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Abstract: In this paper, the Ensemble Random-Subset SVM algorithm is proposed. In a random-subset SVM, multi-
ple SVMs are used, and each SVM is considered a weak classifier; a subset of training samples is randomly
selected for each weak classifier with randomly set parameters, and the SVMs with optimal weights are com-
bined for classification. A linear SVM is adopted to determine the optimal kernel weights; therefore, an
ensemble random-subset SVM is based on a hierarchical SVM model. An ensemble random-subset SVM out-
performs a single SVM even when using a small number of samples (10 or 100 samples out of 20,000 training
samples for each weak classifier); in contrast, a single SVM requires more than 4,000 support vectors.

1 INTRODUCTION

Although support vector machines (SVMs)(Vapnik,
1998)(Scḧolkopf et al., 1999)(Cristiani and Taylor,
2000) provide high accuracy and generalization per-
formance, large amount of computation time and
memory are required when they are applied to large-
scale problems. Therefore, many previous works at-
tempted to resolve these problems. For example,
Chapelle(Chapelle, 2007) examined the effect of opti-
mization of SVM algorithm, which reduces the com-
putation complexity fromO(n3) (for naive implemen-
tation) to aboutO(n2

sv) (nsv denotes the number of
support vectors), and Keerthi(Keerthi at al., 2007)
proposed to reduce the number of kernels with for-
ward stepwise selection and attained a computational
complexity ofO(nd2), whered denotes the number
of selected kernels. Lin(Lin and Lin, 2003) pro-
posed to select a random subset of the training set;
however, this approach could not reduce the num-
ber of basis functions to attain an accuracy close to
that of a full SVM solution. Demir(Demir, 2007)
applied the RANSAC(Fischler et al.,1981) algorithm
to reduce the number of training samples for the
Relevance-Vector Machine (RVM) for remote sensing
data. Nishida proposed the RANSAC-SVM(Nishida
and Kurita, 2008) to reduce the number of training

samples for improving generalization performance.
In the RANSAC-SVM, an SVM is trained using a ran-
domly selected subset of training samples, and hyper-
parameters (such as a regularization term and Gaus-
sian width) are set to fit over whole training sam-
ples. Though RANSAC-SVM effectively reduced the
computation time required for training by reducing
the number of training samples, a large number of
trials were required to determine a combination of
goodsubset samples andgoodhyperparameters (e.g.,
100,000 trials were performed in (Nishida and Kurita,
2008)). The hyperparameters for a single SVM must
be strictly determined to simultaneously achieve high
classification accuracy and good generalization per-
formance. Therefore, RANSAC-SVM had to perform
an exhaustive search forgoodparameters.

Many ensemble learning algorithms have been
proposed for improving the generalization perfor-
mance such as boosting(Freund and Schapire, 1996)
and bagging(Breiman, 1998). In ensemble learning,
the weak classifiers must maintain high generaliza-
tion performance, but high classification accuracy is
not required for each weak classifier because an accu-
rate classification boundary is determined by combin-
ing the weak (low classification accuracy) classifiers.
Therefore, we have an opportunity of avoiding an ex-
haustive search for the appropriate hyperparameters,



by providing a variety of weak classifiers. In this pa-
per, we propose theEnsemble Random-Subset SVM,
which is a natural extension of the RANSAC-SVM,
for ensemble learning.

The rest of the paper is organized as follows. In
Section 2, we describe the Ensemble Random-Subset
SVM algorithm. In Section 3, we present the ex-
perimental results for an artificial dataset. Ensem-
ble Random-Subset SVM showed good classification
performance and outperformed a single SVM for the
same test samples.

2 ENSEMBLE RANDOM-SUBSET
SVM

The algorithm of an ensemble random-subset
SVM is presented in this section. We first introduce
the previous works on learning algorithms that use
subsets of training samples, and then, we introduce
the definition of an ensemble kernel SVM, that uses
subsets of training samples.

2.1 Learning Algorithms Using Subsets
of Training Samples

Several algorithms that use a subset of training sam-
ples have been proposed previously. These algorithms
can be used to improve the generalization perfor-
mance of classifiers or to reduce the computation cost
for the training.Feature vector selection(FVS) (Bau-
dat, 2003) has been used to approximate the feature
spaceF spanned by training samples by the subspace
Fs spanned by selectedfeature vectors(FVs). The
import vector machine(IVM) is built on the basis of
kernel logistic regression and is used to approximate
the kernel feature space by a smaller number ofim-
port vectors(IVs). Whereas FVS and IVM involve
the approximation of the feature space by their se-
lected samples,RANSAC-SVM(Nishida and Kurita,
2008) involves the approximation of the classification
boundary by randomly selected samples with optimal
hyperparameters. In the cases of FVS and IVM, the
samples are selected sequentially, but in the case of
RANSAC-SVM, samples are selected randomly; nev-
ertheless, in all these cases, a single kernel function is
used over all the samples.

