Asymptotic Expansions and New Numerical Algorithm of the
Algebraic Riccati Equation for Multiparameter Singularly
Perturbed Systems

Hiroaki Mukaidani*, Tetsu Shimomura** and Koichi Mizukami***

* Faculty of Information Sciences, Hiroshima City University, 3—4-1,
Ozuka—Higashi, Asaminami—ku, Hiroshima, 731-3194 Japan.
** Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama,
Higashi—Hiroshima, 739-8524 Japan.
Faculty of Engineering, Hiroshima Kokusai Gakuin University, 6-20—1,
Nakano Aki—ku, Hiroshima, 739-0321 Japan.
E-mail: mukaida@im.hiroshima-cu.ac.jp

3k ok sk

In this paper we study a continuous-time multiparameter algebraic Ric-
cati equation (MARE) with indefinite sign quadratic term. The existence of
a unique and bounded solution of the MARE is newly established. We show
that the Kleinman algorithm can be used well to solve the sign indefinite
MARE. The proof of the convergence and the existence of the unique solution
of the Kleinman algorithm is done by using the Newton—-Kantorovich theorem.
Furthermore, we present new algorithms for solving the generalized multipa-
rameter algebraic Lyapunov equation (GMALE) by means of the fixed point
algorithm.

1. INTRODUCTION

The deterministic and the stochastic multimodeling control and the fil-
tering problems have been investigated extensively by several researchers
(see e.g., [1, 2, 3, 4, 5, 6]). The multimodeling problems arise in large
scale dynamic systems. For example, these multimodel situations in prac-
tice are illustrated by the multiarea power system [1] and the passenger
car model [6]. In order to obtain the optimal solution to the multimodel-
ing problems, we must solve the multiparameter algebraic Riccati equation
(MARE), which are parameterized by two small positive same order param-
eters €1 and 9. Various reliable approaches to the theory of the ordinary
algebraic Riccati equation (ARE) have been well documented in many lit-
eratures (see e.g., [7, 8]). One of the approaches is the invariant subspace
approach which is based on the Hamiltonian matrix. However, there is



no guarantee of symmetry for the solution of the ARE when the ARE is
known to be ill-conditioned [7]. Note that it is very hard to solve directly
the singularly perturbed ARE and the MARE due to the presence of the
small parameters [5, 6, 15, 18].

A popular approach to deal with the multiparameter singularly per-
turbed systems (MSPS) is the two—time—scale design method [1]. However,
it is known from [5] that an O(|u|) (where pn = (€1, €2)) accuracy is very
often not sufficient because the reduced—order controller which is based on
the two—time—scale design method might not produce satisfactory results
for the desired performance. More recently, the exact slow—fast decom-
position method for solving the MARE has been proposed in [5, 6]. The
solutions are obtained by solving the Sylvester equations of lower dimen-
sions which are non—symmetric equations by means of the Newton method
or the fixed point algorithm. However, the results of [5, 6] need the as-
sumption that the sign of the quadratic term of the MARE corresponding
to the optimal control and the filtering problem is positive semidefinite and
that Hamiltonian matrices for the fast subsystems have no eigenvalues in
common (Assumption 5 of [6]).

In this paper, we investigate the asymptotic expansions for the MARE
with indefinite sign quadratic term and propose the iterative technique for
solving such MARE. Firstly, we relax the condition for the existence of the
solution compared with [3] in the sense that some of the assumptions for the
MARE are weakened. It is worth pointing out that existence of a unique
and bounded solution of the MARE with indefinite sign quadratic term has
not been established so far in the previous literature [3]. Furthermore, note
that the MSPS with either standard or nonstandard singular perturbations
[4] is considered. Secondly, we propose a new iterative algorithm for solv-
ing the sign indefinite MARE. The method studied here is based on the
Kleinman algorithm [9]. Therefore, the algorithm achieves the quadratic
convergence property. Note that the difference between the results in [9]
and the present paper is that the successive approximation technique is
used to prove the convergence in [9], while the approach adopted here is
composed of Newton—Kantorovich theorem [10, 11]. Thus, we do not as-
sume here that the sign of the quadratic term for the MARE is positive
semidefinite. The Newton—Kantorovich theorem plays an also important
role in the proof of the existence of the unique solution. The main objective
in this paper is to provide a new algorithm for solving the generalized multi-
parameter algebraic Lyapunov equation (GMALE). The method presented
in this paper is based on the fixed point algorithm [14]. Consequently,
our proposed algorithm is extremely useful since we have only to solve an
algebraic Lyapunov equation (ALE) of lower dimension. In particular, it
is important note that so far the algorithm for solving the GMALE has
not been established. Finally, a numerical example is given to complement
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the theoretical results. The resulting algorithms are implemented for the
multiparameter H., optimal control problem.

2. PROBLEM FORMULATION AND PRIMARY RESULT
We consider the following MARE

AL Pe + PeAg — PeSePe +Q =0, (1)

where
T T
P()() ElPlO EQPQO NN
T x
Pe = | 1Py e1 P11 \/5152P21 R R
eaPyy \fe1e2Po1  €2Fan
T T T
Poo = Pygs P11 = Py, Paz = Py,
Ago Ao1 Aoz

Ag = | eft Ay e A 0 e RN,
N U R B
Soo €7'S01 €5 Sn2
Se=8F=1e"Sh %51 0 e RV,
&' 0 &Sy
Soo = Sdo, S11 =511, Sa =S,
Qoo Qo1 Qo2
Q=Q"=|Qh Qu 0 RV,
QL 0 Qo

T T T
QOO = QOO’ Qll = Qll) Q22 = QQQ,
Poo, Aoo, Soo, Qoo € R™*™, Piy, Ay, Sii, Qu € R™X™,
Pyy, Aga, Saz, Q22 € R™77™2 g1 >0, €9 >0, N =ng+n1 +na.

