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In this paper we study a continuous–time multiparameter algebraic Ric-
cati equation (MARE) with indefinite sign quadratic term. The existence of
a unique and bounded solution of the MARE is newly established. We show
that the Kleinman algorithm can be used well to solve the sign indefinite
MARE. The proof of the convergence and the existence of the unique solution
of the Kleinman algorithm is done by using the Newton–Kantorovich theorem.
Furthermore, we present new algorithms for solving the generalized multipa-
rameter algebraic Lyapunov equation (GMALE) by means of the fixed point
algorithm.

1. INTRODUCTION

The deterministic and the stochastic multimodeling control and the fil-
tering problems have been investigated extensively by several researchers
(see e.g., [1, 2, 3, 4, 5, 6]). The multimodeling problems arise in large
scale dynamic systems. For example, these multimodel situations in prac-
tice are illustrated by the multiarea power system [1] and the passenger
car model [6]. In order to obtain the optimal solution to the multimodel-
ing problems, we must solve the multiparameter algebraic Riccati equation
(MARE), which are parameterized by two small positive same order param-
eters ε1 and ε2. Various reliable approaches to the theory of the ordinary
algebraic Riccati equation (ARE) have been well documented in many lit-
eratures (see e.g., [7, 8]). One of the approaches is the invariant subspace
approach which is based on the Hamiltonian matrix. However, there is



no guarantee of symmetry for the solution of the ARE when the ARE is
known to be ill–conditioned [7]. Note that it is very hard to solve directly
the singularly perturbed ARE and the MARE due to the presence of the
small parameters [5, 6, 15, 18].
A popular approach to deal with the multiparameter singularly per-

turbed systems (MSPS) is the two–time–scale design method [1]. However,
it is known from [5] that an O(||µ||) (where µ = (ε1, ε2)) accuracy is very
often not sufficient because the reduced–order controller which is based on
the two–time–scale design method might not produce satisfactory results
for the desired performance. More recently, the exact slow–fast decom-
position method for solving the MARE has been proposed in [5, 6]. The
solutions are obtained by solving the Sylvester equations of lower dimen-
sions which are non–symmetric equations by means of the Newton method
or the fixed point algorithm. However, the results of [5, 6] need the as-
sumption that the sign of the quadratic term of the MARE corresponding
to the optimal control and the filtering problem is positive semidefinite and
that Hamiltonian matrices for the fast subsystems have no eigenvalues in
common (Assumption 5 of [6]).
In this paper, we investigate the asymptotic expansions for the MARE

with indefinite sign quadratic term and propose the iterative technique for
solving such MARE. Firstly, we relax the condition for the existence of the
solution compared with [3] in the sense that some of the assumptions for the
MARE are weakened. It is worth pointing out that existence of a unique
and bounded solution of the MARE with indefinite sign quadratic term has
not been established so far in the previous literature [3]. Furthermore, note
that the MSPS with either standard or nonstandard singular perturbations
[4] is considered. Secondly, we propose a new iterative algorithm for solv-
ing the sign indefinite MARE. The method studied here is based on the
Kleinman algorithm [9]. Therefore, the algorithm achieves the quadratic
convergence property. Note that the difference between the results in [9]
and the present paper is that the successive approximation technique is
used to prove the convergence in [9], while the approach adopted here is
composed of Newton–Kantorovich theorem [10, 11]. Thus, we do not as-
sume here that the sign of the quadratic term for the MARE is positive
semidefinite. The Newton–Kantorovich theorem plays an also important
role in the proof of the existence of the unique solution. The main objective
in this paper is to provide a new algorithm for solving the generalized multi-
parameter algebraic Lyapunov equation (GMALE). The method presented
in this paper is based on the fixed point algorithm [14]. Consequently,
our proposed algorithm is extremely useful since we have only to solve an
algebraic Lyapunov equation (ALE) of lower dimension. In particular, it
is important note that so far the algorithm for solving the GMALE has
not been established. Finally, a numerical example is given to complement
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the theoretical results. The resulting algorithms are implemented for the
multiparameter H∞ optimal control problem.

2. PROBLEM FORMULATION AND PRIMARY RESULT

We consider the following MARE

AT
E PE + PEAE − PESEPE +Q = 0, (1)

where

PE =


 P00 ε1P

T
10 ε2P

T
20

ε1P10 ε1P11
√
ε1ε2P

T
21

ε2P20
√
ε1ε2P21 ε2P22


 ∈ RN×N ,

P00 = P T
00, P11 = P T

11, P22 = P T
22,

AE =


 A00 A01 A02

ε−1
1 A10 ε−1

1 A11 0
ε−1
2 A20 0 ε−1

2 A22


 ∈ RN×N ,

SE = ST
E =


 S00 ε−1

1 S01 ε−1
2 S02

ε−1
1 ST

01 ε−2
1 S11 0

ε−1
2 ST

02 0 ε−2
2 S22


 ∈ RN×N ,

S00 = ST
00, S11 = ST

11, S22 = ST
22,

Q = QT =


 Q00 Q01 Q02

QT
01 Q11 0

QT
02 0 Q22


 ∈ RN×N ,

Q00 = QT
00, Q11 = QT

11, Q22 = QT
22,

P00, A00, S00, Q00 ∈ Rn0×n0 , P11, A11, S11, Q11 ∈ Rn1×n1 ,

P22, A22, S22, Q22 ∈ Rn2×n2 , ε1 > 0, ε2 > 0, N = n0 + n1 + n2.

If the sign of the MARE (1) is positive semidefinite, then the equation (1)
is known as a regulator ARE, appearing in the multimodeling [3]. However,
we do not assume in this paper that the sign of the MARE (1) is positive
semidefinite. That is, no assumption is made on the definiteness of SE .
In addition, we do not assume here that A11 and A22 are nonsingular
compared with [1, 3].
In order to avoid the ill–conditioned due to the large parameter ε−1

j which
is included in the MARE (1), we introduce the following useful lemma.

Lemma 2.1. The MARE (1) is equivalent to the following generalized
multiparameter algebraic Riccati equation (GMARE) (2a)

ATP + P TA − P TSP +Q = 0, (2a)
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PE = ΦEP = P TΦE , (2b)

where

ΦE =


 In0 0 0

0 ε1In1 0
0 0 ε2In2


 , A =


 A00 A01 A02

A10 A11 0
A20 0 A22


 ,

S =


 S00 S01 S02

ST
01 S11 0

ST
02 0 S22


 , P =



P00 ε1P

T
10 ε2P

T
20

P10 P11
1√
α
P T

21

P20

√
αP21 P22


 .

Proof. Firstly, by direct calculation we verify that PE = ΦEP . Secondly,
it is easy to verify that A = ΦEAE , S = ΦESEΦE . Hence,

ATP = AT
EΦEΦ−1

E PE = AT
E PE .

By using the similar calculation, we can immediately rewrite (1) as (2a).

Before investing the structural properties of the GMARE (2a), let us
define a parameter α

0 < k1 ≤ α ≡ ε1
ε2

≤ k2 < ∞. (3)

It is assumed that the limit of α exists as ε1 and ε2 tend to zero, that is

ᾱ = lim
ε1→+0
ε2→+0

α.

