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Abstract 
 

In this paper, we propose a novel algorithm of 

multi-nominal logistic regression in which the locality 

regularization term is introduced. The locality is 

defined by the neighborhood information of the data 

set and is preserved in the mapped feature space. By 

using the standard benchmark datasets, it was shown 

that the proposed algorithm gave higher recognition 

rates than the linear SVM in binary classification 

problems. The recognition rates for multi-class 

classification problem were also better than the 

general multi-nominal logistic regression. 

 

1. Introduction 
 

Logistic regression (LR) is one of the well-known 

binary classification methods and is often used for 

biological signals, such as electro encephalography 

(EEG) [1]. Multi-nominal logistic regression (MLR) is 

a natural extension of LR to multi-class classification 

problems. To improve the generalization performance 

of these methods, the regularization term is often 

introduced by giving penalty to unnecessary growth of 

the parameter values [2, 3]. 

He et al. [4, 5] proposed locality preserving 

projections (LPP) and applied it for face recognition 

because the structure in the original feature space 

should be reflected in the mapped space as much as 

possible.  In LPP, the manifold structure is modeled by 

a nearest-neighbor graph which preserves the local 

structure of the original feature space. 

In classification design, the structure in the original 

feature space should be considered. In this paper, we 

introduce the locality in the regularization term of 

MLR and the regularized MLR by shrinkage. We call 

these algorithms Locality Preserving Multi-nominal 

Logistic Regression (LPMLR) and Multi-nominal 

Logistic Regression regularized by Locality Preserving 

and Shrinkage (LPSMLR). By using the standard 

benchmark datasets, it was shown that the proposed 

algorithm gave higher recognition rates than the linear 

SVM in binary classification problems. The 

recognition rates for multi-class classification problem 

were also better than the general MLR. 

 

2. Multi-nominal Logistic Regression 
 

LR is a model used for prediction of the probability 

of occurrence of an event. It makes use of several 

predictor variables that may be either numerical or 

categories. Its natural extension to multi-class 

classification problems is MLR. In this section, we 

represented MLR and the general regularized MLR. 

 

2.1. Multi-nominal Logistic Regression 
 

For K-class classification problem, 

let ( ){ }N
iii ,D

1== ux be a given training data, where 
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imii xx ×ℜ∈∈= Xx ,,1 L is the i-th input 
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k-th class label vector for the i-th input vector. The 

outputs of MLR estimate the posterior probabilities 
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where ( )mkk

k w,,wˆ L1=
Τ

w and kb are the weight vector 

and the bias term of k-th class, respectively. To 

simplify the notation, we include the bias term in the 

vectors as ( )kmkk

k
b,w,,w L1=

Τ
w and ( )11 ,x,,xˆ

imii L=x . 

In matrix notation, we use 

( ) ( )MKK
,,

111 −Τ−ΤΤ ℜ∈= wwW L and

( ) MN

N
ˆ,,ˆˆ ×ΤΤΤ ℜ∈= xxX L1 . The optimal parameters of 

MLR are obtained by minimizing the negative log-

likelihood 
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Equation (3) represents a convex optimization 

problem and it has only a single, global minimum. 

Again the optimal parameter W  can be efficiently 

found using Newton-Raphson method or an iterative 

re-weighted least squares (IRLS) procedure. Here we 

show IRLS for MLR. In each iteration step, W is 

updated by 

ZGHW
Τ−+ = 11t , (5) 

where ( ) ( )MKMKT 11 −×−ℜ∈= RGGH is the block Hessian 

matrix, and 1−
H is the inverse matrix of H .  

( ) ( ) ( )MKNKKˆ,,ˆdiag 1111 −×−− ℜ∈= XXG L is the block 

diagonal matrix of X̂ , and XX ˆˆ k = .  ( ) ( )NKNK 11 −×−ℜ∈R  

is the block matrix defined as follows: 
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( )NK 1−ℜ∈Z  is the block vector with elements 
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Equation (5) is repeated until convergence. 

