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Abstract—Recently the kernel discriminant analysis (KDA)
has been successfully applied in many applications. KDA is one
of the nonlinear extensions of Linear Discriminant Analysis
(LDA). But the kernel function is usually defined a priori and
it is not known what the optimum kernel function for nonlinear
discriminant analysis is.

Otsu derived the optimum nonlinear discriminant analysis
(ONDA) by assuming the underlying probabilities similar with
the Bayesian decision theory. Kurita derived discriminant ker-
nels function (DKF) as the optimum kernel functions in terms of
the discriminant criterion by investigating the optimum discrim-
inant mapping constructed by the ONDA. The derived kernel
function is given by using the Bayesianposterior probabilities.
For real applications we can define a family of discriminant
kernel functions by changing the estimation method of the
Bayesianposterior probabilities.

In this paper, we propose and evaluate the support vector
machine (SVM) in which the discriminant kernel functions are
used. We call this SVM the discriminat-kernel-based support
vector machine (DKSVM). In the experiments, we compare the
proporsed DKSVM with the usual SVM.

I. I NTRODUCTION

L INEAR discriminant analysis (LDA) [5] is one of the
well known methods to extract the best discriminating

features for multi-class classification. LDA is useful for
linear separable cases, but for more complicated cases, it
is necessary to extend it to nonlinear.

Recently the kernel discriminant analysis (KDA) has been
successfully applied in many applications [10], [2], [1]. KDA
is one of the nonlinear extensions of LDA and constructs a
nonlinear discriminant mapping by using kernel functions.
Usually the kernel function is defined a priori, and it is
not known what the best kernel function for nonlinear
discriminant analysis (NDA) is. Also the class information
is usually not introduced in such kernel functions.

On the other hand, Otsu derived the optimum nonlinear
discriminant analysis (ONDA) by assuming the underlying
probabilities [11], [12], [13] similar with the Bayesian de-
cision theory[3]. He showed that the optimum nonlinear
discriminant mapping was obtained by using Variational
Calculus and was closely related to Bayesian decision theory
(The posterior probabilities). The optimum nonlinear dis-
criminant mapping can be defined as a linear combination of
the Bayesianposterior probabilities and the coefficients of
the linear combination are obtained by solving the eigenvalue
problem of the matrices defined by using the Bayesian
posteriorprobabilities.

Also Otsu pointed out that LDA could be interpreted as
a linear approximation of this ultimate ONDA through the
linear approximations of the Bayesianposteriorprobabilities.

However the linear model used in the LDA is not suitable
to estimate theposterior probabilities because the outputs
of the linear model can not satisfy the constraints on the
probabilities. To overcome this drawback, Kurita et al. [8]
proposed Logistic discriminant analysis (LgDA) in which
the posteriori probabilities are estimated by using the multi-
nominal logistic regression instead of the linear model.

This theory of ONDA suggests that many novel nonlinear
discriminant mappings can be constructed if we change
the estimation methods of theposterior probabilities. For
example, Kurita et al. [7] proposed the neural network
based NDA in which the outputs of the trained multi-
layered Perceptron (MLP) were used as the estimates of the
posteriori probabilities because the outputs of the trained
MLP for classification problems can be regarded as the
approximations of theposteriori probabilities [14].

Kurita showed that the best kernel function is derived from
the optimum discriminant mapping constructed by ONDA
by investigating the dual problem of the eigenvalue problem
of ONDA [9]. The derived kernel function, called the dis-
criminant kernel function (DKF), is also given by using the
posteriori probabilities. This means the class information is
naturally introduced in the kernel function. As like ONDA,
the DKF is also optimum in terms of the discriminant
criterion. Kurita also showed that a family of DKFs can be
defined by changing the estimation method of the Bayesian
posteriorprobabilities [9].