If the sign of the MARE (1) is positive semidefinite, then the equation (1)
is known as a regulator ARE, appearing in the multimodeling [3]. However,
we do not assume in this paper that the sign of the MARE (1) is positive
semidefinite. That is, no assumption is made on the definiteness of Sg.
In addition, we do not assume here that A;; and Ass are nonsingular
compared with [1, 3].

In order to avoid the ill-conditioned due to the large parameter Ej_l which
is included in the MARE (1), we introduce the following useful lemma.

LEMMA 2.1. The MARE (1) is equivalent to the following generalized
multiparameter algebraic Riccati equation (GMARE) (2a)

ATP+PTA—PTSP+Q =0, (2a)
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Pg = ®cP = PT®g, (2b)
where
In, O 0 Aoo Ao1 Aoz
ds=| 0 &l, 0 , A= Ao A 0 |,

0 0 ealy, Ao 0 Ax

T T

Soo So1 Sos Poo 1Py 512P20

S=|SL S, 0 |, P=|Po Pu —=P}

NG

T
So2 0 S Py VaPs P

Proof. Firstly, by direct calculation we verify that P = ®¢P. Secondly,
it is easy to verify that A = ®gAg, S = g ScP¢e. Hence,

ATP = AL®c®, ' Pe = AL Ps.

By using the similar calculation, we can immediately rewrite (1) as (2a). |

Before investing the structural properties of the GMARE (2a), let us
define a parameter «

0<k1§0{5§—1§k2<00. (3)
2

It is assumed that the limit of « exists as €1 and 5 tend to zero, that is

The GMARE (2a) can be partitioned into

f1 = Ao Poo + PooAoo + AlgPro + PlyAio + Ay Pao + PayAsg
—PooSoo Poo — PS3, Poo — PooSo1 Pio
—P3S02Poo — PooSo2Pao — PyS11P1o — PygSa2Pag + Qoo = 0, (4a)
f2 = PooAo1 + PlyAir +e1 AL Pl + AlgPi1 + VaAL Po
—&1(PooSoo Pl + PioSe1 Pro + Pa0S52 Pio)
—PyoSo1 P11 — PiyS11Pia
—/(PooSo2 Po1 + P3yS22Po1) + Qo1 = 0, (4b)
1

f3 = Poo Aoz + Py Aoy + e AL P + AL Pag + ﬁAlTOPQTl
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—&2(Po0S00Pag + PioSo1 Pao + PaoSga Pao)
—PooSo2 Pag — PJyS2a Pas

1
_ﬁ(POOS(nPle + PE)Sllpgjl) + QOQ =0,

f1= AT, P11 + Pi1Anx +e1 (A5 Py + PioAor)
—e1(e1ProS00 P + Pr1551 Pio + VP51 05 Pr)
—e1(P10So1 P14+ vVaP19So2 Po1)
—P11S11 P11 — aPy; S5 Py + Q11 = 0,

f5 = e1P1o Ao + £2 A5, Py — e12P1oSo0 Pag

(4d)

1
—e2(P11S], Pay + /aP3, Sto PL) — €1(P10So2 Paz + —aP10501P2T1)

\/_
1
+VaPy) (Ayy — S22 Pa) + —a(An — S1Pu)’ Py =0,

NG

fo = A3y Pag + Pag Aoy + e9( A, Py + PagAgz)

1
— P54, P

—e2(e2P20S00 Pay + Pa2Spy Pag + NG

1
N
1
—P22599 Pag — EP21311P2T1 + Q2 =0.

—&9(PaoSo2 P22 + P20So1 Ps,)

(4e)

(4f)

By limiting solutions of the GMARE (2a) or (4) as e; — +0 and g2 — 40,

then we obtain the following equations

A Poo + PooAgo + Ay Pro + PlyArg + AlyPao + PJ Asg — PooSoo Poo

— PS5, Poo — PooSo1Pio — P3ySaaPoo — PooSoz2Pao
—PlToSnPlo - PQTOSmPQO + Qoo =0,
PooAor + PlyAy + A Pry + &AL, Py — PooSor Pry
— P81 Piy — Va(PooSoa Par + PaySaz Po1) + Qo1 = 0,
1
NG

_ _ 1 - _ _ _
— P SooPyy — E(Poosmpgﬁ + P{S11P3;) + Qo2 = 0,

Poo Aoz + PayAgo 4+ Al Py + ATo P — PooSoa Pas

A1T11511 + P11 A1 — P11 S Py — 07152T15'221521 +Qu =0,

_ _ 1 _ _
VaP)(Agy — SaoPas) + ﬁ(z‘ln — S Py) P =0,

AQTQPQQ + PyyAgg — P2 S22 Pas — 1521511152T1 + Q2 =0,

Qi

(5a)

(5b)
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where Pyo, Pio, P, P11, Po1 and P are the O-order solutions of the
GMARE (2a).

We shall make the following basic condition without loss of generality
[15].
(Hl) The AREs A?jp]j + ijAjj - ijSijjj + ij =0, j = 1,2 have the
positive semidefinite stabilizing solutions. ~

If condition (H1) holds, there exist the matrices Pj;, j = 1, 2 such that
the matrices A;; — Sjjpjj, j =1, 2 are stable. Therefore, we chose the
solutions Pj;, j = 1, 2 as ij, 7 =1, 2. Then, the unique solution of
(5e) is given by Py; = 0 because the matrices A;; —S;;Pj; = Aj; — S;; Pjj
are stable. As a consequence, the parameter & does not appear in (5)
automatically, that is, it does not affect the equation (5) in the limit when
g1 and &9 tend to zero. Thus the AREs (5d) and (5f) will produce the
unique positive semidefinite stabilizing solution under the conditions (H1).