SABI (Oosugi and Uehara, 1998) sequentially se-
lected a pair of samples at a time and carried out linear
interpolation between the samples in the pair in or-
der to determine a classification boundary. Although
SABI does not use the kernel method, the combina-
tion of classification boundaries in SABI can be con-

sidered as a combination of different kernels.
An exhaustive search for the optimal sample sub-

set requires large amount of computation time; there-
fore, we employed random sampling to select subsets
and combined multiple kernels with different hyper-
parameters for the subsets for ensemble random-
subset SVM.

2.2 Ensemble Kernel SVM

The classification function is given as

f (x) = sign(wTφ(x)−h). (1)

where function sign(u) is a sign function, which
outputs 1 whenu> 0 and outputs -1 whenu≤ 0;
w denotes a weight vector of the input; andh denotes
a threshold. φ(x) denotes a nonlinear projection of
an input vector, such asφ(x1)

Tφ(x2) = K(x1,x2). K
is called aKernel Functionand is usually a simple
function, such as the Gaussian function

K(x1,x2) = exp

(
−||x1−x2||2

G

)
. (2)

Substituting equation (2) in equation (1), we ob-
tain the following classification function:

f (x) = sign(∑
i

αitiK(xi ,x)−h, (3)

whereαi denotes the sample coefficients.
On the basis of equation (3), the classification

function for ensemble kernel SVM is determined as
follows:

f (x) =
p

∑
m=1

βm

n

∑
i=1

αmi tiK(xi ,x)−h, (4)

wheren is the number of sample;αmi , the weight co-
efficient; andti , the sample label. The kernel weights
satisfy the conditionsβm≥ 0 and∑p

m=1 βi = 1. Differ-
ent kernels (such as linear, polynomial, and Gaussian
kernels) or kernels with different hyper-parameters
(for example, Gaussian kernels with different Gaus-
sian widths) can be combined; however, the same
weight is assigned to a kernel over all the input sam-
ples, as per the definition in equation (4).

In the ensemble SVM described in equation (4),
all the training samples are used to determine a ker-
nel matrix. However, kernels over different subsets of
training samples can be combined; for example,

f (x) =
p

∑
m=1

βm ∑
i∈Ẋ

αmi ti⟨Km(x,xi)⟩+h, (5)

where Ẋ denotes the subset of training samples for
themth kernel, andX denotes the full set of training



samples. The sampling policy for the subsets is not
restricted to any method, but if the subsets are sam-
pled according to the probability distributionηm(x),
the kernel matrix is defined as follows:

Kη(ẋi , ẋ j) =
p

∑
m=1

⟨Φm(ẋi),Φm(ẋ j)⟩, (6)

whereẊ = ηX. The probability thatKη(ẋi , ẋ j) is ob-
tained becomes the product of the probabilities of ob-
tainingxi andx j .

2.3 Subset Sampling and Training
Procedure

Because the subset kernel (Km) is determined by the
subset of training samples (Ẋm), the subset selection
strategy may affect the classification performance of
each kernel. Therefore, in a random-subset SVM, the
following three parameters must be optimized: sam-
ple weightαmi , kernel weightβm, and sample sub-
setẊm. However, since simultaneous optimization of
three parameters is a very complicated process, we
generate randomly selected subsets to determineαmi s
for a subset kernel with randomly assigned hyper-
parameters; then, we determineβm as the optimal
weight for each kernel. When the kernel weightsβm
are maintained to be optimal, the weights for kernels
with insufficient performance become low. Therefore,
such kernels may not affect the overall performance.

A RBF SVM is employed for each weak classifier
fm(x), and an ensemble random-subset SVM is im-
plemented in the form of a hierarchical SVM. There-
fore, we first optimize the sample weightsαi for each
subset-kernel SVMfm(x) and then optimize the clas-
sifier weightsβm. We employed the additive approach
for determining a new weak classifier to maintain the
generalization performance for the integrated classi-
fier. The detailed algorithm is as follows:

1. Let n be the number of training samplesX; M,
be the number of kernels;Q, be the number of
samples in the selected subsetsẊm; andR, be the
number of trials for the parameter selection

2. Repeat the following stepsM times ({m =
1. . .M})

(a) Repeat the following stepsR times ({r =
1. . .R})

i. Determine a training subseṫXr
m by randomly

selectingQ samples fromX
ii. Randomly set hyperparameters (such as the

Gaussian width and the regularization term for
the RBF kernel)

iii. Train temporally themth classifierf r
m over the

subsetẊr
m

Figure 1: Experimental Data and Classification Boundary.
Black line indicates classification boundary for Bayesian
estimation. Blue dashed line indicates classification bound-
ary for a single SVM.