Since the discriminant kernel function is optimum in terms
of the discriminant criterion, it is expected to be effective for
other classification models such as support vector machine
(SVM). In this paper, we propose to use the DKF as the ker-
nel function of the SVM. We call this the discriminat-kernel-
based support vector machine (DKSVM). In the experiments,
we compare the porposed DKSVM with the usual SVM
using several data sets in UCI machine learning repository.

The rest of this paper is organized as follows: Section
II reviews LDA, KDA and ONDA. The discriminant kernel
functions are introduced in Section III. Section IV shows
our DKSVM. The experiments are described in Section V.
Finally, Section VI concludes the paper.

II. OPTIMAL NONLINEAR DISCRIMINANT ANALYSIS

A. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [5] is defined as a
method to find the linear combination of features which best
separates two classes of objects. LDA is regarded as one of
the well known methods to extract the best discriminating
features for multi-class classification.



Let an m−D feature vector bex = (x1, . . . , xm)T .
ConsiderK classes denoted by{C1, . . . , CK}. Assume that
we haveN feature vectors{xi|i = 1, . . . , N} as training
samples and they are labeled as one of theK classes. Then
LDA constructs a dimension reducing linear mapping from
the input feature vectorx to a new feature vectory = ATx
whereA = [aij ] is the coefficient matrix.

The objective of LDA is to maximize the discriminant
criterionJ = tr(Σ̂−1

T Σ̂B) whereΣ̂T andΣ̂B are respectively
the total covariance matrix and the between-class covariance
matrix of the new feature vectorsy.

The optimal coefficient matrixA is then obtained by
solving the following generalized eigenvalue problem

ΣBA = ΣTAΛ (ATΣTA = I) (1)

whereΛ = diag(λ1, . . . , λL) is a diagonal matrix of eigen
values andI shows the unit matrix. The matricesΣT andΣB

are respectively the total covariance matrix and the between-
class covariance matrix of the input feature vectorsx.

B. Kernel Discriminant Analysis

The kernel discriminant analysis (KDA) is one of the non-
linear extensions of LDA. Consider a nonlinear mappingΦ
from a input feature vectorx to the new feature vectorΦ(x).
For the case of1−D feature extraction, the discriminant
mapping can be given asy = aTΦ(x). Since the coefficient
vector a can be expressed as a linear combinations of the
training samples asa =

∑N
i=1 αiΦ(xi), the discriminant

mapping can be rewritten as

y =
N∑
i=1

αiΦ(xi)
TΦ(x) =

N∑
i=1

αiK(xi,x) = αTk(x),

(2)
where K(xi,x) = Φ(xi)

TΦ(x) and k(x) =
(K(x1,x), . . . ,K(xN ,x)) are the kernel function defined
by the nonlinear mappingΦ(x) and the vector of the kernel
functions, respectively.

Then the discriminant criterion is given as

J =
σ2
B

σ2
T

=
αTΣ

(K)
B α

αTΣ
(K)
T α

, (3)

where σ2
T and σ2

B are respectively the total variance and
the between-class variance of the discriminant featurey, and
Σ

(K)
T andΣ

(K)
B are respectively the total covariance matrix

and the between-class covariance matrix of the kernel feature
vectork(x) (details are denoted in [9]).

The optimum coefficient vectorα can be obtained by solv-
ing the generalized eigenvalue problemΣ(K)

B α = Σ
(K)
W αλ.

For the multi-dimension case, the kernel discriminant
mapping is given byy = ATk(x), where the coefficinet
matrix A is defined byAT = (α1, . . . ,αN ). The optimum
coefficient matrixA is obtained by solving the eigenvalue
problem

Σ
(K)
B A = Σ

(K)
W AΛ. (4)

Usually the kernel function is defined a priori in KDA.
The polynomial functionsK(x,y) = (xTy + 1)q or the

Radial Basis functionsK(x,y) = exp(−||x − y||2/2σ2)
are often used as the kernel function for KDA. However
it is not noticed what the best kernel function for nonlinear
discriminant analysis is. Also the class information is usually
not introduced in these kernel functions.

