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Abstract. In this paper, the multiple random subset-kernel learning (MRSKL)
algorithm is proposed. In MRSKL, a subset of training samples is randomly se-
lected for each kernel with randomly set parameters, and the kernels with optimal
weights are combined for classification. A linear support vector machine (SVM)
is adopted to determine the optimal kernel weights; therefore, MRSKL is based
on a hierarchical SVM. MRSKL outperforms a single SVM even when using a
small number of samples (200 to 400 out of 20,000 training samples), while the
SVM requires more than 4,000 support vectors.
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1 Introduction

Recently, multiple kernel learning (MKL) has been proposed to improve the classifica-
tion performance of single kernel classifiers [1, 2]. Although the method based on the
unweighted sum if multiple kernels is considered the simplest method, it may not be the
ideal one.Therefore, various programming methods for finding the optimal combination
weight have been proposed. Lanckreit [3] and Bach [1] proposed an efficient algorithm
based on sequential minimal optimization (SMO).
The discriminant function for MKL is described as a weighted summation of kernel

values:

f(x) =

p∑
m=1

βm〈wm, Φ(x)〉+ b (1)

where m indexes kernels. βm is the weight coefficients for the kernel; wm, the
weight coefficient for the sample; Φm(x), the mapping function for feature space m;
and p, the number of kernels. Reforming equation (1) using the duality condition, we
obtain

f(x) =

p∑
m=1

βm

n∑
i=1

αmiyi 〈Φm(x), Φm(xi)〉︸ ︷︷ ︸
Km(x,xi)

+b (2)



where n is the number of sample; αmi, the weight coefficient; and yi, be the sample
label. The kernel weights satisfy the condition βm ≥ 0 and

∑p
m=1 βi = 1. Different

kernels (such as linear, polynomial, and Gaussian kernels) or kernels with different
hyperparameters (for example, Gaussian kernels with different Gaussian widths) can be
combined; however, the same weight is assigned to a kernel over all the input samples,
as per the definition in equation (1).
Although in the original definition of MKL (equation (1)) different weights are not

assigned to a kernel for different samples, kernels can be combined over different sub-
sets of training samples, such as

f(x) =

p∑
m=1

βm

∑

i∈Ẋ

αmiyi〈Km(x,xi)〉+ b (3)

where Ẋ stands for the subset of training samples for the mth kernel, whileX stands
for the full set of training samples. The sampling policy for the subsets is not restricted
to any method, but if subsets are sampled according to the probability distribution
ηm(x), the kernel matrix is defined as follows:

Kη(ẋi, ẋj) =

p∑
m−1

〈Φm(ẋi), Φm(ẋj)〉 (4)

where Ẋ = ηX . The probability that Kη(ẋi, ẋj) is obtained becomes the product
of the probabilities of obtaining xi and xj . Therefore, a subset kernel is determined
by using the kernel matrix for all training samples and the sampling function ηm, as
follows:

Kη(ẋi, ẋj) =

p∑
m−1

〈Φm(ẋi), Φm(ẋj)〉

=

p∑
m=1

ηm(xi) 〈Φm(xi), Φm(xj)〉︸ ︷︷ ︸
Km(xi,xj)

ηm(xj), (5)

which is eventually equivalent to the definition of localized multiple kernel learning
(LKML) [5].
For good classification performance in MKL, the optimal hyperparameters for the

kernels and sample subsets (sampling function according to ηm(x)) must be determined
by using different subsets; however, this requires an exhaustive search for the desired
parameters and sampling functions. Therefore, we employ random sampling for the
training subsets and randomly set hyperparameters for the kernels. The final classifier
is determined by a linear combination of random kernels (randomly sampled subset
and randomly set hyperparameters), and the βm values are optimized to obtain the best
classification performance.
In this paper, we propose multiple random subset kernel learning (MRSKL), a mul-

tiple kernel learning algorithm for a randomly selected subset of training samples. The



proposed algorithm uses a small subset for each kernel, and the kernel values are com-
bined according to the classification result obtained for all training samples. Simulta-
neous optimization of αmi and βm in equation (3) has been a major interest in MKL
research, as reported by Bach [1] and Rakotmamonjy [4], but the coefficients are inde-
pendently optimized in the proposed algorithm.
The rest of the paper is organized as follows.
In Section 2, we describe the MRSKL algorithm. In Section 3, we present the ex-

perimental results for an artificial dataset. MRSKL showed good classification perfor-
mance which exceeds the SVM result for the test samples.

