
Fast Training Algorithm by Particle Swarm Optimization for

Rectangular Feature Based Boosted Detector

Akinori Hidaka† and Takio Kurita ‡

†:University of Tsukuba, hidaka.akinori@aist.go.jp

‡:National Institute of Advanced Industrial Science and Technology

Abstract Adaboost is an ensemble learning algorithm that combines many other learning
algorithms to improve their performance. Starting with Viola and Jones’ researches [14][15],
Adaboost has often been used to local-feature selection for object detection. Adaboost by Viola-
Jones consists of following two optimization schemes: (1) parameter fitting of local features, and
(2) selection of the best local feature. Because the number of local features becomes usually more
than tens of thousands, the learning algorithm is very time consuming if ones completely do the
two optimizations. In this paper, we propose fast boosting algorithms by using particle swarm
optimization (PSO). Proposed learning algorithm is 25 times faster than the usual Adaboost
while keeping comparable classification accuracy.

1 Introduction

Adaboost is one of the most powerful algorithm
among existing ensemble learning methods. Origi-
nally, Adaboost was proposed as the algorithm that
combines several weak hypotheses (= classifiers) to
construct more powerful classifier [3]. Adaboost has
a theoretical guarantee that a training error of the
ensemble classifier converges on 0 if enough number
of hypotheses which have a slightly better estima-
tion performance than random guess are obtained.

Feature selection is a important issue of pattern
recognition. Especially for object detection, local-
feature selection is effective to improve both accu-
racy and speed of detectors. Since the aspect of
computational difficulty, feature selection is usu-
ally performed by forward stepwise selection (FSS)
or backward stepwise selection (BSS) [9][10]. Re-
cently, a variant of Adaboost was proposed to cre-
ate local-feature based face detector, by Viola and
Jones [14][15]. Adaboost by Viola-Jones (we call it
Adaboost.V J for convenience) performs feature se-
lection from many candidate local-features, called
rectangular features (RFs). Due to an easy al-
gorithm and high classification performance, their
method of feature selection became popular and is
still used by many reseachers for object detection
[1][5][13].

However, feature selection by Adaboost.VJ is
sometimes time consuming. In recent object de-
tectors, tens of thousands of training images are
often used to obtain a sufficient classification per-

formance. In such cases, it is not unusual that the
number of candidates amounts to hundreds of thou-
sands. Because Adaboost.VJ is a variant of FSS,
all candidate features are reevaluated whenever one
feature is selected. Therefore, sometimes the train-
ing time exceeds a week. This is inconvenient for
users.

It is known that the performance of ensemble
classifiers are closely related to the diversity of com-
ponents in the ensemble [11]. Since the candidate
RFs were extracted from all (overlapped) rectangu-
lar regions in images, the set of candidates will con-
tain not only sufficient diversity but also quite a few
redundancy for feature selection. Although diverse
set of candidate features will lead good ensemble
performance, too much redundancy gives bad influ-
ence in the learning times. For efficient learning,
it is needed to study how to reduce unnecessary
redundancy in a features set while keeping classifi-
cation performance of created ensemble.

In this paper, we propose a fast rectangular fea-
ture selection algorithm for Adaboost, by using Par-
ticle Swarm Optimization (PSO). PSO [8] performs
a randomized search, like a genetic algorithm [6] or
particle filters [2][4][7]. Considering the coordinates
of RF’s region to be parameters, PSO does effec-
tive search over the parameter space. As a result,
the RF with high classification power is found effi-
ciently.

In our experiments, the best proposed algorithm
runs about 25 times faster than the Adaboost.VJ
while maintaining comparable classification accu-

• Input labeled samples {Ii, yi}
N
i=1. (Ii ∈ Rd: sample, yi ∈ {0, 1}: class label.)

• Initialize samples weights: if yi = 1 then wi = 1
2p

, otherwise wi = 1
2q

. (p: # of face, q: # of non-face)

• for t = 1, · · · , T

– Normalize samples weights: wt,i ←
wt,i∑
N

i=1
wt,i

.