C. Optimal Nonlinear Discriminant Analysis

Otsu derived the optimal nonlinear discriminant analysis
(ONDA) by assuming the underlying probabilities [11], [12],
[13]. This assumption is similar with the Bayesian decision
theory. Similar with LDA, ONDA constructs the dimension
reducing optimum nonlinear mapping which maximizes the
discriminant criterionJ . Namely ONDA finds the optimum
nonlinear mapping in terms of the discriminant criterionJ .

By using Variational Calculus, Otsu showed that the opti-
mal nonlinear discriminant mapping is obtained as

y =
K∑

k=1

P (Ck|x)uk (5)

whereP (Ck|x) is the Bayesianposteriorprobability of the
classCk given the inputx. The vectorsuk(k = 1, . . . ,K)
are class representative vectors which are determined by the
following generalized eigenvalue problem

ΓU = PUΛ (6)

whereΓ = [γij ] is a K × K matrix whose elements are
defined by

γij =

∫
(P (Ci|x)−P (Ci))(P (Cj |x)−P (Cj))p(x)dx (7)

and the other matrices are defined as

U = [u1, . . . ,uK ]
T (8)

P = diag(P (C1), . . . , P (CK)) (9)

Λ = diag(λ1, . . . , λL) . (10)

It is important to notice that the optimal nonlinear mapping
is closely related to Bayesian decision theory, namely the
posteriorprobabilitiesP (Ck|x).

By using the eigen vectors obtained by solving the gener-
alized eigenvalue problem (6), we can construct the optimum
nonlinear discriminant mapping from a given input featurex
to the new discriminant featurey as shown in the equation
(5) if we can know or estimate all theposterior probabil-
ities. This means that we have to estimate theposterior
probabilities for real applications. It also implies a family of
nonlinear discriminant mapping can be defined by changing
the estimation method of theposteriorprobabilities.

The important theoretical relationship between LDA, KDA
and ONDA is described in [9] but omitted in this paper.

III. D ISCRIMINANT KERNELS

A. Dual Problem of ONDA

In the KDA, usually the kernel function is defined a priori.
The polynomial functions or the Radial Basis functions are
often used as the kernel functions but such kernel functions
are general and are not related to the discrimination. Thus



the class information is usually not introduced in these kernel
functions. Also it is not known what the optimum kernel
function for nonlinear discriminant analysis is.

Kurita showed the optimum kernel function, called dis-
criminant kernel function (DKF), can be derived by investi-
gating the dual problem of the eigenvalue problem of ONDA
[9]. The DKF is also optimum in terms of the discriminant
criterion.

The eigenvalue problem of ONDA given by the equation
(6) is the generalized eigenvalue problem. By multiplying
P−1/2 from the left, this eigen equations can be rewritten as
the usual eigenvalue problem as

P−1/2ΓP−1/2P 1/2U = P 1/2UΛ. (11)

By denoting Ũ = P 1/2U , we have the following usual
eigenvalue problem as

(P−1/2ΓP−1/2)Ũ = ŨΛ. (12)

Then the optimum nonlinear discriminant mapping of
ODNA is rewritten as

y = UT B̃(x) = ŨTP−1/2B̃(x) = ŨTϕ(x) (13)

where ϕ(x) = P−1/2B̃(x) and B̃(x) = (P (C1|x) −
P (C1), . . . , P (CK |x)− P (CK))T .

For the case ofN training samples, the eigenvalue problem
to determine the class representative vectors (12) is given by

(ΦTΦ)Ũ = ŨΛ, (14)

whereΦ = (ϕ(x1), . . . ,ϕ(xN ))T .
The dual eigenvalue problem of (14) is then given by

(ΦΦT )V = V Λ. (15)

From the relation on the singular value decomposition of
the matrixΦ, these two eigenvalue problems (14) and (15)
have the same eigenvalues and there is the following relation
between the eigenvectors̃U andV as Ũ = ΦTV Λ−1/2.

