Charmonium dissociation temperatures in lattice QCD

Takashi Umeda

This talk is based on the Phys. Rev. D75 094502 (2007) [hep-lat/0701005]

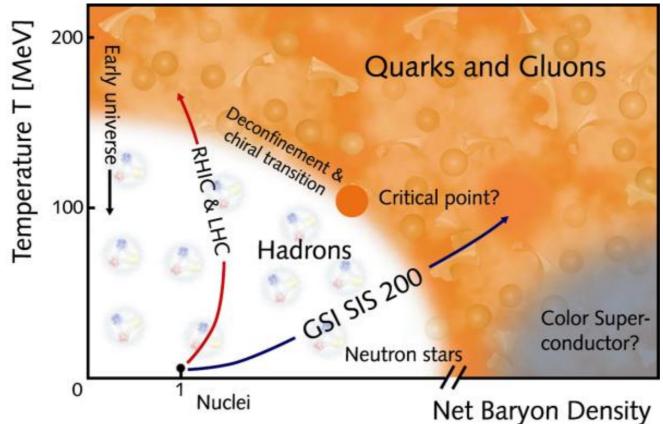
The 5th Heavy Ion Cafe, Univ. of Tokyo, 30 June 2007

Contents

Introduction

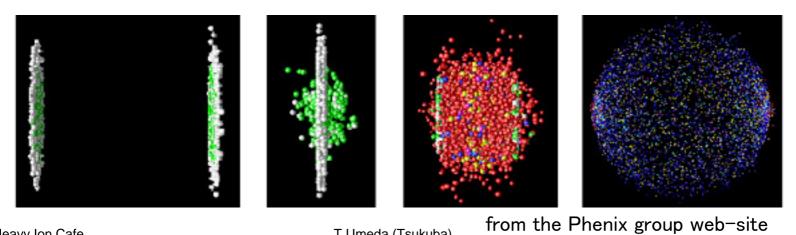
- Overview
- J/ ψ suppression
- Charmonium in Lattice QCD
- Sequential J/ ψ suppression
- Quenched QCD calculations
 - Lattice setup
 - T dependence of charmonium correlators
 - Constant mode in meson correlators
- **Discussion & Conclusion**

Quark Gluon Plasma (QGP)



Experiments

- SPS : CERN (2005) Super Proton Synchrotron
- RHIC: BNL (2000) Relativistic Heavy Ion Collider
- LHC : CERN (2009) Large Hadron Collider



5th Heavy Ion Cafe

T.Umeda (Tsukuba)

Signatures of QGP

Signatures of QGP (1) Average transverse momentum (1) " (6)(2) Volume (3) Enhance of strangeness and charm (2)(7)(4) Enhance of anti-particles (5) Elliptic flow (ν_2) (3)(8)(6) Fluctuations conserved charges (7) Suppression of high- p_T hadrons (4)(9)(8) Heavy quarkonium (9) Modification of light vector mesons (5) (10)(10) Thermal photons and dileptons K. Yagi, T. Hatsuda, and Y. Miake, "Quark-Gluon Plasma"

Heavy Ion Cafe

J/ ψ suppression .

T.Hashimoto et al., PRL57 (1986) 2123. T.Matsui & H.Satz, PLB178 (1986) 416.

2006/12/9

Talk by Ozawa @ Heavy Ion Cafe

2

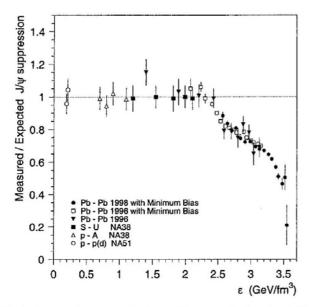


Fig. 7. Measured J/ψ production yields, normalised to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.

Phys.Lett.B477(2000)28 NA50 Collaboration

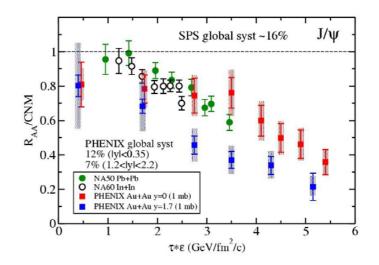


Figure 10: Survival fraction (R_{AA}/CNM) vs energy density comparison of PHENIX Au+Au suppression to that from NA38/50 at CERN.