The GMARE (2a) can be partitioned into

f1 = AT
00P00 + P00A00 +AT

10P10 + P T
10A10 + AT

20P20 + P T
20A20

−P00S00P00 − P T
10S

T
01P00 − P00S01P10

−P T
20S

T
02P00 − P00S02P20 − P T

10S11P10 − P T
20S22P20 +Q00 = 0, (4a)

f2 = P00A01 + P T
10A11 + ε1A

T
00P

T
10 + AT

10P11 +
√
αAT

20P21

−ε1(P00S00P
T
10 + P T

10S
T
01P

T
10 + P T

20S
T
02P

T
10)

−P00S01P11 − P T
10S11P11

−√
α(P00S02P21 + P T

20S22P21) +Q01 = 0, (4b)

f3 = P00A02 + P T
20A22 + ε2A

T
00P

T
20 + AT

20P22 +
1√
α
AT

10P
T
21
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−ε2(P00S00P
T
20 + P T

10S
T
01P

T
20 + P T

20S
T
02P

T
20)

−P00S02P22 − P T
20S22P22

− 1√
α
(P00S01P

T
21 + P T

10S11P
T
21) +Q02 = 0, (4c)

f4 = AT
11P11 + P11A11 + ε1(AT

01P
T
10 + P10A01)

−ε1(ε1P10S00P
T
10 + P11S

T
01P

T
10 +

√
αP T

21S
T
02P

T
10)

−ε1(P10S01P11 +
√
αP10S02P21)

−P11S11P11 − αP T
21S22P21 +Q11 = 0, (4d)

f5 = ε1P10A02 + ε2A
T
01P

T
20 − ε1ε2P10S00P

T
20

−ε2(P11S
T
01P

T
20 +

√
αP T

21S
T
02P

T
20)− ε1(P10S02P22 +

1√
α
P10S01P

T
21)

+
√
αP T

21(A22 − S22P22) +
1√
α
(A11 − S11P11)TP T

21 = 0, (4e)

f6 = AT
22P22 + P22A22 + ε2(AT

02P
T
20 + P20A02)

−ε2(ε2P20S00P
T
20 + P22S

T
02P

T
20 +

1√
α
P21S

T
01P

T
20)

−ε2(P20S02P22 +
1√
α
P20S01P

T
21)

−P22S22P22 − 1
α
P21S11P

T
21 +Q22 = 0. (4f)

By limiting solutions of the GMARE (2a) or (4) as ε1 → +0 and ε2 → +0,
then we obtain the following equations

AT
00P̄00 + P̄00A00 +AT

10P̄10 + P̄ T
10A10 + AT

20P̄20 + P̄ T
20A20 − P̄00S00P̄00

−P̄ T
10S

T
01P̄00 − P̄00S01P̄10 − P̄ T

20S
T
02P̄00 − P̄00S02P̄20

−P̄ T
10S11P̄10 − P̄ T

20S22P̄20 +Q00 = 0, (5a)
P̄00A01 + P̄ T

10A11 +AT
10P̄11 +

√
ᾱAT

20P̄21 − P̄00S01P̄11

−P̄ T
10S11P̄11 −

√
ᾱ(P̄00S02P̄21 + P̄ T

20S22P̄21) +Q01 = 0, (5b)

P̄00A02 + P̄ T
20A22 +AT

20P̄22 +
1√
ᾱ
AT

10P̄
T
21 − P̄00S02P̄22

−P̄ T
20S22P̄22 − 1√

ᾱ
(P̄00S01P̄

T
21 + P̄ T

10S11P̄
T
21) +Q02 = 0, (5c)

AT
11P̄11 + P̄11A11 − P̄11S11P̄11 − ᾱP̄ T

21S22P̄21 +Q11 = 0, (5d)
√
ᾱP̄ T

21(A22 − S22P̄22) +
1√
ᾱ
(A11 − S11P̄11)T P̄ T

21 = 0, (5e)

AT
22P̄22 + P̄22A22 − P̄22S22P̄22 − 1

ᾱ
P̄21S11P̄

T
21 +Q22 = 0, (5f)
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where P̄00, P̄10, P̄20, P̄11, P̄21 and P̄22 are the 0–order solutions of the
GMARE (2a).
We shall make the following basic condition without loss of generality

[15].
(H1) The AREs AT

jjP̃jj + P̃jjAjj − P̃jjSjj P̃jj +Qjj = 0, j = 1, 2 have the
positive semidefinite stabilizing solutions.
If condition (H1) holds, there exist the matrices P̃jj , j = 1, 2 such that

the matrices Ajj − Sjj P̃jj, j = 1, 2 are stable. Therefore, we chose the
solutions P̄jj, j = 1, 2 as P̃jj, j = 1, 2. Then, the unique solution of
(5e) is given by P̄21 = 0 because the matrices Ajj − SjjP̄jj = Ajj − SjjP̃jj

are stable. As a consequence, the parameter ᾱ does not appear in (5)
automatically, that is, it does not affect the equation (5) in the limit when
ε1 and ε2 tend to zero. Thus the AREs (5d) and (5f) will produce the
unique positive semidefinite stabilizing solution under the conditions (H1).
We now obtain the following 0–order equations

AT
s P̄00 + P̄00As − P̄00SsP̄00 +Qs = 0, (6a)

P̄ T
j0 = P̄00N0j −M0j , j = 1, 2, (6b)

AT
jjP̄jj + P̄jjAjj − P̄jjSjjP̄jj +Qjj = 0, j = 1, 2, (6c)

where

As = A00 +N01A10 +N02A20 + S01M
T
01 + S02M

T
02

+N01S11M
T
01 +N02S22M

T
02,

Ss = S00 +N01S
T
01 + S01N

T
01 +N02S

T
02 + S02N

T
02

+N01S11N
T
01 +N02S22N

T
02,

Qs = Q00 −M01A10 −AT
10M

T
01 −M02A20 −AT

20M
T
02

−M01S11M
T
01 −M02S22M

T
02,

N0j = −D0jD
−1
jj , M0j = Q̄0jD

−1
jj , Q̄0j = AT

j0P̄jj +Q0j ,

D00 = A00 − S00P̄00 − S01P̄10 − S02P̄20, D0j = A0j − S0jP̄jj ,

Dj0 = Aj0 − ST
0jP̄00 − SjjP̄j0, Djj = Ajj − Sjj P̄jj, j = 1, 2.

The matrices As, Ss and Qs do not depend on P̄jj , j = 1, 2 because
their matrices can be computed by using Tpq , p, q = 0, 1, 2 which is
independent of P̄jj , j = 1, 2 [5, 6], that is,

Ts = T00 − T01T
−1
11 T10 − T02T

−1
22 T20 =

[
As −Ss

−Qs −AT
s

]
,
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T00 =
[

A00 −S00

−Q00 −AT
00

]
, T0j =

[
A0j −S0j

−Q0j −AT
j0

]
,

Tj0 =
[

Aj0 −ST
0j

−QT
0j −AT

0j

]
, Tjj =

[
Ajj −Sjj

−Qjj −AT
jj

]
, j = 1, 2.

Note that the Hamiltonian matrices Tjj :=
[

Ajj −Sjj

−Qjj −AT
jj

]
, j = 1, 2 are

nonsingular under the condition (H1) because of

Tjj =
[
Inj 0
P̄ T

jj Inj

][
Djj −Sjj

0 −DT
jj

][
Inj 0
−P̄jj Inj

]

⇔ T−1
jj =

[
Inj 0
P̄jj Inj

][
D−1

jj −D−1
jj SjjD

−T
jj

0 −D−T
jj

] [
Inj 0
−P̄ T

jj Inj

]
.