2 Multiple Random Subset-Kernel Learning Algorithm

2.1 Learning Algorithms Using a Subset of Training Samples

Several algorithms that use a subset of training samples are proposed. These algorithms
can be used to improve the generalization performance of classifiers or to reduce the
computation cost for the training. Feature vector selection (FVS) [6] has been used
to approximate the feature space F spanned by training samples by the subspace Fs

spanned by selected feature vectors (FV s). Import vector machine (IVM) is built on
the basis pf kernel logistic regression (KLR) and used to approximate kernel feature
space by a smaller number of import vectors (IVs). While FVS and IVM involve ap-
proximation of the feature space by their selected samples, RANSAC-SVM [9] involves
approximation of the classification boundary by randomly selected samples with op-
timal hyperparameters. In FVS and IVM, samples are selected sequentially, but in the
case of RANSAC-SVM, samples are randomly selected; nevertheless, in all these cases,
a single kernel function is used over all the samples.
SABI [8] sequentially selected a pair of samples at a time and carried out linear

interpolation between the pair in order to determine a classification boundary. Although
SABI does not use the kernel method, the combination of classification boundaries can
be considered as a combination of different kernels.
An exhaustive search for the optimal sample subset requires a large computation;

therefore, we employed random sampling to select subsets and combined multiple ker-
nels with different hyperparameters for the subsets for MRSKL.

2.2 Subset Sampling and Training Procedure for MRSKL

Since the subset-kernel (Km) is determined by the subset of training samples (Sm),
the subset selection strategy may affect the classification performance of each kernel.
Therefore, in MKL using subset-kernels, the following three parameters must be opti-
mized; sample weight αmi, kernel weight βm, and sample subset Sm. However, since
simultaneous optimization of three parameters is a very complicated process, we gen-
erate randomly selected subsets to determine αmis for a subset kernel with randomly
assigned hyperparameters; then, we determine βm as the optimal weight for each ker-
nel. When the kernel weights βm are maintained to be optimal, the weights for kernels
with insufficient performance becomes low. Therefore, such kernels may not affect the
overall performance.



Separating the optimization procedures for αi (sample weight) and βm (kernel
weight), we rewrite equation (2) by substituting αiyi〈Km(x,xi)〉 with fm(x), as fol-
lows:

f(x) =

p∑
m=1

βm

∑
i∈Sm

αiyi〈Km(x,xi)〉+ b

=

p∑
m=1

βmfm(x) + b (6)

In MRSKL, we first optimize αi for the subset-kernel classifier fm(x) and then
optimize βm.
The detailed MRSKL algorithm is as follows:

1. Let n be the number of training samples T ; p, the number of kernels; and l, the
number of samples in the selected subsets Sm,

2. Repeat the following steps p times
(a) Determine Q training subsets Sm by randomly selecting samples from T
(b) Randomly set hyperparameters (such as Gaussian width and regularization

term for the RBF kernel)
(c) Train themth classifier fm over the subset Sm

(d) Predict all training samples T by fm determining probability output
3. Train a linear SVM over fm: {m = 1 . . . P} to determine the optimal βm for the
final classifier

Parameter selection is performed by repeating steps 2b to step 2d, and the best
parameter set is adopted in step 3.
RBF-SVM is employed for fm(x), and MRSKL is performed on the baisi of a

hierarchical SVM.

3 Experiment

The experimental results are discussed in this section. Although a wide variety of ker-
nels are suited for use in MRSKL, we use only RBF-SVM for the subset-kernels to
investigate the effect of random sampling. Hyperparameters (G and C for LIBSVM
[10]) are randomly set to the desired range for the dataset. We employed linear-SVM to
combine subset kernels to obtain the optimal kernel weight for classification.

