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Abstract— An example-based classification algorithm to im-
prove generalization performance for detecting objects in im-
ages is presented. The classifier integrates component-based
classifiers according to the AdaBoost algorithm. A probability
estimate by a kernel-SVM is used for the outputs of base
learners, which are independently trained for local features.
The base learners are determined by selecting the optimal local
feature according to sample weights determined by the boosting
algorithm with cross-validation. Our method was applied to the
MIT CBCL pedestrian image database, and 54 sub-regions were
extracted from each image as local features. The experimental
results showed a good classification ratio for unlearned samples.

I. INTRODUCTION

According to government statistics[1], 6,871 people were
killed and 1,156,633 were injured in 933,828 traffic accidents
in 2005 in Japan. Therefore, preventing traffic accidents is
one of the most urgent issues in our society.

Drivers make decisions according to what they recognize
in their driving environment, mainly on the basis of visual
information, and failures in recognition of the environment
may cause an accident. Actually, these statistics indicate that
about 70% of these accidents were caused by failures in
recognition of the driving environment. In particular, failures
in the recognition of pedestrians may cause serious injuries
or death. Therefore, we focused on pedestrian detection in
images from an on-board camera and constructed a driver
assistance system.

Pedestrian detection is more challenging than detecting
other objects such as cars and faces because since people
have a variety of shapes and sizes, and defining a single
model that captures all of these possibilities is diffcult.
Therefore, classifiers for pedestrian detection must have high
generalization performance. Previous studies tried to resolve
this problem.

Gavrila[4] used hierarchical template matching to find
pedestrian candidates from incoming images. His method
provides in advance multiple templates that are outline edge
images of typical pedestrians, and dissimilarities (or simi-
larities) between the edge feature of incoming images were
measured by the chamfer distance. The variety of shapes
and sizes of pedestrians was accommodated with a variety
of templates, which bound system performance.

Viola et al.[5] presented a pedestrian detection system that
integrates image intensity information with motion informa-
tion. Their detection algorithm scans a detector over two
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consecutive frames of a video sequence, and the detector
was trained using AdaBoost to take advantage of both motion
and appearance information. They achieved a high detection
speed (about four frames/second) and a very low false
positive rate, while combining two different modalities of
information in one detector.

Although they showed the advantage of integrating mo-
tion information, applying their algorithm to an on-board
pedestrian detection system is still difficult because of the
difficulty of canceling out the movement of the camera only
from visual information. Therefore, we focused on pedestrian
detection from static images to achieve our example-based
object detection method.

Mohan et al.[3] applied an adaptive combination of classi-
fiers (ACC) to pedestrian detection. Their system consists of
two-stage hierarchical classifiers. The first stage is structured
with four distinct example-based classifiers, which are sepa-
rately trained to detect different components of pedestrians,
such as the head, legs, and the right and left arms. The
second stage has an example-based classifier that combines
the results for the component detectors in the first stage
to classify the pattern as either a “person” or a “non-
person.” A support vector machine (SVM)[6][7][8] is useed
for each classifier. Their results indicated that a combination
of component-based detectors performed better than a full-
body person detector. The components in their system were
determined in advance, and they were not exactly optimal to
classify the examples.

One of the most important problems in determining clas-
sifiers is how to avoid overfitting a set of training samples
while preserving classification accuracy. AdaBoost empiri-
cally has such property when each base learner is weak
enough, although the reasons are not clear yet. Some previous
studies showed that random feature selection improves the
generalization ability of ensemble classifiers [14], [16], and
some other studies indicated the effect of the margin of
each base learner. Shapire tried to represent the bounds of
generalization error using margin distribution of classifiers
in [12], and Breiman tried to give a sharper bound of
generalization error by introducing the maximal margin error
of ensemble classifiers [15]. These considerations give good
interpretations for generalization error of ensemble classifiers
in most cases. Therefore, we determined that maximizing the
margin of base learners in boosting would be effective. The
original AdaBoost algorithm determines the base learners ac-
cording to the error rate for training samples (training error).
However, it does not help maximizing the margin of base
learners. Breiman [15] and Lu [13] proposed minimizing
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cross-validation error instead of training error to determine
large margin classifiers for the base learners.