The required solution of the ARE (6a) exists under the following condition
[15].
(H2) The ARE (6a) has the positive semidefinite stabilizing solutions.
It should be remarked that the solution PE of (1) is a function of the

multiparameters ε1 and ε2. But, the solutions P̄00 and P̄jj, j = 1, 2 of
(6a) and (6c) are independent of the multiparameters ε1 and ε2, respec-
tively. The following theorem will establish the relation between PE and
the reduced–order solutions (6) (see [3]).

Theorem 2.1. Under the conditions (H1) and (H2), there exist small
ε∗1 and ε∗2 such that for all ε1 ∈ (0, ε∗1) and ε2 ∈ (0, ε∗2), the MARE (1)
admits a symmetric positive semidefinite stabilizing solution PE which can
be written as

PE =


 P̄00 +F00 ε1(P̄10 + F10)T ε2(P̄20 + F20)T

ε1(P̄10 +F10) ε1(P̄11 + F11)
√
ε1ε2FT

21

ε2(P̄20 +F20)
√
ε1ε2F21 ε2(P̄22 + F22)


 , (7)

where

Fpq = O(||µ||), ||Fpq|| = cpq < ∞, pq = 00, 10, 20, 11, 21, 22.

In order to prove Theorem 2.1, we need the following lemma [1].

Lemma 2.2. Consider the system

ẋ0(t) = A00x0(t) +A01x1(t) + A02x2(t), x0(t0) = x0
0,

ε1ẋ1(t) = A10x0(t) +A11x1(t) + ε3A12x2(t), x1(t0) = x0
1,

ε2ẋ2(t) = A20x0(t) + ε4A21x1(t) + A22x2(t), x2(t0) = x0
2,
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where x0 ∈ Rn0, x1 ∈ Rn1 and x2 ∈ Rn2 are the state vector. ε3 is a small
weak coupling parameter, ε1 and ε2 are small positive singular perturbation
parameters of the same order of magnitude with (3). If A−1

jj , j = 1, 2
exist, and if A0 ≡ A00−A01A

−1
11 A10−A02A

−1
22 A20, Ajj , j = 1, 2 are stable

matrices, then there exist small ε̂1 and ε̂2 such that for all ε1 ∈ (0, ε̂1) and
ε2 ∈ (0, ε̂2), the system is asymptotically stable.

Now, let us prove Theorem 2.1.

Proof. Since the MARE (1) is equivalent to the GMARE (2a) from
Lemma 2.1, we apply the implicit function theorem [3] to (2a). To do so, it
is enough to show that the corresponding Jacobian is nonsingular at ε1 = 0
and ε2 = 0. It can be shown, after some algebra, that the Jacobian of (2a)
in the limit is given by

J = ∇F =
∂vec(f1 , f2, f3, f4, f5, f6)

∂vec(P00, P10, P20, P11, P21, P22)T

∣∣∣∣
(µ, P)=(µ0, P0)

=




J00 J01 J02 0 0 0
J10 J11 0 J13 J14 0
J20 0 J22 0 J24 J25

0 0 0 J33 0 0
0 0 0 0 J44 0
0 0 0 0 0 J55



, (8)

where vec denotes an ordered stack of the columns of its matrix [12] and

µ = (ε1, ε2), µ0 = (0, 0), P = (P00, P10, P20, P11, P21, P22),
P0 = (P̄00, P̄10, P̄20, P̄11, 0, P̄22),
J00 = (In0 ⊗DT

00)Un0n0 +DT
00 ⊗ In0 ,

J0j = (In0 ⊗DT
j0)Un0nj +DT

j0 ⊗ In0 ,

Jj0 = DT
0j ⊗ In0 , Jjj = DT

jj ⊗ In0 , j = 1, 2,

J13 = In1 ⊗D10, J14 =
√
ᾱ(In1 ⊗D20)Un1n2 ,

J24 =
1√
ᾱ
In2 ⊗D10, J25 = In2 ⊗D20,

J33 = (In1 ⊗DT
11)Un1n1 +DT

11 ⊗ In1 ,

J44 =
√
ᾱDT

22 ⊗ In1 +
1√
ᾱ
In2 ⊗DT

11,

J55 = (In2 ⊗DT
22)Un2n2 +DT

22 ⊗ In2 ,
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where ⊗ denotes Kronecker products and Unjnj , j = 0, 1, 2 is the permu-
tation matrix in Kronecker matrix sense [12].
The Jacobian (8) can be expressed as

detJ = detJ33 · detJ44 · detJ55 · det

 J00 J01 J02

J10 J11 0
J20 0 J22




= detJ33 · detJ44 · detJ55 · detJ11 · detJ22

·det(J00 − J01J
−1
11 J10 − J02J

−1
22 J20)

= detJ11 · detJ22 · detJ33 · detJ44 · detJ55

·det[In0 ⊗DT
0 Un0n0 +DT

0 ⊗ In0 ], (9)

where D0 ≡ D00 −D01D
−1
11 D10 −D02D

−1
22 D20. Obviously, Jjj , j = 1, · · · , 5

are nonsingular because the matrices Djj = Ajj−Sjj P̄jj, j = 1, 2 are non-
singular under the condition (H1). After some straightforward algebra but
tedious, we see that the As − SsP̄00 = D00 −D01D

−1
11 D10 −D02D

−1
22 D20 =

D0. Therefore, the matrix D0 is nonsingular if the condition (H2) holds.
Thus, detJ �= 0, i.e., J is nonsingular at (µ, P) = (µ0, P0). The con-
clusion of the first part of Theorem 2.1 is obtained directly by using the
implicit function theorem. The second part of the proof of Theorem 2.1 is
performed by direct calculation. By using (7), we obtain

Φ−1
E (A − SP ) = Φ−1

E





 D00 D01 D02

D10 D11 0
D20 0 D22


 +O(||µ||)


 .

We know from Lemma 2.2 that for sufficiently small ||µ|| the matrix
Φ−1

E (A−SP ) will be stable. On the other hand, since P̄00 ≥ 0, P̄11 ≥ 0 and
P̄22 ≥ 0, PE is positive semidefinite as long as ε1 > 0 and ε2 > 0 by using
the Schur complement [13]. Therefore, the proof on Theorem 2.1 ends.