– Optimize base-classifiers {bc}
C
c=1:

{bt, errt} = OptFunc({bc}
C
c=1, {Ii, wi, yi}

N
i=1)

– Compute αt = log((1− errt)/errt)

– Update samples weights: wi ← wi · exp[αm · δ(yi − bt(Ii))]. (δ(x) = 1 (if x = 0), 0 (otherwise).)

• Final classification function is:

H(I) =

{
1 if

∑T
t=1 αtbt(I) ≥ Θ

∑T
t=1 αt.

0 otherwise.
(Θ: Threshold)

Fig. 2: Common Adaboost algorithm. OptFunc for the described methods are shown in Figs. 3 to 5.

Fig. 1: Configuration of small rectangles.

racy.

2 Rectangular Features Based

Boosted Detector

2.1 Rectangular Features

For object detection problem, Viola and Jones
proposed rectangular features (RFs), which indi-
cates difference of brightness between local rect-
angular regions neighbouring each other, and they
treated such a feature as a simple base-classifier
[14][15]. RFs consists of two to four small rect-
angles which are same size and neighbouring each
other, so RFs have five degrees of freedom; position
(xs, ys), (xe, ye) of small rectangles, and configura-
tion z ∈ {1, 2, 3, 4} of small rectangles (Fig. 1).

Eq. (1) shows the classification function of rect-
angular features.

b(I) =

{
1 if pf(I) > pθ
0 otherwise

(1)

where I shows an input image, f(I) implies a fea-
ture value of a rectangular feature at I, and p ∈
{1,−1} and θ ∈ R are the parameters determined
by training (see [14][15]).

2.2 Adaboost for Feature Selection

Adaboost [3] is the ensemble learning method that
trains multiple base-classifiers and assembles these
to create a more powerful classifier. In each itera-
tion of Adaboost, a classifier that assists the weak-
ness of assembled classifiers is chosen and added
into the ensemble. Therefore, the ensemble will
effectively obtain a perfect classification power for
given training samples.

The algorithms of original Adaboost (Ad-
aboost.M1) is shown in Figs. 2 and 3. In the train-
ing of Adaboost, each training sample Ii is assigned
weight wi that implies the “difficulty” of sample
Ii. The cost function of Adaboost is designed as
weighted classification error rate for training sam-
ples. Weight wi is made heavy if the base-classifier
selected newly misclassified sample Ii. Therefore,
at the next iteration, the base-classifier that can
correctly classify the samples which the ensemble
fails will be chosen.

In this paper, we use rectangular features as our
base-classifiers for the face detection. There are
many RFs in training images, and the variant of
Adaboost proposed by Viola and Jones performs
feature selection from those candidate RFs. For
convenience, we call it Adaboost.VJ.

The optimization function for Adaboost.VJ is
shown in Fig. 4. Adaboost.VJ only added the fea-
ture selection phase to Adaboost.M1. Thus, there
are two optimization phases in Adaboost.VJ:

1) parameters fitting for candidate classifiers, and

2) selection of the best classifiers.
If ones consider that five degrees of freedom in
RF are kinds of base-classifier’s parameters, Ad-
aboost.VJ is equivalent to Adaboost.M1.

• Input arguments {b, {Ii, wi, yi}
N
i=1}.

• Fit a classifier b to the training samples using
weights wi.

• Compute err =

∑
N

i=1
wi·δ(yi−b(Ii))∑

N

i=1
wi

.

• Return {b, err}

Fig. 3: Optimization function for Adaboost.M1.

• Input arguments {{bc}
C
c=1, {Ii, wi, yi}

N
i=1}.

• For c = 1, · · · , C,

– Fit a classifier bc to the training samples
using weights wi.

– Compute errc =

∑
N

i=1
wi·δ(yi−bc(Ii))∑

N

i=1
wi

.

• Choose the classifier b∗ with the lowest error
err∗.

• Return {b∗, err∗}

Fig. 4: Optimization function for Adaboost.VJ.

3 Particle Swarm Optimization

Particle swarm optimization (PSO) [8] is a search or
an optimization algorithm that performs a random-
ized search in a multi-particle system, like a genetic
algorithm [6] or particle filter [2][4][7]. PSO mod-
eled behaviors of swarms of creatures, for example
ants looking for food. In PSO, hundreds or thou-
sands of particles search the optimum while com-
municating with other particles.