In our previous study, we examined the effect of boosting
soft-margin SVM with feature selection [9], and it showed
fairly good classification performance. However, we had to
hand-tune the soft-margin parameter to attain an adequate
weakness for base learners, and when base learners were
determined to be too weak, more boosting steps were re-
quired to attain a good classification accuracy. Therefore, a
systematic algorithm to determine the weakness (or margin)
of base learners was necessary.

In this paper, we used cross-validation error for local-
feature selection instead of training error to improve the
margin of base learners. The SVM parameters, such as
soft-margin cost and gaussian width, were also determined
through a grid search to minimize the cross-validation error.
The local-features were limited to some position variations
of the pedestrian components to avoid over-fitting by se-
lecting inappropriate local regions. Boosting determines the
classifier weights through step-wise optimization. Therefore,
they are not exactly optimal. We also examined the effect of
overall optimization of classfier weights after all the base-
learners were determined.

Our experimental results show that our algorithm achieves
a good classification ratio for unlearned samples. Our method
can be applied to any object composed of distinct identifiable
parts that are arranged in a well-defined configuration, such
as cars and faces. We describe our object detection method in
the next section, and the experimental results are presented
in the final section.

II. FEATURE SELECTION BASED ON A

CROSS-VALIDATION ESTIMATE

Our key idea is introducing cross-validation for feature
selection while boosting to improve the generalization per-
formance (margin) of base learners to preserve their classifi-
cation accuracy. We previously examined a soft-margin SVM
for base learners of boosting[9] to adopt a certain weakness.
However controlling the generalization performance of the
strong (integrated) classifier was difficult, and it required
large computation. In our method, we computed the prob-
ability estimate of a pedestrian image for 54 sub-regions
(selected as position variations for pedestrian components)
in advance, and the collection of the results was treated as a
feature vector for each sample. We then applied feature selec-
tion on the feature vectors to ensemble their results. boosting
determines the classifier weights by a step-wise optimization
procedure, the weights were not exactly optimal. Therefore,
we also examined the overall optimization of the classifier
weights using a linear SVM.

In this section, we first briefly describe an SVM that
outputs the probability estimate and the boosting algorithm,
because our method used these algorithms for determining
an ensemble classifier. We then present sample images and
their local features. At the end of this section, we describe
our method, in which base learners threshold the probability

estimates of sub-regions based on cross-validation while
selecting optimal features.

A. Support Vector Machine

When the classification function is given as

y = sign(wT x− h), (1)

where x stands for an input vector, w stands for a weight
vector of the input, and h stands for a threshold. Function
sign(u) is a sign function that outputs 1 when u > 0 and
outputs -1 when u ≤ 0. A SVM determines a separating
hyperplane with maximal margin (distance), which is the
distance between the separating hyperplane and the nearest
sample. If the hyperplane is determined, there exists a
parameters to satisfy

ti(w
T xi) ≥ 1, i = 1, . . . , N. (2)

This means that the samples are separated by two hyper-
planes H1: wT xi − h = 1 and H2: wT xi − h = −1, and
no samples exist between them. The distance between the
separating hyperplane and these hyperplanes is defined as
1/‖w‖.

A soft-margin SVM allows some training samples to
violate hyperplanes H1 and H2. When the distance from the
H1 (or H2) is defined as ξi/‖w‖ for the violating samples,
the sum

N∑
i=1

ξi

‖w‖
(3)

should be minimized. Therefore, a soft-margin SVM is de-
fined as an optimization problem of the following evaluation
function

L(w, ξ) =
1

2
‖w‖2 + C

N∑
i=1

ξi (4)

under a constraint

ξi ≥ 0, ti(w
T xi − h) ≥ 1− ξi, (i = 1, . . . , N), (5)

where ti stands for the correct class label for input vector xi,
and C stands for a cost parameter for violating hyperplane
H1 (or H2). By solving this problem with an optimal solution
α∗, the classification function can be redefined as

y = sign(w∗T x− h∗)

= sign(
∑
i∈S

α∗
i tix

T
i x− h∗). (6)

The samples are grouped with α∗
i ; sample xi is classified

correctly when α∗
i = 0, when 0 < α∗

i < C sample xi is also
classified correctly, and it locates on the hyperplane H1 (or
H2) as a support vector, if α∗

i = C sample xi becomes a
support vector but it locates between H1 and H2 with ξ �= 0.