3. ITERATIVE ALGORITHM

We now develop an algorithm which converges quadratically to the re-
quired solution of the MARE (1). So far, the exact decomposition method
for solving the MARE with positive semidefinite sign quadratic term has
been proposed in [5, 6]. However, the result of [5, 6] needs the assumption
that Hamiltonian matrices for the fast subsystems have no eigenvalues in
common.
In this paper we develop an elegant and simple algorithm which converges

globally to the positive semidefinite solution of the MARE (1). Taking into
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account the fact that the MARE (1) is equivalent to the GMARE (2a) from
Lemma 2.1, the algorithm is given in term of the GMALE [16], which have
to be solved iteratively. We present the iterative algorithm based on the
Kleinman algorithm [9]. Here we note that the Kleinman algorithm is based
on the Newton type algorithm. In general, the stabilizable–detectable con-
ditions will guarantee the convergence of the Kleinman algorithm for the
standard linear–quadratic regulator type GMARE to the required solu-
tions. However, it is difficult to apply the Kleinman algorithm to the
equation (2a) presented in this paper because the matrix S is in general
indefinite.
In this paper, we show that by using the Newton–Kantorovich theorem,

the Kleinman algorithm guarantees the quadratic convergence under the
appropriate initial conditions.
We propose the following algorithm for solving the GMARE (2a)

(A− SP (i))TP (i+1) + P (i+1)T (A − SP (i)) + P (i)TSP (i) +Q = 0,(10a)

P
(i)
E = ΦEP (i) = P (i)TΦE , (10b)

i = 0, 1, 2, 3, · · · , with the initial condition obtained from

P (0) =


 P̄00 0 0
P̄10 P̄11 0
P̄20 0 P̄22


 , (11)

where

P (i) =



P

(i)
00 ε1P

(i)T
10 ε2P

(i)T
20

P
(i)
10 P

(i)
11

1√
α
P

(i)T
21

P
(i)
20

√
αP

(i)
21 P

(i)
22


 ,

P
(i)
00 = P

(i)T
00 , P

(i)
11 = P

(i)T
11 , P

(i)
22 = P

(i)T
22 ,

and P̄pq , pq = 00, 10, 20, 11, 22 are defined by (6).
According to the Newton–Kantorovich theorem [10, 11], it is well known

that if the initial condition is very close to the exact solution of the consid-
ered equation, the Newton method has the quadratic convergence property.
Therefore, we can choose the initial conditions as (11).
Although the sign of the matrix S is in general indefinite, we can prove

the quadratic convergence for the resulting algorithm (10) by using the
Newton–Kantorovich theorem because the initial condition is very close to
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the exact solution of the GMARE (2a) for sufficiently small ||µ||. This idea
is derived from the following fact:

||P − P (0)|| =

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣



P00 ε1P

T
10 ε2P

T
20

P10 P11
1√
α
P T

21

P20

√
αP21 P22


 −


 P̄00 0 0
P̄10 P̄11 0
P̄20 0 P̄22



∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
= O(||µ||).

The algorithm (10) has the feature given in the following lemma.

Lemma 3.1. Under the conditions (H1) and (H2), there exists an ε̄1 and
ε̄2 such that for all 0 < ε1 ≤ ε̄1 ≤ ε∗1 and 0 < ε2 ≤ ε̄2 ≤ ε∗2 respectively,
the iterative algorithm (10) converges to the exact solution of P ∗ with the
rate of quadratic convergence. Then, P (i)

E = ΦEP (i) = P (i)TΦE is posi-
tive semidefinite. Moreover, there exists unique solution of the GMARE
(2a) with the indefinite sign quadratic term in neighborhood of the required
solution P ∗. That is, the following conditions are satisfied.

||P (i) − P ∗|| ≤ O(||µ||2i

)
2iβγ

= O(||µ||2i

), i = 0, 1, 2, · · · , (12a)

P
(i)
E = ΦEP (i) = P (i)TΦE ≥ 0, i = 1, 2, 3, · · · , (12b)

||P (0) − P ∗|| ≤ 1
βγ

[1 −√
1− 2θ], (12c)

where

G(P ) = ATP + P TA− P TSP +Q, (13)

γ = 2||S|| < ∞, β = ||[∇G(P (0))]−1||, η = β · ||G(P (0))||, θ = βηγ,

∇G(P ) = ∂vecG(P )
∂(vecP )T

, P ∗ =



P ∗

00 ε1P
∗T
10 ε2 P ∗T

20

P ∗
10 P ∗

11

1√
α
P ∗T

21

P ∗
20

√
αP ∗

21 P ∗
22


 .

Proof. This proof is equivalent to the proof of existence of the unique
solution for the GMARE (2a) [16, 17, 18]. Thus, the proof follows directly
by applying the Newton–Kantorovich theorem [10, 11] for the GMARE
(2a). We now verify that function G(P ) is differentiable on a convex set D.
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Using the fact that

∇G(P ) = (A − SP )T ⊗ IN + IN ⊗ (A − SP )T , (14)

we have

||∇G(P1)−∇G(P2)|| ≤ γ||P1 − P2||, (15)

where γ = 2||S||. Moreover, using the fact that

∇G(P (0)) =


 D00 D01 D02

D10 D11 0
D20 0 D22




T

⊗ IN + IN ⊗

 D00 D01 D02

D10 D11 0
D20 0 D22




T

, (16)

it follows that ∇G(P (0)) is nonsingular because D0 and Djj , j = 1, 2 are
stable under the conditions (H1) and (H2). Therefore, there exists β such
that ||[∇G(P (0))]−1|| ≡ β. On the other hand, since G(P (0)) < O(||µ||),
there exists η such that ||[∇G(P (0))]−1|| · ||G(P (0))|| ≡ η = O(||µ||). Thus,
there exists θ such that θ ≡ βγη < 2−1 because of η = O(||µ||). Using the
Newton–Kantorovich theorem, the strict error estimate is given by (12a).
Now, let us define

t∗ ≡ 1
γβ

[1 −√
1− 2θ] =

1
2||S|| · ||[∇G(P (0))]−1|| [1−

√
1− 2θ]. (17)

Clearly, S ≡ { P : ||P −P (0)|| ≤ t∗ } is in the convex set D. In the sequel,
since ||P ∗ − P (0)|| = O(||µ||) holds for small ε1 and ε2, we show that P ∗ is
the unique solution in S.
On the other hand, using (12a), we have

P
(i)
E =


 P̄00 + O(||µ||) ε1(P̄10 + O(||µ||))T ε2(P̄20 +O(||µ||))T
ε1(P̄10 + O(||µ||)) ε1(P̄11 + O(||µ||)) √

ε1ε2O(||µ||)T
ε2(P̄20 + O(||µ||)) √

ε1ε2O(||µ||) ε2(P̄22 +O(||µ||))


 .

Since P̄00 ≥ 0, P̄11 ≥ 0 and P̄22 ≥ 0, P
(i)
E is positive semidefinite

by using the Schur complement [13]. Therefore, the proof is completed.

4. MAIN RESULTS

Now, we consider a method for solving the pair of GMALE (10a). So far,
there is little argument as to the numerical method for solving the GMALE.
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Therefore, in order to obtain the solution of the pair of GMALE (10a), we
present new algorithm by applying the fixed point algorithm [5, 6, 14]. Let
us consider the following GMALE in general form.

ΛTY + Y TΛ + U = 0, (18)

where Y is the solution of the GMALE (18) and Λ and U are known
matrices defined by

Y =



Y00 ε1Y

T
10 ε2Y

T
20

Y10 Y11
1√
α
Y T

21

Y20

√
αY21 Y22


 ∈ RN×N ,

Y00 = Y T
00, Y11 = Y T

11, Y22 = Y T
22,

Λ =


 Λ00 Λ01 Λ02

Λ10 Λ11 EΛ12

Λ20 EΛ21 Λ22


 ∈ RN×N ,

U = UT =


 U00 U01 U02

UT
01 U11 EU12

UT
02 EUT

12 U22


 ∈ RN×N ,

U00 = UT
00, U11 = UT

11, U22 = UT
22,

Y00, Λ00, U00 ∈ Rn0×n0, Y11, Λ11, U11 ∈ Rn1×n1 ,

Y22, Λ22, U22 ∈ Rn2×n2,

ε1 > 0, ε2 > 0, ||µ|| = E =
√
ε1ε2, N = n0 + n1 + n2.