Each particle p has two state vectors: position xp
τ

and velocity vp
τ . These state vectors are updated as

follows:

xp
τ+1 = xp

τ + vp
τ ,

vp
τ+1 = wvp

τ + csrs(h
p
s − xp

τ) + cgrg(hg − xp
τ),

where w is the inertia term, cs and cg are param-
eters given manually, rs and rg are random values
between 0 to 1, hp

s and hg show the best position in
the histry of p-th particle and all particles, respec-
tively. PSO is easy to implement compared with
genetic algorithm or particle filter. Each particle
communicates with other particles and obtains the
current best position hg.

As understood from the above rule, PSO has the
following action policies:

1) keep the same direction as vp,
2) go to the direction to hp

s,
3) go to the direction to hg.
Acutually, each particle will go to weighted and

randomized average of the three directions.

4 Fast Feature Selection by PSO

After the work of Viola and Jones [14][15], many
researchers are using Adaboost for local-feature se-
lection [1][5][13]. However, original Adaboost is
not designed for the purpose of feature selection.
Adaboost.VJ optimizes tens of thousands or more
candidates in every step of boosting, while Ad-
aboost.M1 performs only one optimization. It is
considered that such multiple optimizations are ex-
cessive learning for the purpose of improvement of
ensemble’s accuracy. The full set of candidate RFs
has rich redundancy, but more redundancy to sat-
urate the improvement of ensemble performance is
actually not necessary for the training and is the
cause of waste of computational cost. Therefore,
we have to remove such unnecessary redundancy
for the efficient feature selection.

The classification power of ensemble classifier is
closely related to the diversity of ensemble [11]. As
described in Section 5.2, a simple approach that
ones thin out candidate features regularly will not
provide sufficient performance. In this paper, we
propose Adaboost.PSO algorithm that can reduce
the number of optimizations for candidates while
maintaining high classification accuracy.

As described in Section 2.1, RFs have five pa-
rameters; position (xs, ys), (xe, ye) of small rect-
angles, and configuration z ∈ {1, 2, 3, 4} of small
rectangles (Fig. 1). Considering the state vector
as xp

τ = (xs, ys, xe, ye, z)p
τ , the best RF is searched

over the state space by the manner of PSO. As a
result, the RF with high accuracy is selected ef-
ficiently. The optimization algorithm is shown in
Figs. 2 and 5.

The computational cost of Adaboost.PSO de-
pends on the two hyperparameters: the number of
particles P and the number of iterations Tit. The
total P × Tit classifiers will be optimized in each
step of the boosting.

5 Experiments

In this paper, we used MIT CBCL face database
[12] for our experiments. The database consists of
2,901 facial and 28,121 background 19 × 19 pixel
images. Approximatedly 53,000 RFs are extracted
from each image. We divided all images into train-
ing and test set; 2,000 face and 4,000 background

• Input arguments {{bc}
C
c=1, {Ii, wi, yi}

N
i=1}.

• Set cs = cg = 2, wmin = 0.2, w = wmax = 1.2.

• Set random parameters: rs, rg ∈ [0, 1].

• Set state vector: xp
τ ∈ Rd and vp

τ ∈ Rd at random.

• For τ = 1, · · · , Tit,

– For p = 1, · · · , P ,

∗ Fit a classifier b(xp
τ ; I) to the training samples using weights wi.

∗ Compute errp
τ =

∑
N

i=1
wi·δ(yi−b(xp

τ ;Ii))∑
N

i=1
wi

.

∗ Update states of particles:
xp

τ+1 = xp
τ + vp

τ ,
vp

τ+1 = wvp
τ + csrs(h

p
s − xp

τ) + cgrg(hg − xp
τ).