The kernel-trick, which drastically improves the perfor-
mance of the SVM, can also be applied to a soft-margin
SVM. In the kernel-trick, the input vectors are transformed
by non-linear projection φ(x) and linearly classified in the
projected space. Because the SVM depends on the product of
two input vectors, the product of input vectors in projected
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space can be used instead of computing the non-linear
projection of the each input vector, such as

φ(x1)
T φ(x2) = K(x1, x2). (7)

K is called a kernel function, and usually a simple function,
a Gaussian

K(x1, x2) = exp

(
−||x1 − x2||

2

2σ2

)
(8)

is selected for instance. The classification function can be
redefined by replacing input vectors with kernel functions,
as follows

y = sign(w∗T φ(x)− h∗)

= sign(
∑
i∈S

α∗
i tiφ(xi)

T φ(x)− h∗)

= sign(
∑
i∈S

α∗
i tiK(xi,x)− h∗). (9)

Two parameters, σ and C, affect the classification (and
generalization) performance of the kernel-SVM. These pa-
rameters are usually determined through a grid search before
the classification task is executed.

The SVM can output binary classification results such as
equation (9), and a continuous probability estimation can also
be output when

∑
i∈S α∗

i tiK(xi, x)− h∗ is normalized be-
tween -1 to +1. Therefore we used the probability estimation
for our base learners.

B. Boosting

When an ensemble classifier that consists of M base
learners for a sample set x containing N samples, the
boosting algorithm for two-class classification is defined by
the following algorithm:

1) Initialize the observation weight Di = 1/N , i =
1, 2, . . . , N

2) For m = 1, to M :

a) Fit a classifier Gm(x) to the training samples
with respect to the observation weight, Di

b) Compute the weighted error ratio

errm =
∑

N

i−1
DiI(yi �=Gm(xi))∑

N

i=1
Di

.
c) compute a classifier weight for Gm

αm = log((1− errm)/errm).
d) Update the observation weight

Di ← Di · exp[αm · I(yi �= Gm(xi))],
i = 1, 2, . . . , N.

3) Output G(x) = sign[
∑M

m=1 αmGm(x)].

The current classifier, Gm(x), is determined according
to the observation weight at line 2a. The weighted error is
computed in line 2b. Line 2c computes a classifier weight for
each boosting step, and observation weights are updated in
line 2d for next boosting step. The final classification result
is computed in line 3, which combines the results of base
learners through a weighted vote.

The classifier weights, αm, is not exactly optimal, be-
cause boosting is based on an additive optimization model,

Fig. 1. Sample Images and Local Features

which does not modify the classifier weights of the previous
boosting steps. Therefore, we considered that optimizing
the classifier weights would improve the performance of
ensemble classifier. Since the collection of results of the
base learners can be treated as feature vectors for the sample
set, we used linear SVM to determine the optimal classifier
weights.

C. Sample Images and Local Features

We used the MIT CBCL database for the sample data,
which contained 926 pedestrian images with 128×64 pixels,
and we collected 2,000 random non-pedestrian images. We
reduced the resolution of all the samples to 64×32 before
we applied them to our system.

Figure 1 shows the original image and the locations of
sub-regions in a pedestrian image. We first extracted the
region for pedestrians from database images and reduced
their resolution to 24× 11 (figure 1a). Figure 1b shows the
regions for four features, which consist of the head, left arm,
right arm, and legs. Figure 1c shows the example of regions
for 54 features, which include six candidate positions for the
head, 15 positions for the left arm, 15 positions for the right
arm, and 18 positions for the legs.

We selected 700 pedestrian and 4900 non-pedestrian im-
ages for training and 200 pedestrian and 1400 non-pedestrian
images to test the generalization error.

