QCD thermodynamics with N_f=3,2+1 near the continuum limit at realistic quark mass ~ status report ~

Takashi Umeda (BNL)

BNL

Saumen Datta Christian Schmidt Frithjof Karsch Chulwoo Jung Peter Petreczky

Columbia

Michael Cheng Norman Christ Robert Mawhinney *Tokyo* Shinji Ejiri *NBI* Kostya Petrov

Bielefeld

Matthias Doring Olaf Kaczmarek Edwin Laermann Chuan Miao Stanislav Shcheredin Jan van der Heide Sonke Wissel

Motivation

 The critical parameters of the QCD transition and EoS from first principle calculation (Lattice QCD)
 T_c, ε_c, phase diagram, small μ_B, etc...

 These are very important for Heavy Ion Phenomenology many phenomenological models based on the parameters from lattice QCD results

More accurate determination of these params. is required !

from recent studies these results strongly depend on quark mass & N_f

Our aim is thermodynamics at almost realistic quark mass & $N_{\rm f}$ (2+1)-flavor with, pion mass ~ 200MeV, kaon mass ~ 500MeV

Our Strategy

For "the almost realistic quark mass at N_f=2+1" - pion mass ~ 200MeV, kaon mass ~ 500MeV

- Choice of quark action
 - \rightarrow Staggered type quark action
- huge computational resource is required → QCDOC machine, APE-Next machine
- continuum limit - Nt=4,6(,8) → a=0.2,0.16(,0.1)fm
 - improved action for reliable continuum limit with not so fine lattices

US/RBRC QCDOC 20.000.000.000 ops/sec

BI – apeNEXT 5.000.000.000 ops/sec

today: 1.6 TFlops

http://www.quark.phy.bnl/~hotqcd

improved Staggered action : p4-action

- Karsch, Heller, Sturm (1999)
 gluonic part : Symanzik improvement scheme
 - remove cut-off effects of $O(a^2)$
 - tree level improvement $O(g^0)$

fermion part : improved staggered fermion

- remove cut-off effects & improve rotational sym.
- improve flavor symmetry by smeared 1-link term

The free quark propagator is rotational invariant up to $O(p^4)$

Bulk thermodynamic quantities show drastically reduced cut-off effects

flavor sym. is also improved by fat link

Numerical results

Calculation for Critical temperature

multi-histogram method (Ferrenberg-Swendson) is used
 Transition becomes stronger for smaller light quark masses
 \$\beta_c\$ are determined by peak positions of the susceptibilities

β_c are determined by peak positions of the susceptibilities

 → consistent with β_c from chiral susceptibility

 Transition becomes stronger for larger volume

Critical temperature

(1) critical beta search - from the chiral susceptibilities - fits with power lows

(2) scale determination from static quark potential Sommer scale & string tention

Almost no mass & cutoff dep. in potential scaled by r_0 10

APS Apr. meeting 24 Apr. 2006

The cut-off effect in T_c is about 5% in m_q=0 limit of 3-flavor QCD
 Results is consistent with previous Bielefeld result

Summary

Critical coupling, temperature - 3-flavor QCD $m_{pi}/m_{rho} \ge 0.2$, N_{σ}=8,16,32, N_{τ}=4,6 - (2+1)-flavor QCD $m_{q}/m_{s} \ge 0.05$, N_{σ}=8,16, N_{τ}=4

(2+1)-flavor N $_{\tau}$ =4,6 - determination of Tc - Calculation of EoS - etc...

Order parameters

(2+1)-flavor, 8³x4 lattice

■ β_c are determined by peak positions of the susceptibilities → consistent with β_c from chiral susceptibility

APS Apr. meeting 24 Apr. 2006 (4)Order param. + finite V = 2pages

Contents

Motivation

Our strategy

- Computers
- Lattice setup
- Choice of action
- Numerical results
 - Order parameters
 - Critical temperature
- Summary