– Update momentum:
w ← wmax −

τ
Tit

(wmax − wmin)

• Return {hg, errhg
}

Fig. 5: Optimization function for Adaboost.PSO. hp
s shows the best position in histry of p-th particle,

and hg shows the best position in history of all particles. errhg
implies computed error of hg. State

vector xp
τ = (xs, ys, xe, ye, z) implies type of a rectangular feature. (xs, ys) and (xe, ye) are the diagonal

apex of small rectangles, and z ∈ {1, 2, 3, 4} shows the configuration of small rectangles (Fig. 1).

images are used for training, and remained images
are used for test. Three pairs of training and test
sets were generated randomly. All of the accuracies
presented in this section are the averaged values
calculated from the three pairs.

5.1 Adaboost.PSO

First, we compared Adaboost.PSO with various pa-
rameters: 10 particles and 10 iterations (written as
10-10 for convenience), 30-20, 50-20, 100-20, 200-
10, 200-20 and 200-30. The results is shown in Fig.
6.

Especially in the early stages of boosting, the pa-
rameters with small computational cost showed in-
ferior results. When the number of optimized clas-
sifiers exceeded 2,000, the improvement of the ac-
curacy became small. Therefore, we adopted PSO-
100-20 for comparison of Adaboost.PSO and Ad-
aboost.VJ (Section 5.3).

5.2 Adaboost.VJ with Regularly Reduced

Features

Next, we compared our approach and Adaboost.VJ
in same computational cost. A simple way to re-
duce the candidate features is to thin out RFs reg-
ularly. We use PSO-50-20 which evaluates 1,000
rectangular features in each iteration of boosting.

To arrange the computational cost of Adaboost.VJ,
the step length of xs, ys, xe, ye ∈ [1, 19] of RFs is
changed to 3 from 1, so the number of RFs for Ad-
aboost.VJ were reduced to 1,068 from 53,130.

Figure 7 shows the comparing result. Ad-
aboost.VJ with regularly reduced candidates
marked the bad result. It is considered that the
regular reduction of RFs will decrease the diversity
of features, and as a result the classification power
of ensemble turned worse.

5.3 Comparison Results

Finally we compared our Adaboost.PSO and Ad-
aboost.VJ with full set of RFs. As shown in Tab.
1 and Fig. 7, the accuracy of PSO-100-20 is almost
equal to Adaboost.VJ. This result shows that PSO
has reliable search ability compared with exhaustive
search.

The computational cost of our method is 3.8% of
Adaboost.VJ using full set of candidates.

6 Conclusions

In this paper, we showed that feature selection by
a variant of Adaboost (written as Adaboost.VJ)
has much redundancy, and that we can save the
computational cost of Adaboost.VJ by using Parti-

0 100 200 300 400 500 600
75

80

85

90

95

100

iteration

a
c
c
u
r
a
c
y

(
%
)

0 100 200 300 400 500 600
85

90

95

100

iteration

a
c
c
u
r
a
c
y

(
%
)

Fig. 6: Classification accuracy of PSO for test sets. Left: black/red/green/blue lines show the experi-
mental results by using 100-20/50-20/30-20/10-10 particles-iterations, respectively. PSO-100-20 (means
PSO with 100 particles and 20 iterations) marked the best result. Right: the four lines show the results
by using 100-20, 200-10, 200-20, 200-30 particles-iterations.

VJ PSO-100-20
Accuracy (Tit = 600) 98.75% 98.58%

of Optimized Classifiers 53, 130 2, 000
Computational Cost 100.0% 3.8%

Table 1: Accuracy and computational cost for the test set.

cle Swarm Optimization (PSO) method. Our Ad-
aboot.PSO can make emsembles which has compa-
rable accuracy with Adaboost.VJ, by using only
3.8% of all candidate features in each iteration of
the training.

In future works, we would like to investigate
about combinations of our algorithm and bagging
or random subspace method.

References

[1] S. Avidan, “Ensemble tracking,” In IEEE CS
Conf. Computer Vision and Pattern Recogni-
tion, Jun. 2005.

[2] A. Doucet, C. Andrieu and S. Godsill, “On
Sequential Monte Carlo Sampling Methods for
Bayesian Filtering”, Statistics and Computing,
vol. 10, no. 3, pp. 197-208, 2000.