 

2.2. Regularization by shrinkage 
 

In general, the regularization term is introduced to 

control the over-fitting. In shrinkage method, 

unnecessary growth of the parameters is penalized by 

introducing the regularization term WE defined as 

follows: 
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In this case, the regularized MLR is trained by 

minimizing the negative log-likelihood as  

( )WD EEminarg w
w

W λ+= . (11) 

Equation (11) represents a convex optimization 

problem, and wλ is the regularization parameter of WE . 

IRLS to calculateW are modified as follows: 

ZGHW
Τ−+ = 11t , (12) 

where ( ) ( )MKMK 11 −×−ℜ∈H is the block Hessian matrix 

defined as follows: 
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MM×ℜ∈I is the identity matrix. ( ) ( )NKNK 11 −×−ℜ∈R is 

the block matrix similar to Equation (6), (7) and (8). 
( )NK 1−ℜ∈Z is the block vector with elements 

( )uyRηZ −−= . (15) 

 

3. Locality preserving mapping 
 

Locality preserving projection (LPP) was proposed 

to model the local manifold structure [5]. LPP is a new 

linear dimensionality reduction algorithm, and it builds 

a graph incorporating neighborhood information of the 

data set. He et al. [6] showed that locality is effective 

for face recognition. 

 

3.1. Locality 
 

LPP is a linear approximation of the nonlinear 

Laplacian Eigenmap [7]. In this paper, we use the same 

pair-wise locality with LPP to design the regularization 

term of MLR. The pair-wise locality kl

ijQ is defined as 

follows:  
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where τ is the hyper parameter and it was tuned by the 

grid search. The pair-wise locality kl

ijQ is equal to zero 

when lk ≠ . In matrix notation, we define the block 

locality matrix ( ) ( )NKNK 11 −×−ℜ∈Q as follows: 
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3.2. Locality Preserving Multi-nominal 

Logistic Regression 
 

In this paper, we introduced the regularization 

term LPE by using the pair-wise localities as follows: 
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In this case, the parameters of this regularized MLR, 

namely locality preserving multi-nominal logistic 

regression (LPMLR), is trained by minimizing the 

negative log-likelihood 

( )LPLPD EEminarg λ+=
w

W , (20) 

where
LPλ is the regularization parameter of

LPE . We 

can calculate the optimalW by using IRLS using the 

update rule 

ZGHW
Τ−+ = 11t . (21) 

Where ( ) ( )MKMK 11 −×−ℜ∈H is the block Hessian matrix 

defined by 

( )GQSGRGGH −+= TT 4 LPλ . (22) 

Where ( ) ( )NKNK 11 −×−ℜ∈R is the block matrix similar to 

Equation (6), (7) and (8). ( ) ( )NKNK 11 −×−ℜ∈S is the block 

diagonal matrix obtained fromQ defined as follows: 
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( )NK 1−ℜ∈Z is the block vector with elements similar to 

Equation (15). 

 

3.3. Regularization by locality and shrinkage 
 

We also introduced the regularization term
LPE to 

the regularized MLR. In this case, the parameters of 

this regularized MLR, namely multi-nominal logistic 

regression regularized by locality preserving and 

shrinkage (LPSMLR), is trained by minimizing the 

criterion 

( )LPLPWwD
w

EEEminarg λλ ++=W , (26) 

where wλ and LPλ are the regularization parameters 

of
WE and

LPE , respectively. We can calculate the 

optimalW by using IRLS defined as the update rule 

ZGHW
Τ−+ = 11t . (27) 

Where ( ) ( )MKMK 11 −×−ℜ∈H is the block Hessian matrix 

defined by 
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where ( ) ( )NKNK 11 −×−ℜ∈R is the block matrix similar to 

Equation (6), (7) and (8). kQ and kS are the locality 

matrix similar to Equation (18) and the diagonal matrix 

similar to Equation (24), respectively. The vector 
( )NK 1−ℜ∈Z  is the block vector with elements similar 

to Equation (15). 