We now obtain the following O—order equations

AL Poo + PooAs — PooSs Poo + Qs = 0, (6a)
Ply = PyoNoj — Mo, j =1, 2, (6b)
AJ; Py + PjjAj; — PjjSiiPii+ Qi =0, j=1, 2, (6c)

where

Ay = Ago + No1 Aro + NooAso + So1 Mgy + Soa Mgy
+No1 S11 Mgy + No2Saa Mg,

Sy = So0 + No1Sg; + So1 NGy + NoaSgs + SoaNgs
+No1S11Ng; + No2Sa22 N,

Qs = Qoo — Mo1Arg — AfgMg, — Moz Ago — Ajo Mg,
—Mo1S11 Mgy — Mo2Saa Mgy,

Noj = _DOij_jl; My; = QOij_jl; Qoj = AJoPjj + Qo

Doo = Ago — SooPoo — So1Pro — So2 P20, Doj = Agj — So; Pjj,

Djo = Ajo — So;Poo — SjiPjo, Djj = Ajj — SjiPij, j=1, 2.

The matrices A, Ss and Qs do not depend on Pj;, j = 1, 2 because
their matrices can be computed by using Tp, p, ¢ = 0, 1, 2 which is
independent of P;;, j =1, 2 [5, 6], that is,

_ _ Ay, =S
Ty = Too — Ton Th7' Tho — Too Ty Tho = [ —CS —A% ] ;
S

S
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Ay — Sy,
Too = Ty = | 5% ;
0 [ —Qoo —Ajp ] Y [ —Qo; —Af ] ’

) _qr P &
Tj():[_AJO _SOV],T]']'Z[ A”ﬂ S]'jl];jzl, 2.

. . . A =S .
Note that the Hamiltonian matrices Tj; := [ 7 2 ] , j=1, 2 are

nonsingular under the condition (H1) because of

I,. O D;; —=S;; I,. O
T.. = | in 3J 3J nj
=B U ][ 0]

-1 1 -7
o T = [I"j 0 HDjj ~Dji 553 P3;5 ] [ In, 0 ]
7 Pjj In; 0 _Djj =P In,

The required solution of the ARE (6a) exists under the following condition
[15].
(H2) The ARE (6a) has the positive semidefinite stabilizing solutions.

It should be remarked that the solution Pg of (1) is a function of the
multiparameters €; and e2. But, the solutions Pyy and Pjj, j = 1, 2 of
(6a) and (6¢) are independent of the multiparameters 1 and 3, respec-
tively. The following theorem will establish the relation between Pg and
the reduced—order solutions (6) (see [3]).

THEOREM 2.1. Under the conditions (H1) and (H2), there exist small
e} and g5 such that for all e; € (0, €7) and g2 € (0, &5), the MARE (1)
admits a symmetric positive semidefinite stabilizing solution Pgs which can
be written as

Poo + Foo  €1(Pro+ Fio)" e2(Pao + Fao)”
Pe = | e1(Pro+ Fi0) e1(Pi1+ Fi1) VE1E2F 3, ; (7)
e2(Pao + F20)  (E182Fm £2(Paz + Fo2)

where

Fog = O(|plD), | Fpql = cpg < 00, pg =00, 10, 20, 11, 21, 22.

In order to prove Theorem 2.1, we need the following lemma [1].
LEMMA 2.2. Consider the system
io(t) = Agowo(t) + Aoz (t) + Aoawa(t), o(to) = 0,

Eljﬁl(t) = Aloxo(t) + Anxl(t) + 53A12$2(t), J?l(to
e2ia(t) = Agowo(t) + eahoixi(t) + Agoxa(t), xa(to
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where Tg € R™, 1 € R™ and x4 € R™ are the state vector. €3 is a small
weak coupling parameter, €1 and €2 are small positive singular perturbation

parameters of the same order of magnitude with (3). If Aj_jl, ji=1, 2

€.Ti5t, and ZfAQ = AOO —AOlAl_llAlo—AQQA2_21A20, Ajj; ] = 1, 2 are stable
matrices, then there exist small €1 and éo such that for alley € (0, &1) and
es € (0, &32), the system is asymptotically stable.

Now, let us prove Theorem 2.1.

Proof.  Since the MARE (1) is equivalent to the GMARE (2a) from
Lemma 2.1, we apply the implicit function theorem [3] to (2a). To do so, it
is enough to show that the corresponding Jacobian is nonsingular at e; = 0
and g2 = 0. It can be shown, after some algebra, that the Jacobian of (2a)
in the limit is given by

8V€C(f1; f2; f3a f4a f5a fﬁ)
8vec(Poo, Pio, P, P11, P, P22)T (1, P)=(mo, Po)

Jio Juiu 0 Jiz Jiu 0O
_ | J20 0 Jaoa O Jog Jos ®)
0O 0 0 Jsz 0 O ’
0O 0 0 0 Ju O
O 0 0 0 0 Jss

J = VF =

where vec denotes an ordered stack of the columns of its matrix [12] and

p=(c1, €2), po = (0, 0), P = (FPoo, Pro, Pa0, P11, Po1, Pa2),
Po = (Poo, Pro, Pao, P11, 0, Psa),

Joo = (Ing @ D¢o)Ungno + Doy @ Iy,

Joj = (Ing ® Do) Ungn, + Djg & I,

Jio=D4; @ Ing, Jij =D @1, j=1, 2

Jiz = I, ® D1g, Jia = Va(In, ® Dao)Upyn,,

%Ing ® D1o, Jas5 = In, ® Doy,

7

J33 = (Inl ® D{l)Unlnl + Dfl ® Inl’

1
Ju=vaDL oI, + —07]"2 ® DT,

7

55 = (ITLQ ® DgQ)UTLQnQ + DgQ ® Inw

Jog =
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where ® denotes Kronecker products and Uy, ,;, 7 =0, 1, 2 is the permu-
tation matrix in Kronecker matrix sense [12].
The Jacobian (8) can be expressed as