iv. Predict all training samplesX using f r
m, to de-

termine the probability output
v. Train a linear SVM over{ f1 . . . fm−1, f r

m} to
determine the optimalβr

m in order to obtain
the temporal integrated classifierF r

m

(b) Select thef r
m that gives the optimalF r

m to be the
mth weak classifierfm

3. Train a linear SVM overf1 . . . fM to determine the
optimal βM in order to obtain the final classifier
FM

3 EXPERIMENTAL RESULTS

The experimental results are discussed in this sec-
tion. Although a wide variety of kernels are suited
for use in ensemble random-subset SVM, we use only
RBF-SVM for the subset SVMs to investigate the ef-
fect of random sampling. Hyperparameters (G andC
for LIBSVM (Chang and Lin, 2001)) are randomly
set to the desired range for the dataset. We employed
linear SVM to combine the subset kernels in order to
obtain the optimal kernel weight for classification.

3.1 Experimental Data

We evaluated the ensemble random-subset SVM by
using the artificial data in this experiment. The data
are generated from a mixture of ten Gaussian distribu-
tions; of these, five generate class 1 samples, and the
other five generate class –1 samples. 10,000 samples
are generated for each class as training data, and an-
other 10,000 samples are independently generated for



each class as test data. The contour in figure 1 indi-
cates the Bayesian estimation of the class boundary;
the classification ratio for the Bayesian estimation is
92.25% for the training set and 92.15% for the test set.
The classification ratio for the full SVM, in which the
parameters are determined by five-fold cross valida-
tion (c = 3 andg = 0.5), is 92.22% for the training
set and 91.95% for the test set (figure 1), with 4,257
support vectors.

The fitting performance of a random-subset SVM
may be affected by the size of the subset; therefore,
we evaluated a small subset (10-sample subset) and
a larger subset (100-sample subset). All the experi-
ments were run thrice, and the results were averaged.

3.2 10-Sample Subset SVM

We first examined the 10-sample subset SVM. Five
sets of parameters (C and G) were generated ran-
domly and evaluated for a 10-sample subset. Then,
the parameter set that yielded the best classification
ratio for all training samples was selected for the sub-
set SVM. We generated five sample subset candidates
at a time and thus evaluated 25 subset/parameter sets
in the selection procedure.

Figure 2 shows the classification ratio for the
training samples, and figure 3 shows the classifica-
tion ratio for the test samples. The classification ratio
for the training samples converged quickly, exceed-
ing the Bayesian estimation for 40 kernels and finally
reached 92.26% for 200 kernels. Although this indi-
cated slight over-learning for the training samples, the
classification ratio for the test samples indicated fairly
good classification performance (comparable with the
result of the full SVM) and reached 91.98% for 200
kernels.

The classification boundary in figure 4 also in-
dicates stable classification performance for the 10-
sample subset.

3.2.1 100-Sample Subset SVM

Figures 5 and 6 show the classification ratio for the
100-sample subset SVM with parameter selection for
the training samples and the test samples respectively.
The result showed a trend similar to that observed for
the 10-sample subset-SVM; slight over-learning was
observed for the training samples (92.26% for 200
kernels), and the classification ratio was similar to the
SVM result for the test samples (91.98% at 200 ker-
nels). As figure 7 shows, the classification boundary
obtained by the 100-sample subset SVM is very sim-
ilar to that obtained by the Bayesian estimation.

Figure 2: Result for 10-Sample Subset SVM (Training)

Figure 3: Result for 10-Sample Subset SVM (Test)

3.3 Result for Benchmark Set

Next, we examined a benchmark setcod-rna from
the LIBSVM dataset (Libsvm-Dataset). Thecod-rna
dataset has eight attributes, 59,535 training samples,
and 271,617 validation samples with two-class labels.
Hyperparameters for a single SVM were obtained by
performing a grid search through five-fold cross val-
idation, whereas the hyperparameters for the ensem-
ble random-subset SVM were set such that their val-
ues were close to the values for the single SVM. We
applied the random-subset SVM for this dataset be-
cause the dataset includes a large number of samples.
We examined 500-sample, 1000-sample, and 5000-
sample subsets.

Table 1 shows the results for thecod-rna dataset.
The ensemble random-subset SVM outperformed the
single SVM with a subset size of 1,000 (1.7% of



Figure 4: Classification Boundary for 10-Sample Subset
SVM

Figure 5: Result for 100-Sample Subset SVM (Training)

the total number of the training samples) combining
2,000 SVMs and with a subset of 5,000 (8.3% of the
training samples) combining 100 SVMs.