QM2006 PHENIX Collaboration

"Charmonium states in QGP exist or not ?" from Lattice QCD

Lattice QCD enables us to perform nonperturbative calculations of QCD

Charmonium in Lattice QCD

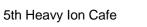
$$\langle X \rangle = \frac{1}{Z_{QCD}} \int Dq(x) D\bar{q}(x) DA_{\mu}(x) X(q, \bar{q}, A_{\mu}) e^{-S_{QCD}}$$

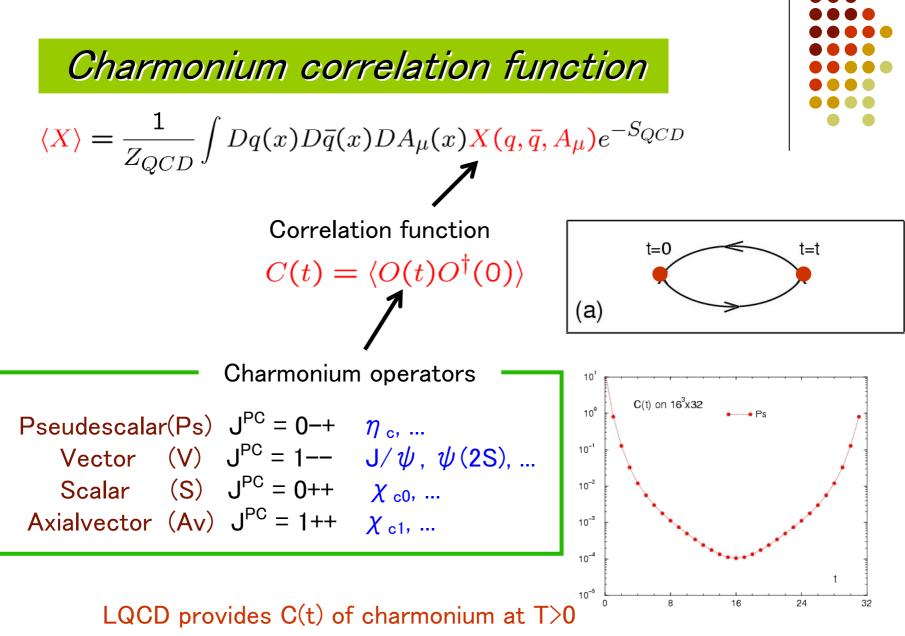
Path integral by MC integration

QCD action on a lattice

Wilson quark, Staggered (KS) quark, Domain Wall quark, etc

Input parameters (lattice setup): (1) gauge coupling → lattice spacing (a) → continuum limit (2) quark masses (3) (Imaginary) time extent → Temperature (T=1/Nta)





5th Heavy Ion Cafe

T.Umeda (Tsukuba)

Charmonium spectral function

$$C(t) = \langle O(t)O^{\dagger}(0) \rangle$$

=
$$\int d\omega \rho(\omega) \frac{e^{-\omega t} + e^{-\omega(N_t - t)}}{1 - e^{-\omega N_t}}$$

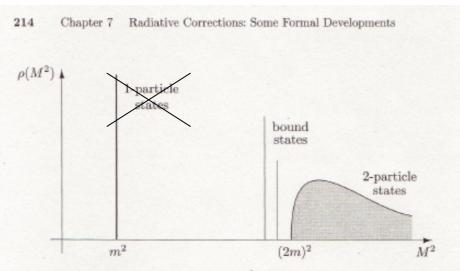
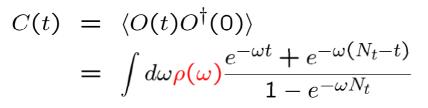


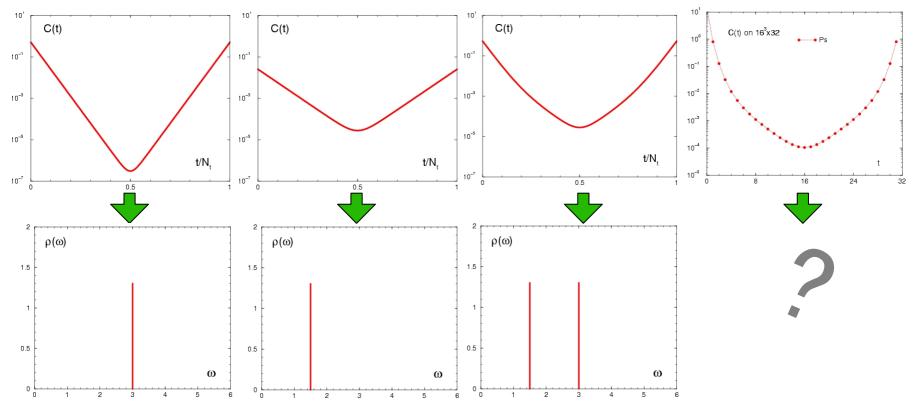
Figure 7.2. The spectral function $\rho(M^2)$ for a typical interacting field theory. The one-particle states contribute a delta function at m^2 (the square of the particle's mass). Multiparticle states have a continuous spectrum beginning at $(2m)^2$. There may also be bound states.