Joo Jo1 Jo2
detJ = detJ33 -detJ44 -det.]55 - det .]10 .]11 0
Jao 0 Jaa

detJss - detJyy - detJss - detJ1q - detJas
-det(Joo — Jo1J17" 10 — Jo2 3" Jo0)
detJq1 - detJos - detJss - detJyy - detJss
det[L,y ® D§ Ungno + Df ® I, ), (9)

where DQ = DOO — D01D1_11D10 — D02D2_21D20. ()bViOU.Sly7 Jjj, ] = 1, ey 5
are nonsingular because the matrices D;; = A;;—S;;P;j;, j = 1, 2 are non-
singular under the condition (H1). After some straightforward algebra but
tedious, we see that the As — SSPQO = DOO — D01D1_11D10 — D02D2_21D20 =
Dy. Therefore, the matrix Dy is nonsingular if the condition (H2) holds.
Thus, detJ # 0, i.e., J is nonsingular at (u, P) = (uo, Po). The con-
clusion of the first part of Theorem 2.1 is obtained directly by using the
implicit function theorem. The second part of the proof of Theorem 2.1 is
performed by direct calculation. By using (7), we obtain

Doo Do1 Do
O (A-SP)=;" [ | Dip Duu 0 | +O(lul)
D20 0 D22

We know from Lemma 2.2 that for sufficiently small |g| the matrix
q)gl(A—SP) will be stable. On the other hand, since Pyy > 0, P;; > 0 and
Ps5 > 0, Pg is positive semidefinite as long as e; > 0 and €5 > 0 by using
the Schur complement [13]. Therefore, the proof on Theorem 2.1 ends. |

3. ITERATIVE ALGORITHM

We now develop an algorithm which converges quadratically to the re-
quired solution of the MARE (1). So far, the exact decomposition method
for solving the MARE with positive semidefinite sign quadratic term has
been proposed in [5, 6]. However, the result of [5, 6] needs the assumption
that Hamiltonian matrices for the fast subsystems have no eigenvalues in
common.

In this paper we develop an elegant and simple algorithm which converges
globally to the positive semidefinite solution of the MARE (1). Taking into
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account the fact that the MARE (1) is equivalent to the GMARE (2a) from
Lemma 2.1, the algorithm is given in term of the GMALE [16], which have
to be solved iteratively. We present the iterative algorithm based on the
Kleinman algorithm [9]. Here we note that the Kleinman algorithm is based
on the Newton type algorithm. In general, the stabilizable-detectable con-
ditions will guarantee the convergence of the Kleinman algorithm for the
standard linear—quadratic regulator type GMARE to the required solu-
tions. However, it is difficult to apply the Kleinman algorithm to the
equation (2a) presented in this paper because the matrix S is in general
indefinite.

In this paper, we show that by using the Newton—Kantorovich theorem,
the Kleinman algorithm guarantees the quadratic convergence under the
appropriate initial conditions.

We propose the following algorithm for solving the GMARE (2a)

(A— SPNTplitD) 4 p+D)T(4 _ gp@) 4 pOTSPO L 9 =0(10a)

Péi) _ q;.gp(i) — P(i)Tq)g, (10b)
i=0, 1, 2, 3, ---, with the initial condition obtained from
1?00 0 0
PO = Pyo P 0 |, (11)
Pyy 0 Pa
where

Py ePly" eaPyg)”

, : : 1 -

po=| Py p e
Py Vary Py

P — R P~ P, Pl — P

and P,q, pg = 00, 10, 20, 11, 22 are defined by (6).

According to the Newton—Kantorovich theorem [10, 11], it is well known
that if the initial condition is very close to the exact solution of the consid-
ered equation, the Newton method has the quadratic convergence property.
Therefore, we can choose the initial conditions as (11).

Although the sign of the matrix S is in general indefinite, we can prove
the quadratic convergence for the resulting algorithm (10) by using the
Newton—-Kantorovich theorem because the initial condition is very close to
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the exact solution of the GMARE (2a) for sufficiently small ||u|. This idea
is derived from the following fact:

T T
P()() ElPlO EQPQO

: P 0 0
) — T D D
|[P—=P™ = || Po Pu \/apm —{Pwo Pun O
Pyy aPyy P Po 0 Py
= O(|ul)-

The algorithm (10) has the feature given in the following lemma.

LEMMA 3.1. Under the conditions (H1) and (H2), there exists an &1 and
&y such that for all 0 < g1 < & < €] and 0 < g9 < & < €5 respectively,
the iterative algorithm (10) converges to the exact solution of P* with the
rate of quadratic convergence. Then, Péz) = ®cP) = POTP, is posi-
tive semidefinite. Moreover, there exists unique solution of the GMARE
(2a) with the indefinite sign quadratic term in neighborhood of the required
solution P*. That is, the following conditions are satisfied.

, O(|ul*) o
PO _ pr < 2L L 2 -0.1. 2 ... 12
I | < 55y O(|ul*), i=0, 1, 2, ---,  (12a)
P =@ PO = POT®, >0, i=1,2, 3, -, (12b)
1
| PO — P < —[1 -1 —26], (12¢)
By
where
G(P)=ATP+ PTA-PTSP+Q, (13)

v=2|8] < o0, B=|[VG(P) |, n=3-1G(P)|, 6 =B,
Py e1Pig E% P
P* —_ P* P* _P*T
10 11 \/a 21
PQ*O \/apgl P2*2

_ OvecG(P)

VG(P) W,

Proof. This proof is equivalent to the proof of existence of the unique
solution for the GMARE (2a) [16, 17, 18]. Thus, the proof follows directly
by applying the Newton—Kantorovich theorem [10, 11] for the GMARE
(2a). We now verify that function G(P) is differentiable on a convex set D.
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Using the fact that
VG(P)=(A-SP)T @Iy + Iy ® (A - SP)T, (14)
we have

IVG(P1) = VG(R)| <[P — P, (15)

where v = 2||S|. Moreover, using the fact that

T T
Doy Do1 Do Doo Do1 Do2

VGP)=| Dy Diy 0 | @Iv+Iv®| Do Dn 0 | ,(16)
D20 0 D22 DQO 0 D22

it follows that VG(P®) is nonsingular because Dy and Dj;, j = 1, 2 are
stable under the conditions (H1) and (H2). Therefore, there exists 3 such
that |[VG(P®)]~'| = 3. On the other hand, since G(P®) < O(|ul),
there exists 7 such that [[VG(P©O)]~Y| - |G(PO)| =5 = O(|u|). Thus,
there exists 6 such that § = 3yn < 27! because of n = O(|u|). Using the
Newton—Kantorovich theorem, the strict error estimate is given by (12a).
Now, let us define