The required solution of the GMALE (18) exists under the standard
condition [1].
(H3) The matrices Λjj, j = 1, 2 are nonsingular and Λ0 ≡ Λ00−Λ01Λ−1

11 Λ10−
Λ02Λ−1

22 Λ20, Λjj , j = 1, 2 are stable.
The GMALE (18) can be partitioned into

ΛT
00Y00 + Y00Λ00 +ΛT

10Y10 + Y T
10Λ10

+ΛT
20Y20 + Y T

20Λ20 + U00 = 0, (19a)
Y00Λ01 + Y T

10Λ11 + EY T
20Λ21 + ε1ΛT

00Y
T
10 + ΛT

10Y11

+
√
αΛT

20Y21 + U01 = 0, (19b)
Y00Λ02 + Y T

20Λ22 + EY T
10Λ12 + ε2ΛT

00Y
T
20 + ΛT

20Y22

+
1√
α
ΛT

10Y
T
21 + U02 = 0, (19c)

ΛT
11Y11 + Y11Λ11 + ε1(ΛT

01Y
T
10 + Y10Λ01)
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+
√
αE(ΛT

21Y21 + Y T
21Λ21) + U11 = 0, (19d)

ε1Y10Λ02 + ε2ΛT
01Y

T
20 +

√
αY T

21Λ22 +
1√
α
ΛT

11Y
T
21

+E(Y11Λ12 +ΛT
21Y22) + EU12 = 0, (19e)

ΛT
22Y22 + Y22Λ22 + ε2(ΛT

02Y
T
20 + Y20Λ02)

+
1√
α
E(ΛT

12Y
T
21 + Y21Λ12) + U22 = 0. (19f)

For the equations (19) above, in the limit, as ε1 → +0 and ε2 → +0, we
obtain the following equations

ΛT
00Ȳ00 + Ȳ00Λ00 +ΛT

10Ȳ10 + Ȳ T
10Λ10

+ΛT
20Ȳ20 + Ȳ T

20Λ20 + U00 = 0, (20a)
Ȳ00Λ01 + Ȳ T

10Λ11 + ΛT
10Ȳ11 +

√
ᾱΛT

20Ȳ21 + U01 = 0, (20b)

Ȳ00Λ02 + Ȳ T
20Λ22 + ΛT

20Ȳ22 +
1√
ᾱ
ΛT

10Ȳ
T
21 + U02 = 0, (20c)

ΛT
11Ȳ11 + Ȳ11Λ11 + U11 = 0, (20d)

√
ᾱȲ T

21Λ22 +
1√
ᾱ
ΛT

11Ȳ
T
21 = 0, (20e)

ΛT
22Ȳ22 + Ȳ22Λ22 + U22 = 0. (20f)

Note that the unique solution of (20e) is given by Ȳ21 = 0 since the
matrices Λjj , j = 1, 2 are nonsingular under the condition (H3). Thus
the parameter ᾱ does not appear in (20). Consequently, we obtain the
following 0–order equations

ΛT
0 Ȳ00 + Ȳ00Λ0 + U00 − U01Λ−1

11 Λ10 − ΛT
10Λ

−T
11 UT

01

−U02Λ−1
22 Λ20 − ΛT

20Λ
−T
22 UT

02

+ΛT
10Λ

−T
11 U11Λ−1

11 Λ10 +ΛT
20Λ

−T
22 U22Λ−1

22 Λ20 = 0, (21a)
Ȳ T

j0 = −(Ȳ00Λ0j + ΛT
j0Ȳjj + U0j)Λ−1

jj , j = 1, 2, (21b)

ΛT
jjȲjj + ȲjjΛjj + Ujj = 0, j = 1, 2. (21c)

Now, let us introduce

Y =



Ȳ00 + EΞ00 ε1(Ȳ10 + EΞ10)T ε2(Ȳ20 + EΞ20)T

Ȳ10 + EΞ10 Ȳ11 + EΞ11
E√
α
ΞT

21

Ȳ20 + EΞ20

√
αEΞ21 Ȳ22 + EΞ22


 . (22)

The approximation of the error terms Ξpq, pq = 00, 10, 20, 11, 21, 22
will result in approximation of the required matrix Ypq . That is why we are
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interested in finding equations of the error terms and a convenient algorithm
to find their solutions. Substituting (22) into (19) and subtracting (20) from
(19), we arrive at the error equations.

ΛT
00Ξ00 + Ξ00Λ00 +ΛT

10Ξ10 + ΞT
10Λ10 + ΛT

20Ξ20 +ΞT
20Λ20 = 0, (23a)

Ξ00Λ01 + ΞT
10Λ11 +ΛT

10Ξ11 +
√
αΛT

20Ξ21 = −Ȳ T
20Λ21 − ε1

E ΛT
00Ȳ

T
10

−ε1ΛT
00Ξ

T
10 − EΞT

20Λ21, (23b)

Ξ00Λ02 + ΞT
20Λ22 +ΛT

20Ξ22 +
1√
α
ΛT

10Ξ
T
21 = −Ȳ T

10Λ12 − ε2
E ΛT

00Ȳ
T
20

−ε2ΛT
00Ξ

T
20 − EΞT

10Λ12, (23c)

ΛT
11Ξ11 + Ξ11Λ11 = −ε1

E (ΛT
01Ȳ

T
10 + Ȳ10Λ01)− ε1(ΛT

01Ξ
T
10 +Ξ10Λ01)

−E√α(ΛT
21Ξ21 + ΞT

21Λ21), (23d)

ΛT
22Ξ22 + Ξ22Λ22 = −ε2

E (ΛT
02Ȳ

T
20 + Ȳ20Λ02)− ε2(ΛT

02Ξ
T
20 +Ξ20Λ02)

− E√
α
(ΛT

12Ξ
T
21 +Ξ21Λ12), (23e)

√
αΞT

21Λ22 +
1√
α
ΛT

11Ξ
T
21 = −ε1

E Ȳ10Λ02 − ε2
E ΛT

01Ȳ
T
20 − Ȳ11Λ12 − ΛT

21Ȳ22

−U12 − ε1Ξ10Λ02 − ε2ΛT
01Ξ

T
20 − E(ΛT

21Ξ22 + Ξ11Λ12). (23f)

These equations (23) have very nice form since the unknown quantities
Ξpq in right hand side are multiplied by small parameters ε1, ε2 and E .
This fact suggests that a fixed point algorithm can be efficient for their
solutions. Hence, we propose the following algorithm (24).