from "An Introduction to Quantum Field Theory" Michael E. Peskin, Perseus books (1995) T.Umeda (Tsukuba)

9

Example of lattice results





T.Umeda (Tsukuba)

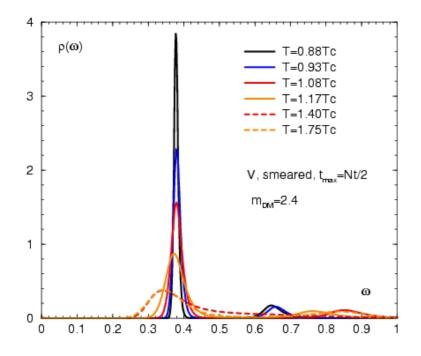
Charmonium spectral function

$$C(t) = \langle O(t)O^{\dagger}(0) \rangle$$

=
$$\int d\omega \rho(\omega) \frac{e^{-\omega t} + e^{-\omega(N_t - t)}}{1 - e^{-\omega N_t}}$$

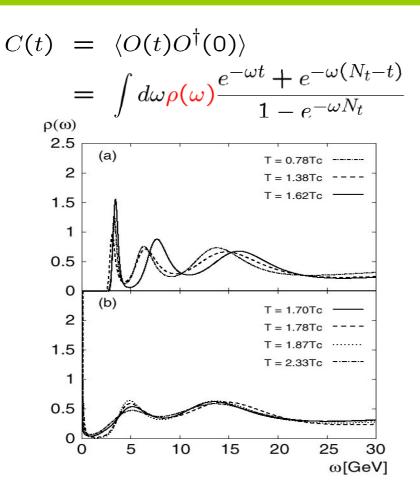
Maximum entropy method

$$C(t) \rightarrow \rho(\omega)$$



Quenched QCD				
– T. Umeda et al.,				
EPJC39S1, 9, (2005).				
– S. Datta et al.,				
PRD69, 094507, (2004).				
– T. Hatsuda & M. Asakawa,				
PRL92, 012001, (2004).				
– A. Jakovac et al.,				
PRD75, 014506 (2007).				
Full QCD				
– G. Aarts et al.,				
hep-lat/0610065.				

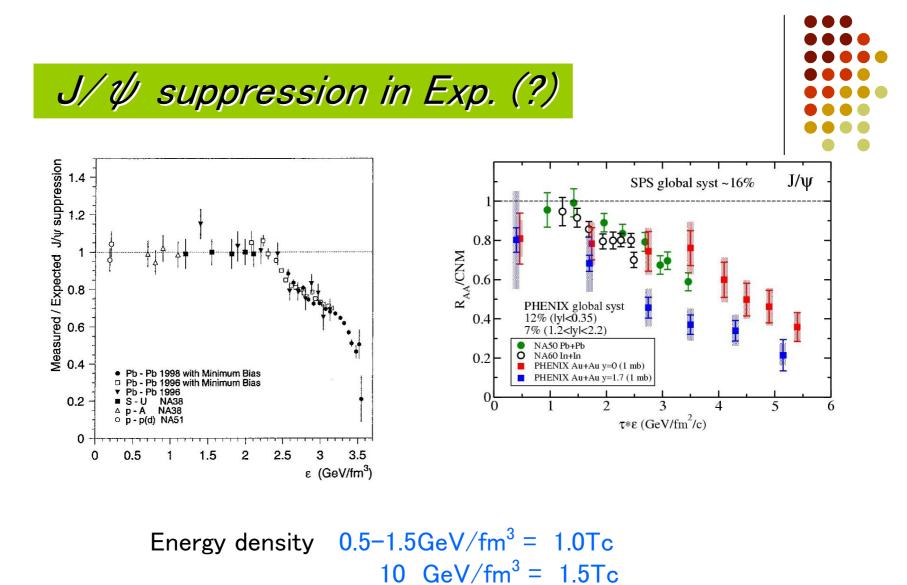
Charmonium spectral function



Maximum entropy method $C(t) \rightarrow \rho(\omega)$



All studies indicate survival of J/ ψ state above T_c (1.5T_c?)