4 CONCLUSION

We proposed an ensemble random-subset SVM algo-
rithm, which combines multiple kernel SVMs gener-
ated from small subsets of training samples.

The 10-sample subset-SVM outperformed the sin-
gle SVM (4,257 support vectors), combining about

Figure 6: Result for 100-Sample Subset SVM (Test)

Figure 7: Classification Boundary for 100-Sample Subset
SVM

120 subset SVMs, and the 100-sample subset SVM
also outperformed the single SVM, combining about
50 subset-SVMs. The use of a larger subset (100-
sample subset) not only helped accelerate the conver-
gence of the classifier but also slightly improved the
final classification ratio.

The result for the benchmark datasetcod-rna
showed that an ensemble random-subset SVM with
a subset size of 2% or 5% of the training samples can
outperform a single SVM with optimal hyperparame-
ters.

Although 200 or 2000 SVMs must be combined
in an ensemble random-subset SVM, the number of
computations for the subset-kernels would not exceed



Table 1: Classification Ratio forcod-rna dataset

Number of kernels Training Test
Single SVM (Full set) 1 95.12 96.23
Ensemble SVM subset = 500 3000 95,03 96.16
Ensemble SVM subset = 1000 2000 95.30 96.30
Ensemble SVM subset = 5000 100 94.90 96.24

that for a single (full-set) SVM because an SVM re-
quires at leastO(N2) to O(N3) computations.

We employed a linear SVM to combine the ker-
nels and obtain the optimal kernel weights. However,
this final SVM took up a majority of the computation
time of the ensemble random-subset SVM because it
had to be trained for as many samples as the large-
attribute training samples.

In this study, we used all the outputs from subset
kernels for the training samples; however, we can ap-
ply feature selection and sample selection for the final
linear SVM, as this may help reduce the computation
time and improve the generalization performance si-
multaneously.
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B.Scḧolkopf, C.J.C.Burges, A.J.Smola,Advances in Kernel
Methods - Support Vector Learning, The MIT Press,
1999.

N.Cristianini, J.S-Taylor,An Introduction to Support Vector
Machines and other kernel-based learning methods,
Cambridge University Press, 2000.

O.Chapelle, “Training a Support Vector Machine in the Pri-
mal”, in Large-Scale Kernel Machines, pp.29-50, The
MIT Press, 2007.

S.S.Keerthi, O.Chapelle, D.DeCoste, “Building SVMs with
Reduced Classifier Complexity”, inLarge-Scale Ker-
nel Machines, pp.251-274, The MIT Press, 2007.

K.-M.Lin, and C.-J.Lin, “A Study on Reduced Support Vec-
tor Machines”, IEEE Transactions on Neural Net-
works, Vol.14, pp.1449-1459, 2003.

B. Demir, S. Erturk, “Hyperspectral Image Classification
Using Relevance Vector Machines”,IEEE Geoscience
and Remote Sensing Letters, Vol.4, No.4, pp.586-590,
2007.

M.A.Fischler, R.C.Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Im-
age Analysis and Automated Cartography”,Commu-
nications of the ACM, Vol.24, pp.381-395, 1981.

Y.Freund, R.E.Schapire, “Experiments with a New Boost-
ing Algorithm”,in Proc. of International Conf. on Ma-
chine Learning (ICML96), pp.148-156, 1996.

L.Breiman, “Bagging Predictors”, Machine Learning,
Vol.24, pp.123-140, 1996.

K.Nishida, T.Kurita, “RANSAC-SVM for Large-Scale
Datasets”, inproc. International COnference on Pat-
tern Recognition (ICPR2008), 2008. (CD-ROM).

G.Baudat, “Feature Vector Selection and Projection Using
Kernels”, in NeuroComputing, Vol.55, No.1, pp.21-
38, 2003.

J.Zhu, T.Hastie, “Kernel Logistic Regression and the Import
Vector Machine”,J.of Computational and Graphical
Statistics, Vol.14, No.1, pp.185-205, 2005.

Y.Oosugi, K.Uehara, “Constructing a Minimal Instance-
base by Storing Prototype Instances”, inJ. of Informa-
tion Processing, Vol.39, No.11, pp.2949-2959, 1998.
(in Japanese).

C.C.Chang, C.J.Lin, “LIBSVM: a library for support vector
machines”,http://www.csie.ntu.edu.tw
/˜cjlin/libsvm , 2001.

LIBSVM data set,http://www.csie.ntu.edu.tw
/˜cjlin/libsvmtools/datasets/
binary.html#cod-rna , 2006.