1
BEEE II[VQ(P‘O))]‘lll[

= —[1—v1-206) 1-vV1—20. (17)

1

B
Clearly, S={ P : |P— P < t* } is in the convex set D. In the sequel,
since |P* — PO = O(|u|) holds for small ; and &2, we show that P* is

the unique solution in S.
On the other hand, using (12a), we have

@ pgo+0(||ﬂ||) 51(15;04‘0(”#”))T e2(Pao + O(J )™
P = | ei(Pro+O(|u)) er(Pu+0O(ul)  VEreO(ul)”
e2(Poo+ O(|ul))  vEre0(ul)  e2(Paz + O([1])

Since Pyy > 0, Pi; > 0 and Py > 0, Péi) is positive semidefinite
by using the Schur complement [13]. Therefore, the proof is completed. |

4. MAIN RESULTS

Now, we consider a method for solving the pair of GMALE (10a). So far,
there is little argument as to the numerical method for solving the GMALE.
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Therefore, in order to obtain the solution of the pair of GMALE (10a), we
present new algorithm by applying the fixed point algorithm [5, 6, 14]. Let
us consider the following GMALE in general form.

ATY +YTA4+U =0, (18)

where Y is the solution of the GMALE (18) and A and U are known
matrices defined by
Yoo e1Yip e2Ya
1
Y=|Yo Yu EYQTl c RV,
Yao VaYar  Ya
Yoo = YE)Z(;’ Y = YVE) Yoo = Yéga
Moo Ao1 Aoz

A= A10 A1 EAqs ERNXN,
AQO gAQl A22

Uw Uon Up
U=U"=|U} Uy EUp | e RV
Usy €Uy Uz

UOO = Ug;)’ Ull = Uﬂa U22 = UQZ;a

Yoo, Moo, Ugo € R™*™ Yi1, Ayq, Uy € RMX™
Yoo, Moo, Uy € R™X™2,

£1 >0, 2 >0, |u| =& = e1e2, N =ng+ ny + na.

)

The required solution of the GMALE (18) exists under the standard
condition [1].
(H3) The matrices A;, j = 1, 2 are nonsingular and Ag = AOO—AmAl_llAlO—
A02A2_21A20, Ajj; ] = 1, 2 are stable.

The GMALE (18) can be partitioned into

AdoYoo + YooAoo + AfYio + YigA1o

+A30 Y20 + Y3020 + Ugo = 0, (19a)
YooAor + YioA11 + EYaoAa1 +e1AfYip + AfgYi
+VaA ] Yo + Upt =0, (19b)

YooAoz + YagAos + EYigAra + 2 Ao Yoy + AJg Yoo
1
+—aA1T0Y§T1 + Up2 =0, (19¢)

NG

AL Y1+ YA 4 e (AL YD 4 YipAor)
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+\/58(A51Y'21 + YéjiAgl) + U1 =0, (19(1)
1
e1Y10A02 + 22Ag, Yoy + VaYy  Aso + ﬁ/\ﬂYz{
+E(Y11A12 + A2 Ya2) + EU, = 0, (19e)

AL Yoo + Yoo oo + e2(AL Yo + YagAoz)

1
+ﬁg(A1T2YQT1 + Ya1M12) + Uz = 0. (19f)

For the equations (19) above, in the limit, as e — 40 and 2 — +0, we
obtain the following equations

AL Yoo + Yoo oo + ATy Yio + Yh A0

+A30Y20 + Y0 Ao 4+ Ugo =0, (20a)
YooAor + YigAi1 + AlgYi1 + VaA3 Yar + Upt = 0, (20b)
YooAoz + Yon Aog + AL Voo + %A%Yﬁ + Uy =0, (20c)
AT Y1y + Y11 A + Uy =0, (20d)
Va¥fide + <ALV =0, (200)
A2, Yoy + Yoo Aoy 4 Uzy = 0. (20f)

Note that the unique solution of (20e) is given by Ya; = 0 since the
matrices Ajj, j = 1, 2 are nonsingular under the condition (H3). Thus
the parameter & does not appear in (20). Consequently, we obtain the
following O-order equations

AG Yoo + YooAo + Uoo — Uot Ay Ao — AT Ay U,y
_U02A2_21A20 - A2ToA2_2TU(¥;
+AT AT U AT Ao + AJ AL Uso Ay Aoy =0, (21a)
Yo = —(Yooho; + AJgYj; + Uoj)AS, =1, 2, (21Db)
ALY+ YA +Uj =0, j=1, 2. (21c)
Now, let us introduce

Yoo + EZ00 €1(Yio + EZ10)T e2(Yao + EZ20)T

_ _ _ _ s _
Y = | Yio+&E10 Y1 +E&2n ﬁ:& . (22)
Ya0 + EZ20 Va&EEs Yoo + ESa2

The approximation of the error terms =,,, pg = 00, 10, 20, 11, 21, 22
will result in approximation of the required matrix Y,,. That is why we are
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interested in finding equations of the error terms and a convenient algorithm
to find their solutions. Substituting (22) into (19) and subtracting (20) from
(19), we arrive at the error equations.