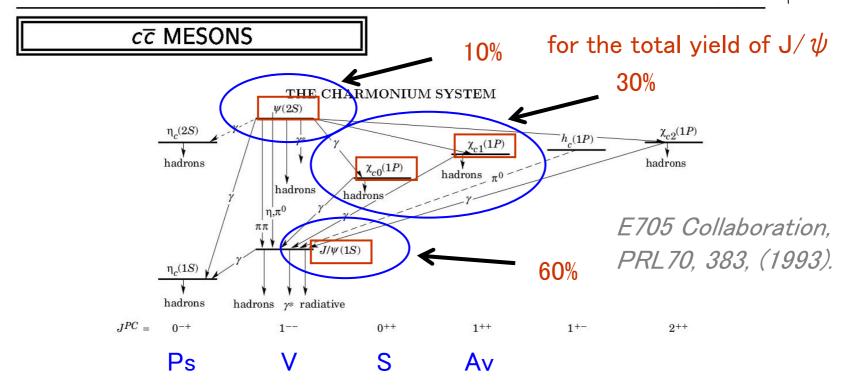


5th Heavy Ion Cafe

 $30 \text{ GeV/fm}^3 = 2.0 \text{Tc}$

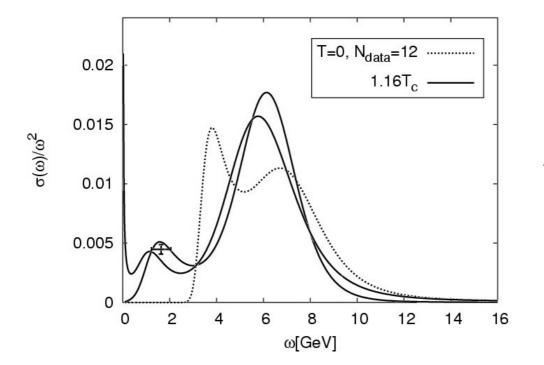
Sequential J/ \$\$\$ suppression

Particle Data Group (2006)



Dissociation temperatures of J/ψ and $\psi' \& \chi_c$ are important for QGP phenomenology.

T.Umeda (Tsukuba)



S. Datta et al., PRD69, 094507 (2004). A.Jakovac et al., PRD75, 014506 (2007).

FIG. 19: The scalar spectral function for $\beta = 6.1$ at $T = 1.16T_c$ and at zero temperature reconstructed using $N_{data} = 12$. At finite temperature two default models $m(\omega) = 0.01$ and $m(\omega) = 0.038\omega^2$ have been used.

Contents

Introduction

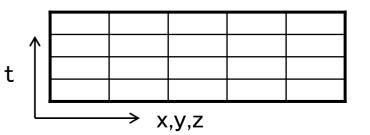
- Overview
- J/ ψ suppression
- Charmonium in Lattice QCD
- Sequential J/ ψ suppression
- Quenched QCD calculations
 - Lattice setup
 - T dependence of charmonium correlators
 - Constant mode in meson correlators
- Discussion & Conclusion

Lattice QCD results

Lattice setup

- Quenched approximation (no dynamical quark effect)
- Anisotropic lattices

lattice size : $20^3 \times N_t$ lattice spacing : $1/a_s = 2.03(1)$ GeV,anisotropy : $a_s/a_t = 4$



Quark mass

charm quark (tuned with J/ ψ mass)

$N_{ au}$	160	32	26	20
T/T_c	~ 0	0.88	1.08	1.4
# of conf.	60	300	300	300

Effective mass (local mass)