D. Determining Base Learners

A support vector machine (SVM) was independently
trained for each sub-region. While we used probability esti-
mates for the SVM results, a 54 dimensional feature vector
was determined for each sample. Each element of the feature
vector contains the probability of each sub-regions as either a
pedestrian or a non-pedestrian. The performance of the SVM
is affected by two parameters such as soft-margin cost and
Gaussian width. We determined them through a grid search
tool in LIBSVM.

Our base learner is based on thresholding the results of
the SVM probability estimate for local features, such as

Gi = sign(Pi − T ), (10)
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where Gi and Pi stand for the classification output and
probability estimate for the ith training sample, and T stands
for the threshold. Threshold T is defined to minimize the
accumulation error E, such as

E =
1

N

N∑
i=1

wiI(Gi �= yi), (11)

where wi stands for the sample weight, and yi stands for the
target value (label) for each sample. Although Adaboost usu-
ally adopts E for the training sample set, we used minimized
cross-validation error, Ec, to enhance the generalization
performance of the base learner.

The training sample set was split to K parts for K-
fold cross-validation. For the kth (k = 1 . . . K) part, the
classification function was fitted for the other K−1 parts of
the training sample set.

When G−k(xi) denotes the classification results of a
sample xi, which belongs to the kth part, with the fitted
function for the sample set where the kth part of the training
samples is removed, the cross-validation error is defined as

Ec =
1

N

N∑
i=1

wiI(G−k(xi) �= yi). (12)

E. Overall Algorithm for Proposed method

The overall algorithm for the boosting with cross-
validation based feature Selection is defined as follows.

1) Let N be the number of samples, M be the
number of boosting steps, and L be the number
of sub-regions.

2) Train SVM independently for each local fea-
ture and obtain probability estimate Pl, where
l from l = 1, 2, . . . , L.

3) Initialize the observation weights Di = 1/N ,
i = 1, 2, . . . , N .

4) For m = 1, to M :

a) l from l = 1, 2, . . . , L.

i) Minimize the cross-validation error
Ecl depending on the sample weight
Di.

ii) fit the classifier f l
m for the lth feature.

iii) Determine classification result
Gm(xl

i) = sign(P l
i − T l)

b) Set errm with the smallest cross-
validation error Ecl, l = 1, 2, . . . , L.

c) Set Gm(x) ← Gl
m(xl) with l in the

above step.
d) Compute αm = log((1− errm)/errm).
e) Set Di ← Di ·exp[αm ·I(yi �= Gm(xi))],

i = 1, 2, . . . , N.

5) Output G(x) = sign[
∑M

m=1 αmGm(x)].

TABLE I

ERROR RATIO FOR HIERARCHICAL SVM CLASSIFIER

Training Error (%) Test Error (%)
Raw Data 0.43 2.44
4 Feature 0 1.25
54 Feature 0 1.88

The C (cost) and g (Gaussian width) parameters are deter-
mined in advance using a grid search tool in LIBSVM[11],
and the SVM is trained independently for each local feature
to determine the probability estimate for the local feature.

Every boosting step starts with selecting the SVM results
for a local feature (probability estimate) with the lowest
cross-validation error depending on the sample weight of the
training samples, thereby the local feature Lm is selected.
Then, the optimal threshold, Tm, is determined for the SVM
results. The classification results for the base learner are
determined by applying Tm to the selected SVM results
for the local feature, thereby the classification result, Gm,
and the classifier weight, αm, for the boosting step are
determined.

The final classification result is defined by weighted vot-
ing,

G(x) = sign[
M∑

m=1

αmGm(x)], (13)

in boosting.
We used the linear-SVM for an overall optimization of the

classifier weights. The results of the base learners Gmm =
1, . . . , M are treated as input vectors for a linear-SVM,
and the optimal classifier weights are computed through the
classification procedure of the SVM.

III. EXPERIMENTAL RESULTS

The experimental results are described in this section.
We first examined the single SVM for raw (intensity) data

and the hierarchical SVM for four feature data and 54 feature
data. Table I shows the results for pedestrian detection. The
results of four local features indicate the performance of [3]
for our sample set. The four feature data had an optimal
classification ratio better than that of the 54 feature data
implying over-fitting occurred with 54 feature data.