A20Z00 + ZooMoo + AlyZ10 + E1gA1o + A2yE20 + Z5gA20 = 0, (23a)
_ —_ _ _ > 3 >
Zooo1 + E1pA11 + AL)E11 + VaA Ee = — Yoo Aoy — éAgoleo
—e1Ago=1p — €301, (23b)

- — - 1 - - €2 5

EooMoz2 + :2ToA22 + AQTOZQQ + ﬁA{O:gl = _Y1€A12 - gAgOYQTO
—eo AL, a0 — EE A1z, (23c)

_ _ 3 > > _ _
AT\ 11 + By = —gl(A&Yl% + YioAo1) — e1 (AL, ET) + E10h01)
—EVa(AL E0 + 21 Ag), (23d)
_ _ £ > > _ _
A2yZ00 + Eoglgg = —f(A&YQE + YaoAo2) — e2(ALEL, + E20M02)
£ — —
——=(ALES + E21h12), (23e)

NG

_ 1 _ €1 = € — — —
VaZii Ao + ﬁAlTldng = —?15/10/\02 - fA&YQTO — Yi1A12 — AL Yoo
Ui — 121002 — EgAglEgO — E(A51522 + EllA12)- (23f)

These equations (23) have very nice form since the unknown quantities
Epq in right hand side are multiplied by small parameters 1, e and &.
This fact suggests that a fixed point algorithm can be efficient for their
solutions. Hence, we propose the following algorithm (24).

ATEST BTN +G5() =0, j=1, 2 (24a)
) 1 )
=(@+1)T —G4+1)T .

A= Ay + ﬁAlle(;l T 4 Gor(i) =0, (24b)
ATES™ + 2067 Ao + Gooi) = 0, (24c¢)
=0T = — B Aoy + Gy (D1AT 5 =1, 2 (24)
i = 0’ 1’ 2’ DY

where
N _ _ G G
Gi1(i) = gl(A&YlTo + YioAor) + e (AL EDT + 20 Aor)

+eVa(ALES +EQT M),
€2

&

=T

Ga2(i) = = (A, Y36 + YaoAoo) + 22(A%E50 " + 250 Aoa)
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THEOREM 4.1.

TEX DRAFT

E (DT —(i
+ﬁ(A1T2:(211) +E5)Aw),

€1 - € _ _ _
?1Y10A02 + ?QA(%YQTO +Y11A 1 4+ AL Yoy + Ups

+e12{0A0s + £2A5, 55" + E(ARER +E() A),
Go1 (i) = ALEST + VaAL =5 + VA
£ _ . .
+g1Ac?0Y1To +e1ALEN T + €25 A,

. G 1 G -
Goa(i) = AL =S + —aAlTo:gle)T + YioA12

NG

ALY + e AT =D + €27 Ass,

Go1(7) =

&2
£
Goo(i) = —[A{oAT Gor (i)™ + Gor (i) Aty Ao
+A50A5 Go2(4)" + Goz (i) Agy Aso),
ALES + 20 A0 + Eg—l(/\&ﬁ% +Y10A01) =0,
&2
£

— 1 = Sy £ %
oz:(Q?)TAgz + ﬁAi:(ﬁ)T + §1Y10A02 + ?QA&YQTO

+Y11A12 + A3, Yoo + Urp = 0,
ATER + 260 A0 — AT AT OF, — ©01A1 Asg
—A5oA5 OFs — B2y Ao =0,
=07 = — (20 Aot + O01) AT,

5(2%)T = —(Eé%)Am +O02) A%,

+

ALES) + B9 Aoy + 2 (AL Y55 + YaoAoz) = 0,

_ _ > € >
Oo1 = AlToig(P + \/aAgO:‘(Q(P + YQEAﬂ + glAgoylga

—(0 1 —(0OT | < €2 -
B2 = A2To:g2) + ﬁATOE‘(Ql) + Y1€A12 + ?A(?OYQE-

solution of =,, with the rate of convergence of O(|ul|"*1), that is

1Zpq — E9 = O(p) ™),
i=0,1,2, ---, pg=00, 10, 20, 11, 21, 22.

(25a)

(25b)

(25d)
(25e)
(25f)

The following theorem indicates the convergence of the algorithm (24).

The fized point algorithm (24) converges to the exact

(26)
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Proof. The proof is done by using mathematical induction. When ¢ = 0
for the equations (24), the first order approximations =,, corresponding
to the small parameters €1, g2 and & satisfy the equations (25). It follows
from these equations that

1Z0q — 0 = O(|ul), pa =00, 10, 20, 11, 21, 22.

When ¢ = k (k > 1), we assume that ||qu—5gf1) | = O(|u|**1). Subtracting

(24) from (23), we arrive at the following equations.

—(k+1 — —(k+1
AGo(Eoo0 — ~§)0 )) + (Z00 — ~§)0 ))AOO

—(k+1 —(k+1
+ATo(Zr0 — 5(10 )) + (E10 — ~(10 ))TA
- —(k - —(k
FAL (B2 — E ) + (B20 — E% ) A2 = 0

—_ —(k —_ —(k
(Zo0 — E56 ) Ao + (Bro — ~§o+1))TA11 + AL EL -8

—_ —(k+1 —_ —(k —_ —(k
VAL (B — ESTY) = —e1 AL (B0 — EW)T — £(Ba0 — ER)T A,
—_ —_ —(k —_ —(k
(Zo0 — E56 ) o2 + (F20 — B T)T Moo + ALy(S22 — E55 )
1
+—= AL B2 — ESTNT = 2 AL (Ba0 — ES)T — E(B10 — ES) T Asa,

Ja
AT En - B + En —25)An
= —e1[A%; (E10 — Z56)T + (B10 — E)A0i]
—EvalALy (B — ER) + (B21 — EH) T Asi],
ALy (Za2 — ESTY) + (B2 — 5T An

—(k
= —¢&2 [A02(520 - 5(20))T

£
Ja
1 - —(k+1
ﬁAlTl (21 — :(21+ ))T
= —&1(Z10 — E\) Aoz — e2A; (B0 — EG)T
—_ —(k
—5[A2T1(:22 — =) + (i1 — E1)Ara].