Definition of effective mass

$$C(t) = A_0 e^{-m_0 t} + A_1 e^{-m_1 t} + \cdots$$

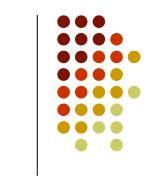
$$\equiv A e^{-m_{eff}(t)t}$$

$$\frac{C(t)}{C(t+1)} = e^{-m_{eff}(t)}$$

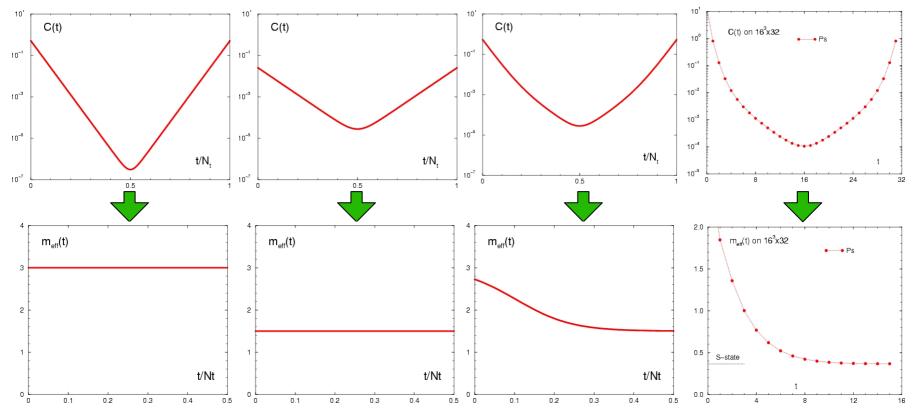
$$m_{eff}(t)
ightarrow m_0$$
 when $(m_1 - m_0)t \gg 1$

In the (anti) periodic b.c.

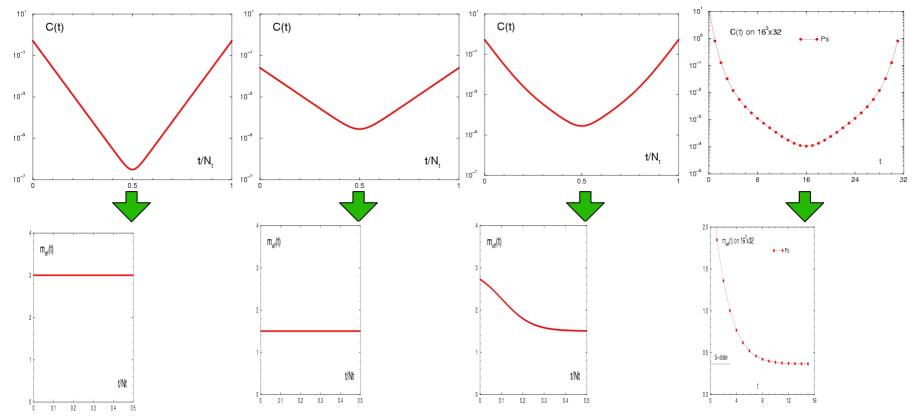
$$\frac{C(t)}{C(t+1)} = \frac{\cosh[m_{eff}(t)(N_t/2 - t)]}{\cosh[m_{eff}(t)(N_t/2 - t - 1)]}$$



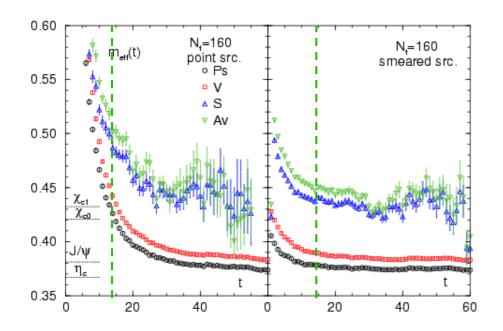
Effective mass (local mass)



Effective mass (local mass)



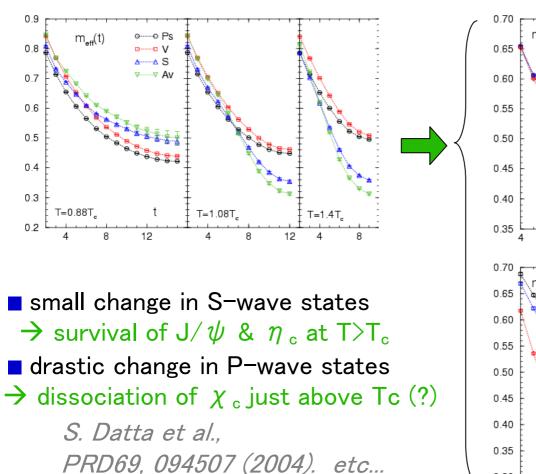
At zero temperature

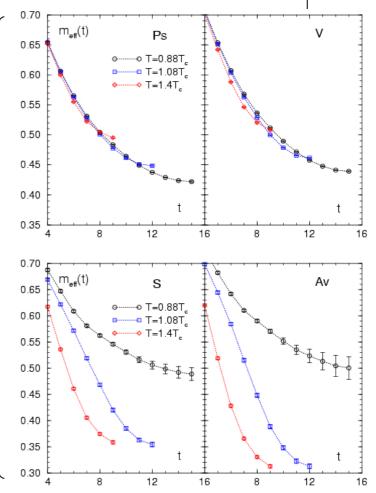


(our lattice results) $M_{PS} = 3033(19) \text{ MeV}$ $M_V = 3107(19) \text{ MeV}$

