The charmonium wave functions at finite temperature from lattice QCD calculations

T. Umeda, H. Ohno (Univ. of Tsukuba) for the WHOT-QCD Collaboration

RBRC Workshop, BNL, NY, USA, 23 April 2008

Contents of this talk

- Introduction
 - -- Quark Gluon Plasma & J/ψ suppression
 - -- Lattice studies on J/ψ suppression
- Our approach to study charmonium dissociation
- Charmonium wave functions at T>0
- Summary & future plan

J/ψ suppression as a signal of QGP

Confined phase:

linear raising potential

 \rightarrow bound state of c - \bar{c}

De-confined phase:

Debye screening

 \rightarrow scattering state of c - \bar{c}

T.Hashimoto et al. ('86), Matsui&Satz('86)

Lattice QCD calculations:

Spectral function by MEM: T.Umeda et al. ('02), S.Datta et al. ('04),

Asakawa&Hatsuda('04), A.Jakovac et al.('07), G.Aatz et al.('06)

Wave func.: T.Umeda et al. ('00)

B. C. dep.: H. lida et al. ('06)

 \rightarrow all calculations conclude that J/ ψ survives till 1.5T_c or higher

Sequential J/ ψ suppression scenario


```
J/\psi (1S): J^{PC} = 1^{--} M=3097MeV (Vector)

\psi (2S): J^{PC} = 1^{--} M=3686MeV (Vector)

\chi_{c0} (1P): J^{PC} = 0^{++} M=3415MeV (Scalar)

\chi_{c1} (1P): J^{PC} = 1^{++} M=3511MeV (AxialVector) PDG('06)
```

It is important to study dissociation temperatures for not only J/ ψ but also ψ (2S), χ_c 's

Current status on charmonium T_{dis}

- Lattice QCD studies (by MEM analysis) indicate
 - J/ ψ may survive up to T=1.5T_c or higher_{0.7}
 - χ_c may dissolve just above T_c
 e.g. A.Jakovac et al. (2007)
 - no results on excited states, ψ
- The 2nd statement may be misleading (!) small change even in P-wave state up to 1.4T_c w/o the constant mode
- On the other hand, the potential model studies suggest charmonium dissociation may also provide small change in the correlators e.g. A.Mocsy et al. (2007)

Therefore we would like to investigate T_{dis} using new approaches with Lattice QCD without Bayesian analyses

Fig: Temp. dependence of $M_{eff}(t)$ for J/ψ , χ_{c1} w/o constant mode. *T.Umeda* (2007)

Another approach to study charmonium at T>0

In a finite volume, discrete spectra does not always indicate bound states!

In order to study a few lowest states, the variational analysis is one of the most reliable approaches!

N x N correlation matrix: C(t)

$$C(t)\psi = \lambda(t, t_0)C(t_0)\psi \qquad \lambda_i(t, t_0) = e^{-E_i(t - t_0)}$$

Bound state or scattering state?

We know three ways to identify the state in a finite volume

E : energy V : volume

 Φ (r): wave function r: c - \bar{c} distance

H. lida et al. ('06), N. Ishii et al. ('05)
T. Umeda (Tsukuba)

Lattice setup

- Quenched approximation (no dynamical quark effect)
- Anisotropic lattices

lattice spacing: $a_s = 0.0970(5)$ fm

anisotropy: $a_s/a_t = 4$

- r_s=1 to suppress doubler effects
- Variational analysis with 4 x 4 correlation matrix

N_t	32	26	20	16	12
T/T_c	0.88	1.08	1.40	1.75	2.33
# of conf.					
$V=16^{3}$	300	300	300	300	300
$V=20^{3}$	300	300	300	300	300
$V=32^3$		22 	:		100

Boundary condition dependence

The idea has been originally applied for the charmonium study in H. Iida et al., PRD74, 074502 (2006).

Temperature dependence of charmonium spectra

$$q(x_i + L_i) = b_i q(x_i)$$

 $b_i = 1$: periodic
 $b_i = -1$: anti-periodic

PBC:
$$b=(1, 1, 1)$$

APBC: $b=(-1, -1, -1)$
HBC: $b=(-1, 1, 1)$

an expected gap in V=(2fm)³ (free quark case) ~ 200MeV

- No significant differences in the different B.C.
- Analysis is difficult at higher temperature (2T_c~)

RBRC Workshop T.Umeda (Tsukuba) 10 /16

Wave functions at finite temperature

Temp. dependence of (Bethe-Salpeter) "Wave function"

$$BS(\vec{r},t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x}+\vec{r},t) \Gamma q(\vec{x},t) \bar{q}(\vec{0},0) \Gamma q(\vec{0},0) \rangle$$

$$\Psi(|\vec{r}|,t) = BS(\vec{r},t)/BS(\vec{r}_0,t)$$

$$\Gamma = \begin{cases} \gamma_5 & (Ps) \\ \gamma_i & (Ve) & (i = 1, 2, 3) \\ \sum_j \left(\overrightarrow{\partial}_j \gamma_j - \overleftarrow{\partial}_j \gamma_j \right) & (Sc) \\ \sum_{j,k} \epsilon_{ijk} \left(\overrightarrow{\partial}_j \gamma_k - \overleftarrow{\partial}_j \gamma_k \right) & (Av) & (i = 1, 2, 3) \end{cases}$$

using the eigen functions of the variational method

→ we can extract the wave functions of each states

Wave functions in free quark case

Test with free quarks ($L_s/a=20$, ma=0.17) in case of S-wave channels

Free quarks make trivial waves with an allowed momentum in a box

$$\Psi_k(|\vec{r}|,t) = \frac{\sum_{\vec{p}=\vec{k}} \cos(p_1 r_1) \cos(p_2 r_2) \cos(p_3 r_3)}{\sum_{\vec{p}=\vec{k}} 1}$$

- The wave function is constructed with eigen functions of 6 x 6 correlators
- Our method well reproduces the analytic solutions (!)

Charmonium wave functions at finite temperatures

- Small temperature dependence in each channels
- Clear signals of bound states even at T=2.3Tc (!)

Volume dependence at T=2.3Tc

- Clear signals of bound states even at T=2.3Tc (!)
- Large volume is necessary for P-wave states.

Summary and future plan

We investigated T_{dis} of charmonia from Lattice QCD using another approach to study charmonium at T>0 without Bayesian analysis

- boundary condition dependence
- Wave function (Volume dependence)

No evidence for unbound c- \bar{c} quarks up to T = 2.3 Tc

 \rightarrow The result may affect the scenario of J/ ψ suppression.

Future plan

- higher temperature calculations (T=3T_c or higher)
- Full QCD calculations (Nf=2+1 Wilson is now in progress)