+(E20 — ES)Ao2) — ~=[AT(Ba1 — ESNT + (821 — ES)) A2,

\/5(521 - E(Qli—‘rl))TAQQ +

Using the assumption |=,, — Eg;) | = O(|u|¥*+1), we have

A (Eoo — ESeT) + (Zoo — E56T) Ao
—(k+1 —(k+1
+A10(~10 - H(o )) +( - 5(10 ))TAlo
+Azo(:20 —ZED) 4+ (20 — ESTV) A2 =0

—(k —_ —(k
(Zoo — ES ) A01 + Er0 — Bl )T A + ALy (EL —EETY)
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—_ —(k+1
+f AQTo(:m =8Y) = O(Ju)F+2),
(S0 — uoo )Aoz + (B20 — H(kﬂ))TAQz + AQTO(522 — E(Ql;+1))
1 - —(k+1
T M@ —ZL)T = O(ul**?),
— —(k+1 _ —(k+1
AL En -5 + @0 - 28T AL = O(Ju)*+?),
— —(k+1 _ —(k+1
ALy(Bas —EETY) + (B2 — ~;2 gy = O(|]*+2),

— —=(k+1 - —(k+1
Va(@Ea — EE)T Mgy + —— AT, (B0 — EET)T = O(Juf* ).

+

JVa

After the cancellation takes place, since Ag, Aj;, j =1, 2 are stable from
the condition (H3), we get

AT(Zo0 — Z55D) + (B0 — ZRTY) A0 = O(Jul*+2),

(Zjo—ES6 N = —(Z00 — 25 ) A A + O(Jul*H2), 5 =1, 2,
E — 20 = o(lul**?), j=1, 2,

Za1 — 25 Y = O(Jul*+2).

Therefore, we have
1Epq — E5 V1 = O(Iul*+?), pa =00, 10, 20, 11, 21, 22.
Consequently, the equation (26) holds for all ¢ € N. This completes the

proof of Theorem 4.1 concerned with the fixed point algorithm. [

5. MULTIPARAMETER H,, OPTIMAL CONTROL
PROBLEM

5.1. The Design Problem and Preliminaries

In this section, we study the H., control problem by using the state
feedback control law for the MSPS

To = Aooxo+ Ao1x1 + Ao2ze + Boiur + Boaus

+Forwi + Fyawa, x8 =0, (27a)
121 = Aroxo+ Az +e3dior

+Bi1ui + £3Bia2us + Friwy + e3Fiaws, 2§ =0, (27b)
€ao = Az0To + €3A21T1 + Ao

+e3Bo1uy + Bogug + e3Fa1wy + Fagws, 29 =10, (27c)
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Coo Co1 O - 0 0
o ClO 0 012 0 0 0 (5%
=10 0 o0 il g oo | w27
0 0 0 2 0 H,

where g € R"°, £; € R™ and z2 € R"? are the state vector, u; € R™7, j =
1, 2 is the control input, w; € RY, j = 1, 2 is the disturbance, z € R"
is the controlled output. In order to simplify derivations, without loss of
generality, we assume that the fast state variables are not connected among
themselves, i.e., e3 =0, [3, 4, 5, 6].

We discuss the H, optimal control problem that the closed—loop system
is internally stable and |G¢|s < 7, where

Ge = (C+ HKg)(sIy — Ag — BgKg) ' Fg, (28)
B Boa Fo Foz
Bg = 51_1311 0 s Fg = El_lFll 0 s
0 52_1322 0 52_1F22
Coo Co1 O 0 0
_ | Cio 0 Ci2 1 0 0 T
c=1%" o O H= g o | HH>O
0 0 0 0 Hs

by using the following state feedback controller (29)
u=Kg[af = xQT]T = K¢z (29)
The next result was shown by Doyle et al. [19].

LEMMA 5.1. The following are equivalent:

1)Ag 4+ Bg K¢ is stable and the transfer matriz Gg satisfies the inequality
[Gelloo < -
ii) The MARE (30) has the positive semidefinite stabilizing solution.
AfXe + XeAe + v 2 XeFeFE Xe
~XeBe(H"H) 'Bf Xe + CTC =0. (30)

Moreover, one such optimal controller that guarantees the v level of opti-
mality is given by

u=Kex=—(H"H) ' B Xeu. (31)
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Note that the MARE (30) is not a convex function with respect to Pg
because the matrix v 2FgFY — Bg(HTH)™'BY is in general indefinite.

5.2. Solvability Condition

The H control problem for the MSPS defined in (27) will be solved by
using the algorithm (10). In that respect, we set

Xe = Pe, Be(H"H) 'BEY —y%FeF} = Se, CTC = Q (32)

where = stands for the replacement.

The AREs (6¢) will produce the unique positive semidefinite stabilizing
solution under the condition (H1) if 7 is large enough. Therefore, let us
define the sets as [17, 1§]

T,; := {y > 0] the pair of AREs (6¢) have the positive semidefinite stabi-
lizing solutions},
g = inf{yly € s}

Moreover, let us define the set as
T'ys := {7 > 0] the ARE (6a) has a positive semidefinite stabilizing solution},
s = Inf{y|y € T'15}.

As the results, for every v > 4 = max{vs, s}, the MARE (30) has
the positive semidefinite stabilizing solutions if e; > 0 and €5 > 0 are small
enough. Then, we have the following result.

COROLLARY 5.1. If we select a parameter v > 5 = max{ys, v;r}, then
there exist small &, and &3 such that for all e1 € (0, &1) and g2 € (0, &),
the MARE (30) admits a solution such that Pg is the symmetric positive
semidefinite stabilizing solution, which can be written as (7).

Proof. Since the proof is similar to Theorem 2.1, it is omitted. [

Remark 5. 1. Note that the condition such as v > 4 = max{yis, s}
corresponding to the parameter  is equivalent to the conditions that the
AREs (6¢) have the positive semidefinite stabilizing solutions under the
conditions (H1) and (H2).

5.3. Numerical Example

In the rest of this section, in order to demonstrate the efficiency of our
proposed algorithm, we have run a numerical example. The system matrix



ITEX DRAFT 21

is given as a modification of an Appendix A in [1].

[00 45 0 1]

00 0 45 -1
App=1{00 —005 0 —01],

00 0 005 0.1

100 327 —327 0 |

[0 0 0 0]

00 00
Ap =010, A2=|0 0],

00 0.1 0

L 00 0 0]

00 0 00 000 0 0
Ato = 00—0.400]"420:[000—0.4 o]’

—0.05 0.05 0
A11=A22=[ 0 _0.1],F11=F22=[0.01],

0
Fy1 = Foz = Bo1 = Boz = ,31123222[ ],

0.1

OO O OO

CTC =diag(1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5), H' H = diag(20, 20).