[3] Y. Freund, R. Schapire, “A decision-theoretic
generalization of on-line learning and an appli-
cation to boosting”, Journal of Computer and
System Sciences, vol. 55, 1, pp. 119–139, 1997

[4] N. Gordon, D. Salmond and A. Smith, “Novel
approach to nonlinear/non-Gaussian Bayesian
state estimation”, In IEE Proc.-F, vil. 140, no.
2, pp.107-113, 1993.

[5] A. Hidaka, K. Nishida and T. Kurita, “Face
Tracking by Maximizing Classification Score
of Face Detector Based on Rectangle Fea-
tures,” Proc. of IEEE International Conf. on
Computer Vision Systems (ICVS2006): 48,
2006.01.

[6] J. Holland, “Adaptation in Natural and Arti-
ficial Systems”, University of Michigan Press,
1975

[7] M. Isard and A. Blake, “CONDENSATION
– conditional density propagation for visual
tracking,” Int. J. Computer Vision, Vol.29,
No.1, pp.5-28, 1998.

[8] J. Kennedy, and R. Eberhart, “Particle Swarm
Optimization,” In Proc. IEEE int’l conf. on
neural networks Vol. IV, pp. 1942-1948. IEEE
service center, Piscataway, NJ, 1995.

0 100 200 300 400 500 600
80

85

90

95

100

iteration

a
c
c
u
r
a
c
y

(
%
)

Fig. 7: Classification accuracies for the test set. Blue/red/black/green lines show the experimental results
of Adaboost.VJ (with 53,130 RFs)/PSO-100-20/PSO-50-20/Adaboost.VJ (with 1,068 RFs), respectively.

[9] T. Kurita, K. Hotta and T. Mishima, “Feature
Ordering by Cross Validataion for Face Detec-
tion,” Proc. of IAPR Workhop on Machine Vi-
sion Applications, pp. 211-214 (2000).

[10] T. Kobayashi, A. Hidaka and T. Kurita, “Se-
lection of Histograms of Oriented Gradients
Features for Pedestrian Detection,” Proc. of
14th International Conference on Neural In-
formation Processing (ICONIP 2007), WAB-2,
accepted, now publishing.

[11] L. Kuncheva, “Measures of Diversity in Clas-
sifier Ensembles and Their Relationship with
the Ensemble Accuracy”, Machine Learning,
vol. 51, 2, pp. 181–207, 2003

[12] MIT Center For Biological and Computation
Learning, “CBCL Face Database #1”,
http://www.ai.mit.edu/projects/cbcl.

[13] R. Lienhart and J. Maydt, “An Extended Set
of Haar-like Features for Rapid Object Detec-
tion”, In Proc. of IEEE Int. Con. on Image
Processing, 2002.

[14] P. Viola and M. Jones, “Robust real time ob-
ject detection,” In IEEE ICCV Workshop on
Statistical and Computational Theories of Vi-
sion, July 2001.

[15] P. Viola and M. Jones, “Rapid object detection
using a boosted cascade of simple features,”

In Proc. IEEE CS Conf. Computer Vision and
Pattern Recognition, Dec. 2001.

Hidaka, Akinori: received the B.Eng degree from
Ibaraki University and the M.Eng. degree from the
University of Tsukuba, in 2004 and 2006, respec-
tively. He is currently a student of Dr. Kurita in
University of Tsukuba. His current research inter-
ests include object recognition and tracking based
on statistical pattern recognition. He is a member
of IEICE.
Kurita, Takio: received the B.Eng. degree from
Nagoya Institute of Technology and the Dr.Eng. of
University of Tsukuba, in 1981 and 1993, respec-
tively. He joined the Electrotechnical Laboratory,
AIST, MITI, Japan in 1981. From 1990 to 1991 he
was a visiting research scientist at Institute for In-
formation Technology, NRC, Ottawa, Canada. He
is currently Deputy Director of Neuroscience Re-
search Institute, National Institute of Advanced In-
dustrial Science and Technology (AIST). His cur-
rent research interests include statistical pattern
recognition and neural networks. He is a member
of IEEE Computer Society, IEICE, IPSJ, JNNS,
the Behaviormetric Society of Japan, and Japanese
Academy of Facial Studies.