3.1 Experimental Data

We evaluated MRSKL by using the artificial data in this experiment. The data are gener-
ated from a mixture of ten Gaussian distributions, five of which generate class 1 samples
and others generate class –1 samples. 20,000 samples are generated for the training set,
and 20,000 samples are independently generated for test set. The black contour in the
figure 1 indicates Bayesian estimation of the class boundary; the classification ratio for



Bayesian estimation is 92.25% for the training set and 92.15% for the test set. The clas-
sification ratio for the full SVM, in which the parameters are determined by five-fold
cross-validation (c = 3 and g = 0.5), is 92.22% for the training and 91.95% for the test
set, with 4,257 support vectors.
The fitting performance of MRSKL may be affected by the subset selection policy;

therefore, we first evaluated the performance by the smallest subset size, which includes
one pair of samples from class 1 and class –1 each. All the experiments were run thrice,
and the results were averaged.

3.2 A Single-Pair Subset-Kernel

Figure 1 shows the classification boundary in MRSKL for various numbers of kernels.
From the result, a good classification boundary can be determined using as few as 100
samples (50 single-pair subset-kernels), while a larger number of samples would be
required in an SVM.

Fig. 1. MRSKL Classification Boundary with Single-Pair Kernel (C = 210 to 2−1, G = 22 to
2−5)

Figure 2 shows the classification ratio for the training samples, and figure 3 shows
the classification ratio for the test samples with the regularization parameter C for 210
to 2−1 and the Gaussian width parameter G for 22 to 2−5. The average classification
ratio for the training samples became comparable to the SVM result for about 100
kernels but the classification ratio for the test samples exceeds the SVM result for 150
kernels. finally, the classification ratio reached 92.20% for 200 kernels. The average
classification ratio for the test samples exceeded the SVM result for about 150 kernels
and finally reached 91.97% for 200 kernels. Since each subset contained only one pair
(two) of samples in this experiment, only 200 samples were required to attain a fitting
performance similar ti that in the SVM case with 4,257 support vectors. This result for



Fig. 2. MRSKL Result for Training Samples with Single-Pair Kernel (C = 210 to 2−1, G = 22

to 2−5)

Fig. 3. MRSKL Result for Test Samples with Single-Pair Kernel (C = 210 to 2−1, G = 22 to
2−5)



the training samples indicates that MRSKL can show high fitting performance with a
small number of support vectors than does an SVM. The result for the test samples
indicates that MRSKL can show higher generalization performance than does an SVM.

3.3 Result for Benchmark Set

Next, we examined a benchmark set cod-rna from the LIBSVM dataset [11]. The
cod-rna dataset has eight attributes 59,535 training samples, and 271,617 validation
samples with two-class labels. Hyperparameters for a single SVM were obtained by
performing grid search through five-fold cross-validation and randomly set for MRSKL
around the values for a single SVM. We applied the random subset-kernel with param-
eter selection for this dataset, because the dataset includes a large number of samples.
We examined 500-sample, 1000-sample, and 5000 sample subsets.
Table 1 shows the results for the cod-rna dataset. MRSKL outperformed the sin-

gle SVM with a subset size of 1,000 (1.7% of the total number of the training samples)
combining 2,000 kernels and with a subset of 5,000 (8.3% of the training samples)
combining 100 kernels.

Table 1. Classification Ratio for cod-rna dataset

Number of kernel Training Test
Single SVM (Full set) 1 95.12 96.23
MRSKL subset = 500 3000 95,03 96.16
MRSKL subset = 1000 2000 95.30 96.30
MRSKL subset = 5000 100 94.90 96.24

4 Conclusion

We proposed an MRSKL algorithm, which combines multiple kernels generated from
small subsets of training samples.
The result for the smallest subset (one pair) showed that MRSKL could approxi-

mate the classification boundary with a small number of samples. The 200-pair (400-
samples) subset-kernel outperformed the SVM with 4,257 support vectors.
The result for the benchmark dataset cod-rna showed that MRSKL with a subset

size corresponding to 2% or 5% of the training samples can outperform the single SVM
with optimal hyper-parameters.
Although inMRSKL, 200 or 1000 kernels must be combined, the number of compu-

tations for the subset-kernels would not exceed that for a single (full-set) SVM, because
an SVM requires at least O(N2) to O(N3) computations.
We employed a linear SVM to combine kernels and obtain the optimal kernel

weights. However, this final SVM took up a majority of the computational time in



MRSKL since it had to trained for as many samples as the large-attribute training sam-
ples.
In this study, we used all the outputs from subset-kernels for the training samples;

however, we can apply feature selection and sample selection for the final linear SVM,
as this may help reduce computation and improve the generalization performance si-
multaneously.
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