By inserting this relation into the nonlinear discriminant
mapping (13), we have

y = Λ−1/2V TΦϕ(x) =
N∑
i=1

Λ−1/2viϕ(xi)
Tϕ(x)

=

N∑
i=1

αiK(xi,x)−α0 (16)

where

K(xi,x) = ϕ(xi)
Tϕ(x) + 1

=
K∑

k=1

P (Ck|xi)− P (Ck)(P (Ck|x)− P (Ck))

P (Ck)
+ 1

=

K∑
k=1

P (Ck|xi)P (Ck|x)
P (Ck)

. (17)

This shows that the kernel function of the optimum nonlinear
discriminant mapping is given by

K(x,y) =
K∑

k=1

P (Ck|x)P (Ck|y)
P (Ck)

. (18)

This is called the discriminant kernel function (DKF).
The derived DKF is defined by using the Bayesianpos-

terior probabilities P (Ck|x). This means that the class
information is explicitly introduced in this kernel function.
Also there is no kernel parameters. This means that we do
not need to estimate the kernel parameters.

B. Discriminant Kernel Functions

There are many ways to estimate the Bayesianposterior
probabilities. Depending on the estimation method, we can
define the corresponding DKF. Kurita proposed two ex-
amples of the DKFs which are based on the assumption
of Gaussian distribution or the K-nearest-neighbor density
estimation [9]. Likewise, the Bayesianposteriorprobabilities
estimated by using the prediction result of support vector
machine or multi-nominal logistic regression can be used to
define a variant of the DKFs. In following subsections, DKFs
based on two estimation methods are described.

1) Gaussian Discriminant Kernel Function:The one of
the most simple methods to estimate the Bayesianposterior
probabilities is to assume the probability densities of each
class as multivariate Gaussian distribution. If the probability
densities p(x|Ck) of each classCk can be defined as
multivariate GaussianN(x|x̄k,Σk), that is

N(x|x̄k,Σk) =
1√

(2π)d|Σk|
exp

[
−1

2
(x− x̄k)

TΣ−1
k (x− x̄k)

]
(19)

and the parameters̄xk andΣk are estimated from the training
samples, the Bayesianposteriorprobabilities are given by

P (Ck|x) =
P (Ck)N(x|x̄k,Σk)

p(x)
, (20)

where the probability density ofx is given by

p(x) =

K∑
k=1

P (Ck)N(x|x̄k,Σk). (21)

This is the most simple way to estimate the Bayesian
posteriorprobabilities and is known as parametric method.

Then the corresponding DKF (Gaussian-DKF) is given as

KGauss(x,y) =
K∑

k=1

P (Ck)
N(x|x̄k,Σk)N(y|x̄k,Σk)

p(x)p(y)
.

(22)

2) SVM Discriminant Kernel Function:The Bayesian
posterior probabilities can also be estimated by using the
SVM classifier. Wu et al. proposed the Bayesianposte-
rior probability estimation algorithm by SVM for multi-
class problem [15]. For the input vectorx, their al-
gorithm outputs probabilistic vector(P1(x), · · · , Pk(x))
as the estimation of the Bayesianposterior probabilities
(P (C1|x), · · · , P (Ck|x)).

Then the corresponding DKF (SVM-DKF) is given as

K(x,y) =
K∑

k=1

Pk(x)Pk(y)

P (Ck)
. (23)



TABLE I
COMPARISON OF AVERAGED CLASSIFICATION ACCURACY FOR10 TEST SETS

breast-cancer german splice iris wine vehicle vowel
# of classes 2 2 2 3 3 4 11
# of samples 683 1000 3175 150 178 846 990
# of features 10 24 60 4 13 18 10

LSVM 96.84 % 75.95 % 84.17 % 96.27 % 98.00 % 79.47 % 79.82 %
LSVM-DKF 96.80 % 75.74 % 84.31 % 96.47 % 97.83 % 79.50 % 80.52 %