 

4. Experiments 
 

To confirm the effectiveness of the proposed 

algorithm, the recognition rates are compared using the 

standard benchmark datasets for binary classification 

and multi-class classification. Table 1 shows a 

summary of these datasets. They are German, Heart, 

Satimage, Segment and Ionosphere [9]. The training 

and test samples were randomly selected except for 

Satimage. For binary classification problems, we 

evaluated the recognition rates by Linear Support 

vector machine (SVM), Linear Discriminant Analysis 

(LDA), LR and the regularized LRs. On the other hand, 

LDA and the regularized MLRs are compared for 

multi-class classification problems. The hyper 

parameters of the regularized MLRs were tuned by the 

grid search. The parameter λw of LPSMLR was set to 

the best value obtained by the grid search for the 

regularized MLR, because we are investigating the 

effect of locality as the regularization. 

 

 

Table 1. Summary of the benchmark datasets 

 Class # of 

training 

# of 

test 

# of 

feature 

German 2 400 600 24 

Heart 2 140 130 13 

Ionosphere 2 180 170 34 

Satimage 6 4435 2000 36 

Segment 7 1400 910 19 

 



4.1. Logistic Regression 
 

     The recognition rates of the two-class benchmark 

datasets are shown in Table 2. For SVM we used 

libSVM [8]. The recognition rates of LDA were 

calculated by using k nearest neighbor (k-NN) classifier 

in LDA subspace. The cost parameter of SVM was 

tuned by the grid search. 

From Table 2, it is noticed that the recognition rates 

obtained by LDA and MLR without regularization are 

comparable to SVM. The proposed LPMLR and 

LPSMLR give the better recognition rates than SVM. 

Especially LPSMLR gives the best recognition rate for 

Heart, and the regularization term by locality is 

effective for Ionosphere datasets. These results suggest 

that LPMLR and LPSMLR can give better recognition 

performance than other methods. This means that the 

locality can be useful for regularization in classifier 

design. 

 

4.2. Multi-nominal Logistic Regression 
 

When solving a multi-class classification problem, 

general linear discriminative models, such as LDA and 

MLR, are able to treat multi-classes by one model. The 

recognition rates of the multi-class benchmark datasets 

are shown in Table 3. The regularized MLR gives the 

highest recognition rate for Satimage. The recognition 

rates by the proposed LPMLR and LPSMLR are better 

than MLR, and LPMLR gives the best recognition rate 

for Segment. These show that the effectiveness of 

locality is affected to the properties of datasets. Since 

the parameter λw of LPSMLR was fixed to the best 

value obtained by the grid search for the regularized 

MLR, the recognition rate by LPSMLR becomes lower 

than the regularized MLR and LPMLR for Segment. 

 

5. Conclusion and Feature works 
 

This paper proposed a novel algorithm of multi-

nominal logistic regression in which the locality 

regularization term is introduced. By using the standard 

benchmark datasets, it was shown that the proposed 

algorithm gave higher recognition rates than the other 

methods. But we find that the effectiveness of locality 

is probably affected to the properties of the datasets. As 

future works, we should investigate in which types of 

datasets the regularization by locality preserving is 

effective. 
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Table 2. Recognition rates of the two-class benchmark datasets 

 SVM LDA MLR Regularized MLR LPMLR LPSMLR 

German 0.7067 0.7267 0.7233 0.7317 0.7233 0.7317 * 

Heart 0.8385 0.8385 0.8462 0.8538 0.8538 0.8615 

Ionosphere 0.9064 0.9123 0.8947 0.9006 0.9474 0.9240 
*: λLP = 0 

Table 3. Recognition rates of the multi-class benchmark datasets 

 LDA MLR Regularized MLR LPMLR LPSMLR 

Satimage 0.8395 0.8375 0.8435 0.8385 0.8435 * 

Segment 0.9077 0.8198 0.9176 0.9220 0.8879 
*: λLP = 0 