ΛT
jjΞ

(i+1)
jj +Ξ(i+1)

jj Λjj + Gjj(i) = 0, j = 1, 2 (24a)
√
αΞ(i+1)T

21 Λ22 +
1√
α
ΛT

11Ξ
(i+1)T
21 + G21(i) = 0, (24b)

ΛT
0 Ξ

(i+1)
00 + Ξ(i+1)

00 Λ0 + G00(i) = 0, (24c)

Ξ(i+1)T
j0 = −[Ξ(i+1)

00 Λ0j + G0j(i)]Λ−1
jj , j = 1, 2, (24d)

i = 0, 1, 2, · · ·

where

G11(i) =
ε1
E (ΛT

01Ȳ
T
10 + Ȳ10Λ01) + ε1(ΛT

01Ξ
(i)T
10 + Ξ(i)

10Λ01)

+E√α(ΛT
21Ξ

(i)
21 +Ξ(i)T

21 Λ21),

G22(i) =
ε2
E (ΛT

02Ȳ
T
20 + Ȳ20Λ02) + ε2(ΛT

02Ξ
(i)T
20 + Ξ(i)

20Λ02)
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+
E√
α
(ΛT

12Ξ
(i)T
21 +Ξ(i)

21Λ12),

G21(i) =
ε1
E Ȳ10Λ02 +

ε2
E ΛT

01Ȳ
T
20 + Ȳ11Λ12 +ΛT

21Ȳ22 + U12

+ε1Ξ
(i)
10Λ02 + ε2ΛT

01Ξ
(i)T
20 + E(ΛT

21Ξ
(i)
22 +Ξ(i)

11Λ12),

G01(i) = ΛT
10Ξ

(i+1)
11 +

√
αΛT

20Ξ
(i+1)
21 + Ȳ T

20Λ21

+
ε1
E ΛT

00Ȳ
T
10 + ε1ΛT

00Ξ
(i)T
10 + EΞ(i)T

20 Λ21,

G02(i) = ΛT
20Ξ

(i+1)
22 +

1√
α
ΛT

10Ξ
(i+1)T
21 + Ȳ T

10Λ12

+
ε2
E ΛT

00Ȳ
T
20 + ε2ΛT

00Ξ
(i)T
20 + EΞ(i)T

10 Λ12,

G00(i) = −[ΛT
10Λ

−T
11 G01(i)T + G01(i)Λ−1

11 Λ10

+ΛT
20Λ

−T
22 G02(i)T + G02(i)Λ−1

22 Λ20],

ΛT
11Ξ

(0)
11 +Ξ(0)

11 Λ11 +
ε1
E (ΛT

01Ȳ
T
10 + Ȳ10Λ01) = 0, (25a)

ΛT
22Ξ

(0)
22 +Ξ(0)

22 Λ22 +
ε2
E (ΛT

02Ȳ
T
20 + Ȳ20Λ02) = 0, (25b)

√
αΞ(0)T

21 Λ22 +
1√
α
ΛT

11Ξ
(0)T
21 +

ε1
E Ȳ10Λ02 +

ε2
E ΛT

01Ȳ
T
20

+Ȳ11Λ12 + ΛT
21Ȳ22 + U12 = 0, (25c)

ΛT
0 Ξ

(0)
00 +Ξ(0)

00 Λ0 − ΛT
10Λ

−T
11 ΘT

01 − Θ01Λ−1
11 Λ10

−ΛT
20Λ

−T
22 ΘT

02 −Θ02Λ−1
22 Λ20 = 0, (25d)

Ξ(0)T
10 = −(Ξ(0)

00 Λ01 +Θ01)Λ−1
11 , (25e)

Ξ(0)T
20 = −(Ξ(0)

00 Λ02 +Θ02)Λ−1
22 , (25f)

Θ01 = ΛT
10Ξ

(0)
11 +

√
αΛT

20Ξ
(0)
21 + Ȳ T

20Λ21 +
ε1
E ΛT

00Ȳ
T
10,

Θ02 = ΛT
20Ξ

(0)
22 +

1√
α
ΛT

10Ξ
(0)T
21 + Ȳ T

10Λ12 +
ε2
E ΛT

00Ȳ
T
20.

The following theorem indicates the convergence of the algorithm (24).

Theorem 4.1. The fixed point algorithm (24) converges to the exact
solution of Ξpq with the rate of convergence of O(||µ||i+1), that is

||Ξpq − Ξ(i)
pq || = O(||µ||i+1), (26)

i = 0, 1, 2, · · · , pq = 00, 10, 20, 11, 21, 22.
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Proof. The proof is done by using mathematical induction. When i = 0
for the equations (24), the first order approximations Ξpq corresponding
to the small parameters ε1, ε2 and E satisfy the equations (25). It follows
from these equations that

||Ξpq − Ξ(0)
pq || = O(||µ||), pq = 00, 10, 20, 11, 21, 22.

When i = k (k ≥ 1), we assume that ||Ξpq−Ξ(k)
pq || = O(||µ||k+1). Subtracting

(24) from (23), we arrive at the following equations.

ΛT
00(Ξ00 − Ξ(k+1)

00 ) + (Ξ00 − Ξ(k+1)
00 )Λ00

+ΛT
10(Ξ10 − Ξ(k+1)

10 ) + (Ξ10 − Ξ(k+1)
10 )TΛ10

+ΛT
20(Ξ20 − Ξ(k+1)

20 ) + (Ξ20 − Ξ(k+1)
20 )TΛ20 = 0,

(Ξ00 − Ξ(k+1)
00 )Λ01 + (Ξ10 − Ξ(k+1)

10 )TΛ11 +ΛT
10(Ξ11 − Ξ(k+1)

11 )

+
√
αΛT

20(Ξ21 − Ξ(k+1)
21 ) = −ε1ΛT

00(Ξ10 − Ξ(k)
10 )

T − E(Ξ20 − Ξ(k)
20 )

TΛ21,

(Ξ00 − Ξ(k+1)
00 )Λ02 + (Ξ20 − Ξ(k+1)

20 )TΛ22 +ΛT
20(Ξ22 − Ξ(k+1)

22 )

+
1√
α
ΛT

10(Ξ21 − Ξ(k+1)
21 )T = −ε2ΛT

00(Ξ20 − Ξ(k)
20 )

T − E(Ξ10 − Ξ(k)
10 )

TΛ12,

ΛT
11(Ξ11 − Ξ(k+1)

11 ) + (Ξ11 − Ξ(k+1)
11 )Λ11

= −ε1 [ΛT
01(Ξ10 − Ξ(k)

10 )
T + (Ξ10 − Ξ(k)

10 )Λ01]

−E√α[ΛT
21(Ξ21 − Ξ(k)

21 ) + (Ξ21 − Ξ(k)
21 )

TΛ21],

ΛT
22(Ξ22 − Ξ(k+1)

22 ) + (Ξ22 − Ξ(k+1)
22 )Λ22

= −ε2 [ΛT
02(Ξ20 − Ξ(k)

20 )
T

+(Ξ20 − Ξ(k)
20 )Λ02]− E√

α
[ΛT

12(Ξ21 − Ξ(k)
21 )

T + (Ξ21 − Ξ(k)
21 )Λ12],

√
α(Ξ21 − Ξ(k+1)

21 )TΛ22 +
1√
α
ΛT

11(Ξ21 − Ξ(k+1)
21 )T

= −ε1(Ξ10 − Ξ(k)
10 )Λ02 − ε2ΛT

01(Ξ20 − Ξ(k)
20 )

T

−E [ΛT
21(Ξ22 − Ξ(k)

22 ) + (Ξ11 − Ξ(k)
11 )Λ12].