Gaussian-DKF 94.74 % 73.69 % 88.50 % 98.04 % 98.67 % 84.61 % 86.10 %

TABLE II
COMPARISON OF AVERAGED CLASSIFICATION ACCURACY FOR10 TEST SETS

breast-cancer german splice iris wine vehicle vowel
RBFSVM 96.41 % 74.90 % 91.10 % 96.86 % 96.67 % 84.28 % 98.16 %

RBFSVM-DKF 96.53 % 75.25 % 91.03 % 96.86 % 97.17 % 84.07 % 98.18 %

Wu’s probability estimation algorithm [15] is available in
libsvm [4] by using the training option ’-b 1’.

IV. D ISCRIMINANT KERNEL SVM

Once the discriminant kernel function is derived, the
DKF can be used as a kernel function of any kernel based
approach. In this paper, we propose discriminant kernel
based support vector machines (DKSVM). We introduce two
DKSVMs as follows:

1) DKSVM using Gaussian-DKF: In this method,
Gaussian-DKF (eq. (22)) is used as the kernel function of
SVM.

2) DKSVM using SVM-DKF:In this method, SVM-DKF
(eq. (23)) is used as the kernel function of SVM. In the
case, the training of SVM has two stage; (i) Linear or some
kernel SVM which is used to calculate SVM-DKF is trained
by cross validation and grid search to optimize the soft
margin and kernel parameters; (ii) SVM using SVM-DKF
is trained by cross validation and grid search to optimize the
soft margin. In the experiment, linear SVM and RBF SVM
are used in stage (i).

V. EXPERIMENTS

We confirmed the performance of DKSVMs by using
several data sets in UCI machine learning repository [6]:
Breast-cancer, german, splice, iris, wine, vehicle and vowel
data. We divided each data into a training set (2/3 of all
samples) and a test set (remaining samples) at random. For
classification experiments, we made ten different divisions of
the training and test sets. For all experiments, we used class
prior P (Ck) = Nk/N whereNk is the number of samples
in Ck.

At first, we compare the classification accuracies of linear
SVM (LSVM), LSVM-DKF SVM and Gaussian-DKF SVM.
For each SVM, the soft marginc is optimized by grid search
wherec = 2−20, 2−19, 2−18, · · · , 219, 220. Each grid is eval-
uated by 9-fold cross validation. The averaged classification
accuracies for 10 test sets are shown in Table I. LSVM and
LSVM-DKF show almost same performance. In the results of
splice, vehicle and vowel data, Gaussian-DKF shows clearly
higher performance against other two methods.

Next, we compare the classification accuracy of RBF
SVM and RBF-DKF SVM. For RBF SVM, the soft mar-
gin c and the kernel parameterg are optimized by grid
search wherec = 2−30, 2−27, 2−24, · · · , 227, 230 and g =
2−20, 2−18, 2−16, · · · , 218, 220. Each grid is evaluated by 4-
fold cross validation. The accuracies are shown in Table II.
RBF SVM and RBFSVM-DKF show almost same perfor-
mance.

At last, we visualize the kernel matrices of LSVM,
Gaussian-DKF, RBF SVM and RBF-DKF which are calcu-
lated from four data sets: Breastcancer, iris, wine, vowel.
The comparisons of LSVM vs Gauss DKF and RBFSVM vs
RBF-DKF are respectively shown in Fig. 1 and Fig. 2. The
DKF matrices show the structures of classes more clearly
than the linear or RBF kernel matrices.

VI. CONCLUSIONS

In this paper, we proposed the support vector machine
(SVM) in which the discriminant kernel functions are used.
The classification experiments show that the discriminant
kernel gives the same levels of the classification performance
with the tuned general kernels such as the linear or RBF
kernels of the usual SVM. The visualization results of the
kernel matrices show that DKSVMs have more clear kernel
matrices against linear or RBF kernel.
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Fig. 1. Comparison of the kernel matrices of linear kernel (left) and Gaussian-DKF (right)
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