Firstly, the numerical results are obtained for small parameter 1 = g9 =
1073. The simulation results for the different parameter €; will be discussed
later. Note that we can not apply the technique proposed in [5, 6] to the
MARE (30) since the Hamiltonian matrices T};, j = 1, 2 have eigenvalues
in common. The two basic quantities for the system are v;; = 9.7590 x
1072, ~1, = 4.4721 x 10~'. Thus, for every boundary value v > 4 =
max{7yis, Vjf} = 4472 x 1071, the AREs (6¢) and (6a) have the positive
semidefinite stabilizing solutions. On the other hand, by using MATLAB,
the minimum value 4 such that there exists the feedback controller is 4 =
4472 x 1071,

Now, we choose v = 1.0 (> %) to solve the MARE (30). We give a
solution of the MARE (30).

T T
P()() ElPlO EQPQO

T

Pe=|e1Pio eaPu1  E1e2P5
eaPyy \fe1e2Po1  €2Pa
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6.0730e + 000 8.4607e — 001  5.1386e + 001

8.4607e — 001  6.0730e + 000 —1.3695e — 001

Py = 5.1386e + 001 —1.3695e¢ — 001  6.9744e + 002
—1.3695e — 001  5.1386e 4+ 001 —2.3924¢e 4 002

2.5846e — 001 —2.5846e — 001  5.0568e + 000

—1.3695e — 001  2.5846e — 001
5.1386e + 001 —2.5846e — 001
—2.3924e 4 002 5.0568e 4 000
6.9744e + 002 —5.0568e + 000
—5.0568e + 000  1.3473e 4 000

[ 1.0158¢ — 001 —9.0348¢ — 005 1.3678¢ + 000
| 5.0000e — 002  7.2948¢ — 015 6.6053¢ — 001

—4.7187¢ — 001 8.3654¢ — 003 |
—2.3187¢ — 001 3.7279¢ — 003 |

[ —9.0348¢ — 005 1.0158¢ — 001 —4.7187¢ — 001
6.0176e — 015 5.0000e — 002 —2.3187e — 001

1.3678¢ + 000 —8.3654¢ — 003 |
6.6053¢ — 001 —3.7279¢ — 003 |

[ 7.6993e — 003 2.9751e — 003 ]

e1Pio =

ga Py =

S0 = 19 97516 — 003 3.9561¢ — 003

7.6993e — 003 2.9751e — 003
2.9751e — 003 3.9561e — 003

~9.3283¢ — 004 —4.5889¢ — 004
vereabn = [ —4.5889¢ — 004 —2.2587¢ — 004 ]

g9 Py = [

We find that the solution of the MARE (30) converges to the exact solution

with accuracy of ||Q(Péi))|| < 10710 after 3 iterative iterations. In order
to verify the exactitude of the solution, we calculate the remainder per
iteration by substituting Péi) into the MARE (30). In Table 1 we present
results for the error |G (Pé”)“. It can be seen that the initial guess (11) for
the algorithm (10) is quite good.

In order to verify the exactitude of the solution, when we substitute the
obtained reference solution P by using the function are of MATLAB
into the MARE (30), the remainder is |G(Pgh)| = 1.7864e — 009. For
different values of €1 and eq, the remainder of the algorithm (10) versus
MATLAB are given by Table 2.
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TABLE 1.

Errors per Iteration

i lgP)]

3.2505e — 010
1.0193e — 002
5.0362e — 005
4.2618e — 012

W NN = O

TABLE 2.
Error |G(Pe)]

€1 =¢€2 Revised Kleinman algorithm MATLAB
1072 8.8142e¢ — 011 3.3465e — 010
1073 5.9038¢ — 012 1.7864e — 009
1074 3.4592¢ — 011 2.2509¢ — 008
1075 4.1606e — 012 1.3073e — 005
10~ 8.7978¢ — 012 5.2618¢ — 004
1077 6.1600e — 012 1.4103e — 003
1078 1.5099¢ — 011 3.0732¢ — 002
TABLE 3.

CPU Times [sec]

€1 =¢€2 Revised Kleinman algorithm MATLAB
1072 5.44e — 001 2.80e — 002
107° 1.32e — 001 2.70e — 002
107 8.00e — 002 2.60e — 002
107° 8.00e — 002 2.70e — 002
1076 4.10e — 002 2.60e — 002
1077 4.30e — 002 2.70e — 002
1078 2.50e — 002 2.70e — 002

From Table 2, it should be noted that although the dimensionality of the
MARE (30) is small, when the parameter €; is quite small, the loss of
accuracy corresponding to the error |G(Pg)| for MATLAB is obvious for
this numerical example. On the other hand, the resulting algorithm which
combine the Kleinman algorithm (10) and the fixed point algorithm (24)
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computes the solution to full accuracy for all €;. Hence, the resulting
algorithm of this paper is very useful at least in this example. In Table 3,
we give the results of the CPU times when we have run the new method
versus MATLAB. From Table 3, even if the iterative algorithm (10) takes
a lot of CPU times in the case of not very small value of the singular
perturbation parameter, our algorithm can obtain the exact solution.

6. CONCLUSION

In this paper, we have investigated the MARE with an indefinite quadratic
term in general associated with the MSPS. We have shown that there exists
a unique and bounded solution for the MARE. Furthermore, we have pre-
sented the iterative method for solving the sign indefinite GMARE. Finally,
based on the fixed point algorithm, we have presented the new numerical
methods for solving the GMALE appearing in the Kleinman algorithm. It
should be noted that so far the algorithm for solving the GMALE with
multiparameter has not been established.

The algorithms for solving the GMARE and GMALE are applied to a
wide class of control law synthesis involving a solution of the MARE such
as the robust stabilizing control problem and the guaranteed cost control
problem.
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