Using the assumption ||Ξpq − Ξ(k)
pq || = O(||µ||k+1), we have

ΛT
00(Ξ00 − Ξ(k+1)

00 ) + (Ξ00 − Ξ(k+1)
00 )Λ00

+ΛT
10(Ξ10 − Ξ(k+1)

10 ) + (Ξ10 − Ξ(k+1)
10 )TΛ10

+ΛT
20(Ξ20 − Ξ(k+1)

20 ) + (Ξ20 − Ξ(k+1)
20 )Λ20 = 0,

(Ξ00 − Ξ(k+1)
00 )Λ01 + (Ξ10 − Ξ(k+1)

10 )TΛ11 + ΛT
10(Ξ11 − Ξ(k+1)

11 )
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+
√
αΛT

20(Ξ21 − Ξ(k+1)
21 ) = O(||µ||k+2),

(Ξ00 − Ξ(k+1)
00 )Λ02 + (Ξ20 − Ξ(k+1)

20 )TΛ22 + ΛT
20(Ξ22 − Ξ(k+1)

22 )

+
1√
α
ΛT

10(Ξ21 − Ξ(k+1)
21 )T = O(||µ||k+2),

ΛT
11(Ξ11 − Ξ(k+1)

11 ) + (Ξ11 − Ξ(k+1)
11 )Λ11 = O(||µ||k+2),

ΛT
22(Ξ22 − Ξ(k+1)

22 ) + (Ξ22 − Ξ(k+1)
22 )Λ22 = O(||µ||k+2),

√
α(Ξ21 − Ξ(k+1)

21 )TΛ22 +
1√
α
ΛT

11(Ξ21 − Ξ(k+1)
21 )T = O(||µ||k+2).

After the cancellation takes place, since Λ0, Λjj , j = 1, 2 are stable from
the condition (H3), we get

ΛT
0 (Ξ00 − Ξ(k+1)

00 ) + (Ξ00 − Ξ(k+1)
00 )Λ0 = O(||µ||k+2),

(Ξj0 − Ξ(k+1)
j0 )T = −(Ξ00 − Ξ(k+1)

00 )Λ0jΛ−1
jj + O(||µ||k+2), j = 1, 2,

Ξjj − Ξ(k+1)
jj = O(||µ||k+2), j = 1, 2,

Ξ21 − Ξ(k+1)
21 = O(||µ||k+2).

Therefore, we have

||Ξpq − Ξ(k+1)
pq || = O(||µ||k+2), pq = 00, 10, 20, 11, 21, 22.

Consequently, the equation (26) holds for all i ∈ N. This completes the
proof of Theorem 4.1 concerned with the fixed point algorithm.

5. MULTIPARAMETER H∞ OPTIMAL CONTROL
PROBLEM

5.1. The Design Problem and Preliminaries
In this section, we study the H∞ control problem by using the state

feedback control law for the MSPS

ẋ0 = A00x0 + A01x1 +A02x2 + B01u1 +B02u2

+F01w1 + F02w2, x
0
0 = 0, (27a)

ε1ẋ1 = A10x0 + A11x1 + ε3A12x2

+B11u1 + ε3B12u2 + F11w1 + ε3F12w2, x
0
1 = 0, (27b)

ε2ẋ2 = A20x0 + ε3A21x1 +A22x2

+ε3B21u1 +B22u2 + ε3F21w1 + F22w2, x
0
2 = 0, (27c)
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z =



C00 C01 0
C10 0 C12

0 0 0
0 0 0





 x0

x1

x2


 +




0 0
0 0
H1 0
0 H2




[
u1

u2

]
, (27d)

where x0 ∈ Rn0, x1 ∈ Rn1 and x2 ∈ Rn2 are the state vector, uj ∈ Rmj , j =
1, 2 is the control input, wj ∈ Rlj , j = 1, 2 is the disturbance, z ∈ Rn

is the controlled output. In order to simplify derivations, without loss of
generality, we assume that the fast state variables are not connected among
themselves, i.e., ε3 ≡ 0, [3, 4, 5, 6].
We discuss the H∞ optimal control problem that the closed–loop system

is internally stable and ||GE||∞ < γ, where

GE = (C +HKE )(sIN −AE −BEKE )−1FE , (28)

BE =


 B01 B02

ε−1
1 B11 0
0 ε−1

2 B22


 , FE =


 F01 F02

ε−1
1 F11 0
0 ε−1

2 F22


 ,

C =



C00 C01 0
C10 0 C12

0 0 0
0 0 0


 , H =




0 0
0 0
H1 0
0 H2


 , HTH > 0,

by using the following state feedback controller (29)

u = KE
[
xT

0 xT
1 xT

2

]T = KEx. (29)

The next result was shown by Doyle et al. [19].

Lemma 5.1. The following are equivalent:

i)AE +BEKE is stable and the transfer matrix GE satisfies the inequality
||GE||∞ < γ.
ii)The MARE (30) has the positive semidefinite stabilizing solution.

AT
EXE +XEAE + γ−2XEFEF T

E XE
−XEBE (HTH)−1BT

E XE + CTC = 0. (30)

Moreover, one such optimal controller that guarantees the γ level of opti-
mality is given by

u = KEx = −(HTH)−1BT
E XEx. (31)
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Note that the MARE (30) is not a convex function with respect to PE
because the matrix γ−2FEF T

E − BE (HTH)−1BT
E is in general indefinite.

5.2. Solvability Condition
The H∞ control problem for the MSPS defined in (27) will be solved by

using the algorithm (10). In that respect, we set

XE ⇒ PE , BE (HTH)−1BT
E − γ−2FEF T

E ⇒ SE , CTC ⇒ Q (32)

where ⇒ stands for the replacement.
The AREs (6c) will produce the unique positive semidefinite stabilizing

solution under the condition (H1) if γ is large enough. Therefore, let us
define the sets as [17, 18]
Γjf := {γ > 0| the pair of AREs (6c) have the positive semidefinite stabi-
lizing solutions},
γjf := inf{γ|γ ∈ Γjf}.
Moreover, let us define the set as

Γ1s := {γ > 0| the ARE (6a) has a positive semidefinite stabilizing solution},
γ1s := inf{γ|γ ∈ Γ1s}.
As the results, for every γ > γ̄ = max{γ1s, γjf}, the MARE (30) has

the positive semidefinite stabilizing solutions if ε1 > 0 and ε2 > 0 are small
enough. Then, we have the following result.

Corollary 5.1. If we select a parameter γ > γ̄ = max{γ1s, γjf}, then
there exist small ε̃1 and ε̃2 such that for all ε1 ∈ (0, ε̃1) and ε2 ∈ (0, ε̃2),
the MARE (30) admits a solution such that PE is the symmetric positive
semidefinite stabilizing solution, which can be written as (7).

Proof. Since the proof is similar to Theorem 2.1, it is omitted.

Remark 5. 1. Note that the condition such as γ > γ̄ = max{γ1s, γjf}
corresponding to the parameter γ is equivalent to the conditions that the
AREs (6c) have the positive semidefinite stabilizing solutions under the
conditions (H1) and (H2).

5.3. Numerical Example
In the rest of this section, in order to demonstrate the efficiency of our

proposed algorithm, we have run a numerical example. The system matrix
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is given as a modification of an Appendix A in [1].

A00 =




0 0 4.5 0 1
0 0 0 4.5 −1
0 0 −0.05 0 −0.1
0 0 0 −0.05 0.1
0 0 32.7 −32.7 0


 ,

A01 =




0 0
0 0
0.1 0
0 0
0 0


 , A02 =




0 0
0 0
0 0
0.1 0
0 0


 ,

A10 =
[
0 0 0 0 0
0 0 −0.4 0 0

]
, A20 =

[
0 0 0 0 0
0 0 0 −0.4 0

]
,

A11 = A22 =
[ −0.05 0.05

0 −0.1
]
, F11 = F22 =

[
0

0.01

]
,

F01 = F02 = B01 = B02 =




0
0
0
0
0


 , B11 = B22 =

[
0
0.1

]
,

CTC = diag(1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5), HTH = diag(20, 20).

