF which are calcu-

Gaussian-DKF (eq. (22)) is used as the kernel function ddted from four data sets: Breastcancer, iris, wine, vowel.
SVM. The comparisons of LSVM vs Gauss DKF and RBFSVM vs

. hi hod RBF-DKF are respectively shown in Fig. 1 and Fig. 2. The
2) DKSYM using SVM-DKFin this mgt od, SVM-DKF 5, matrices show the structures of classes more clearly
(eq. (23)) is used as the kernel function of SVM.

o - In theEhan the linear or RBF kernel matrices.
case, the training of SVM has two stage; (i) Linear or some

kernel SVM which is used to calculate SVM-DKEF is trained
by cross validation and grid search to optimize the soft
margin and kernel parameters; (i) SVM using SVM-DKF
is trained by cross validation and grid search to optimize t
soft margin. In the experiment, linear SVM and RBF SVM
are used in stage (i).

VI. CONCLUSIONS

In this paper, we proposed the support vector machine
SVM) in which the discriminant kernel functions are used.
he classification experiments show that the discriminant
kernel gives the same levels of the classification performance

with the tuned general kernels such as the linear or RBF
kernels of the usual SVM. The visualization results of the

V. EXPERIMENTS .
i _ kernel matrices show that DKSVMs have more clear kernel
We confirmed the performance of DKSVMs by usingmatrices against linear or RBF kernel.

several data sets in UCI machine learning repository [6]:
Breast-cancer, german, splice, iris, wine, vehicle and vowel
data. We divided each data |r_1t9 a training set (2/3 of all—'llcl S.Akaho, “Kernel Multivariate Data Analysis,” lwanami Shoten, 2008
samples) and a test set (remaining samples) at random. FOr (in Japanease).
classification experiments, we made ten different divisions @] G.Baudat and F.Anouar, “Generalized discriminant analysis using a
the training and test sets. For all experiments, we used class ;gg”oe' approach,” Neural Computation, Vol.12, No.10, pp.2385-2404,
prior P(Cy) = Ni/N where Ny is the number of samples (3] ¢ .k.Chow, “An optimum character recognition system using decision
in Cp,. functions,” IRE Trans., VOl.EC-6, pp.247-254, 1957.

At first, we compare the classification accuracies of linedf! fc(:)l;‘“h_scijhur:)%t %gi;‘gr ?Egchiiggjerz]oolim' S‘;')-f'ﬁvié'\’“ - il;g;aryat
SVM (LSVM), LSVM-DKF SVM and _Ga_USSian'DKF SVM. http://wv%v.csie.ntu.edu.tw/"cjlin/lib’svm. .
For each SVM, the soft marginis optimized by grid search [5] R.A.Fisher, “The Use of Multiple Measurements in Taxonomic Prob-

wherec = 2—207 2—197 2—187 . 72197 220 Each grid is eval- lems,” Annals of Eugenics, Vol.7, pp.179-188, 1936.

. . ... . [6] A. Frank, A. Asuncion, “UCI Machine Learning Repository
uated by 9-fold cross validation. The averaged classmcatl(H [http://archive.ics.uci.edu/ml],” University of California, School of In-

accuracies for 10 test sets are shown in Table I. LSVM and formation and Computer Science.

LSVM_DKF ShOW almost same performance |n the results d?] T.Kurita, H.Asoh and N.Otsu, “Nonlinear discriminant features con-
. . . structed by using outputs of multilayer perceptron,” Proceeding of

splice, vehicle and vowel data, Gaussian-DKF shows clearly

) ; the International Symposium on Speech, Image Processing and Neural
higher performance against other two methods. Networks (ISSIPNN' 94), vol.2, pp.417-420, 1994,
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