The reason for over-fitting in the 54 feature hierarchical
SVM is that some of the local feature regions have an
inadequate position to classify all the training samples.
Figure 2 shows examples of this situation. The region of the
left arm of four features in Figure 2a seems to be adequate
to classify all the samples because it is very typical position
for the left arm. However, the left arm position showed in
fig. 2b, seems inadequate to classify sample i because it does
not contain the left arm of sample i. However, it would be
effective to classify sample ii and iii.

In the second experiment, we examined the effect of
boosting with feature selection for the classification results
for the local features. The best (one) local feature wss
selected by a cross-validation estimate in each boosting step.
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Fig. 2. Example of Local Feature
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Fig. 3. Test Error Ratio for Boosting

The results were averaged through four trials. Figure 3 shows
the error ratio for the test samples. Although the results of
the hierarchical SVM classifier for 54 feature showed over-
fitting against four feature, boosting for 54 feature showed
better generalization performance than that of against four
feature, and it had the lowest test-error ratio of 1.12%.

Figure 4(a) shows the classification results for the train-
ing samples while boosting. The black dots indicate mis-
classification. Figure 4(b) shows weighted classification re-
sults, and figure 4(c) shows the sample weights; white dots
indicate higher sample weights. Because the SVM is one
of the most strongest classifiers even when soft-margin was
used, our base-learners classified training samples fairly well,
and most of the training samples were classified correctly
throughout the boosting stages. However, some samples were
frequently mis-classified, and these samples wrer considered
marginal (hard to classify). The emphasized area (i, ii, iii, iv)
in figure 4 shows the behavior of such samples. Mis-
classification in earlier stages of boosting causes the increase
in the sample weights in the later stages. The increased
sample weights improve the classification of the samples.

Fig. 4. Classification Error and Sample Weight during Boosting

Figure 5 is the histogram of the selected features, and table
II shows the selected frequency of pedestrian components
such as the head, legs, right arm, and left arm. Thirty-five
regions were selected out of 54 regions, during 100 boosting
steps. The most selected component was the legs, of which
the selected frequency was 46, about half of the boosting
steps. The location of the head and the legs should have
relatively small variations because the pedestrian images
were aligned in the database. However, the legs should have a
wider variation in shapes. Therefore, selecting the variations
of legs was effective for the classification.
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Fig. 5. Histogram for Selected Features

Fig. 6. Most Selected Features and Unselected Features
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Fig. 7. Test Error for Boosting and SVM Integration

TABLE II

SELECTED FREQUENCY OF PEDESTRIAN COMPONENTS

Selected Region Total Region Frequency
Head 4 6 10
Legs 15 18 46
Right Arm 9 15 20
Left Arm 7 15 24

Total 35 54 100

Figure 6 shows the examples of selected features (regions)
and unselected features. The top three selected features were
legs, and their locations were adequate to represent the
variations. However, the locations for unselected features
were inadequate to represent their components.

Boosting provides a wider variation of base learners by
sample weighting. However, the classifier weights for base
learners are not exactly optimal, since the weights are deter-
mined step by step. Therefore, we integrated the base learners
determined in the third experiment using the linear-SVM.
Figure 7 compares the test error of boosting and linear SVM
integration for the base learners. The results show that the
optimal classifier weights further improve the generalization
performance with the lowest test-error ratio of 0.81%.

IV. CONCLUSION

We presented an object detection method that was created
using on ensemble classifier with feature selection based on
a cross-validation estimate. In this paper, we focused on
pedestrian detection using a probability estimate of the kernel
SVM for base learners, and the results of the base learners
were integrated using linear-SVM and step-wise optimiza-
tion through boosting. The experimental results showed that
feature selection with ensemble classifiers improved the
generalization performance of an object detection. We also
examined the effect of optimal classifier weighting, which
further improved the generalization performance over that of
step-wise optimization by boosting.

We had to limit the number of sub-regions to 54 in this
paper, because we had limited computational time to find
the optimal parameters for base learners. We are planning
to evaluate our system with a larger number of small sub-
regions to improve the generalization ability of pedestrian
detection.
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