Firstly, the numerical results are obtained for small parameter ε1 = ε2 =
10−3. The simulation results for the different parameter εj will be discussed
later. Note that we can not apply the technique proposed in [5, 6] to the
MARE (30) since the Hamiltonian matrices Tjj , j = 1, 2 have eigenvalues
in common. The two basic quantities for the system are γjf = 9.7590 ×
10−2, γ1s = 4.4721 × 10−1. Thus, for every boundary value γ > γ̄ =
max{γ1s, γjf} = 4.472 × 10−1, the AREs (6c) and (6a) have the positive
semidefinite stabilizing solutions. On the other hand, by using MATLAB,
the minimum value γ̂ such that there exists the feedback controller is γ̂ =
4.472× 10−1.
Now, we choose γ = 1.0 (> γ̄) to solve the MARE (30). We give a

solution of the MARE (30).

PE =


 P00 ε1P

T
10 ε2P

T
20

ε1P10 ε1P11
√
ε1ε2P

T
21

ε2P20
√
ε1ε2P21 ε2P22



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P00 =




6.0730e+ 000 8.4607e− 001 5.1386e+ 001
8.4607e− 001 6.0730e+ 000 −1.3695e− 001
5.1386e+ 001 −1.3695e− 001 6.9744e+ 002

−1.3695e− 001 5.1386e+ 001 −2.3924e+ 002
2.5846e− 001 −2.5846e− 001 5.0568e+ 000

−1.3695e− 001 2.5846e− 001
5.1386e+ 001 −2.5846e− 001

−2.3924e+ 002 5.0568e+ 000
6.9744e+ 002 −5.0568e+ 000

−5.0568e+ 000 1.3473e+ 000




ε1P10 =
[
1.0158e− 001 −9.0348e− 005 1.3678e+ 000
5.0000e− 002 7.2948e− 015 6.6053e− 001

−4.7187e− 001 8.3654e− 003
−2.3187e− 001 3.7279e− 003

]

ε2P20 =
[ −9.0348e− 005 1.0158e− 001 −4.7187e − 001

6.0176e− 015 5.0000e− 002 −2.3187e − 001

1.3678e+ 000 −8.3654e− 003
6.6053e− 001 −3.7279e− 003

]

ε1P11 =
[
7.6993e− 003 2.9751e− 003
2.9751e− 003 3.9561e− 003

]
,

ε2P22 =
[
7.6993e− 003 2.9751e− 003
2.9751e− 003 3.9561e− 003

]

√
ε1ε2P21 =

[ −9.3283e− 004 −4.5889e − 004
−4.5889e− 004 −2.2587e − 004

]

We find that the solution of the MARE (30) converges to the exact solution
with accuracy of ||G(P (i)

E )|| < 10−10 after 3 iterative iterations. In order
to verify the exactitude of the solution, we calculate the remainder per
iteration by substituting P

(i)
E into the MARE (30). In Table 1 we present

results for the error ||G(P (i)
E )||. It can be seen that the initial guess (11) for

the algorithm (10) is quite good.

In order to verify the exactitude of the solution, when we substitute the
obtained reference solution P sch

E by using the function are of MATLAB
into the MARE (30), the remainder is ||G(P sch

E )|| = 1.7864e − 009. For
different values of ε1 and ε2, the remainder of the algorithm (10) versus
MATLAB are given by Table 2.
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TABLE 1.

Errors per Iteration

i ||G(P
(i)
E )||

0 3.2505e − 010

1 1.0193e − 002

2 5.0362e − 005

3 4.2618e − 012

TABLE 2.

Error ||G(PE )||

ε1 = ε2 Revised Kleinman algorithm MATLAB

10−2 8.8142e − 011 3.3465e − 010

10−3 5.9038e − 012 1.7864e − 009

10−4 3.4592e − 011 2.2509e − 008

10−5 4.1606e − 012 1.3073e − 005

10−6 8.7978e − 012 5.2618e − 004

10−7 6.1600e − 012 1.4103e − 003

10−8 1.5099e − 011 3.0732e − 002

TABLE 3.

CPU Times [sec]

ε1 = ε2 Revised Kleinman algorithm MATLAB

10−2 5.44e − 001 2.80e − 002

10−3 1.32e − 001 2.70e − 002

10−4 8.00e − 002 2.60e − 002

10−5 8.00e − 002 2.70e − 002

10−6 4.10e − 002 2.60e − 002

10−7 4.30e − 002 2.70e − 002

10−8 2.50e − 002 2.70e − 002

From Table 2, it should be noted that although the dimensionality of the
MARE (30) is small, when the parameter εj is quite small, the loss of
accuracy corresponding to the error ||G(PE)|| for MATLAB is obvious for
this numerical example. On the other hand, the resulting algorithm which
combine the Kleinman algorithm (10) and the fixed point algorithm (24)
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computes the solution to full accuracy for all εj . Hence, the resulting
algorithm of this paper is very useful at least in this example. In Table 3,
we give the results of the CPU times when we have run the new method
versus MATLAB. From Table 3, even if the iterative algorithm (10) takes
a lot of CPU times in the case of not very small value of the singular
perturbation parameter, our algorithm can obtain the exact solution.

6. CONCLUSION

In this paper, we have investigated the MARE with an indefinite quadratic
term in general associated with the MSPS. We have shown that there exists
a unique and bounded solution for the MARE. Furthermore, we have pre-
sented the iterative method for solving the sign indefinite GMARE. Finally,
based on the fixed point algorithm, we have presented the new numerical
methods for solving the GMALE appearing in the Kleinman algorithm. It
should be noted that so far the algorithm for solving the GMALE with
multiparameter has not been established.
The algorithms for solving the GMARE and GMALE are applied to a

wide class of control law synthesis involving a solution of the MARE such
as the robust stabilizing control problem and the guaranteed cost control
problem.

REFERENCES
1. H. K. Khalil and P. V. Kokotovic, Control strategies for decision makers using dif-
ferent models of the same system, IEEE Trans. Automat. Control, AC–23, No. 2
(1978), 289–298.

2. Z. Gajic and H. K. Khalil, Multimodel strategies under random disturbances and
imperfect partial observations, Automatica, 22, No. 1 (1986), 121–125.

3. Z. Gajic, The existence of a unique and bounded solution of the algebraic Riccati
equation of multimodel estimation and control problems, Systems and Control Lett.,
10, (1988), 185–190.

4. Y.-Y. Wang, P. M. Frank and N. E. Wu, Near–optimal control of nonstandard sin-
gularly perturbed systems, Automatica, 30, No. 2 (1994), 277–292.

5. C. Coumarbatch and Z. Gajic, Exact decomposition of the algebraic Riccati equation
of deterministic multimodeling optimal control problems, IEEE Trans. Automat.
Control, AC–45, No. 4 (2000), 790–794.

6. C. Coumarbatch and Z. Gajic, Parallel optimal Kalman filtering for stochastic sys-
tems in multimodeling form, Trans. ASME, J. Dynamic Systems, Measurement, and
Control, 122, No. 12 (2000), 542–550.

7. A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans.
Automat. Control, AC–24, No. 6 (1979), 913–921.
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