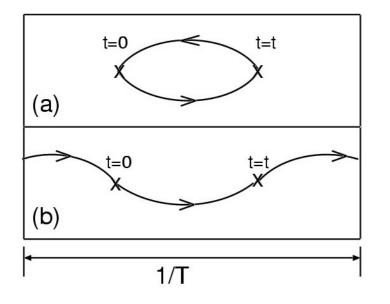
(exp. results from PDG06) $M_{\eta c} = 2980 \text{ MeV}$ $M_{J/\psi} = 3097 \text{ MeV}$ $M_{\chi c0} = 3415 \text{ MeV}$ $M_{\chi c1} = 3511 \text{ MeV}$

 In our lattice N_t ~ 28 at T_c t = 1 - 14 is available near T_c
 Spatially extended (smeared) op. is discussed later





Constant mode

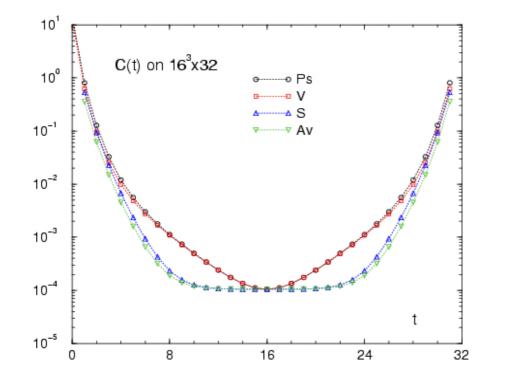


Pentaquark (KN state): two pion state: → Dirichlet b.c. c.f. T.T.Takahashi et al., PRD71, 114509 (2005). $exp(-m_qt) x exp(-m_qt)$ $= exp(-2m_qt) m_q \text{ is quark mass}$ or single quark energy $exp(-m_qt) x exp(-m_q(L_t-t))$ $= exp(-m_qL_t)$

 L_t = temporal extent

in imaginary time formalism
 L_t = 1/Temp.
 gauge field : periodic b.c.
 quark field : anti−periodic b.c.
 in confined phase: m_q is infinite
 → the effect appears
 only in deconfined phase

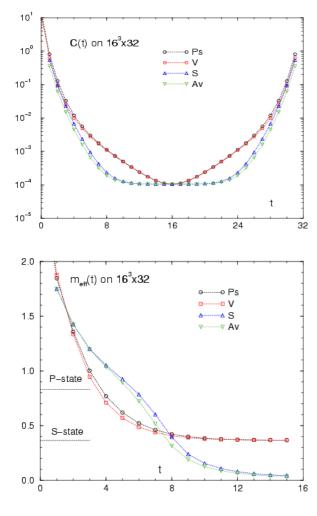
Free quark calculations



 16³ x 32 isotropic lattice
 Wilson quark action with m_qa = 0.2

Obvious constant contribution in P-wave states

Free quark calculations



Continuum form of the correlators calculated by S. Sasaki

$$C(t) = \sum_{\vec{p}} \frac{4}{\cosh(E_p N_t/2)} \times$$

$$\left(E_p^2 \cosh\left[2E_p(t - N_t/2)\right] \right) \quad \text{for } \Gamma = \gamma_5$$

$$\left((E_p^2 - p_i^2) \cosh\left[2E_p(t - N_t/2)\right] + p_i^2 \right) \quad \text{for } \Gamma = \gamma_i$$

$$- \left(p^2 \cosh\left[2E_p(t - N_t/2)\right] + \left(E_p^2 - p^2\right) \right) \quad \text{for } \Gamma = 1$$

$$- \left((p^2 - p_i^2) \cosh\left[2E_p(t - N_t/2)\right] + \left(E_p^2 - p^2 + p_i^2\right) \right)$$

$$\text{for } \Gamma = \gamma_i \gamma_5$$

where

 E_p : single quark energy with relative mom. p

$$p^2 = \sum_i p_i^2$$

5th Heavy Ion Cafe

Physical interpretation

 $\rho_{\Gamma}(\omega) = \Theta(\omega^2 - 4m_q^2) \frac{N_c}{8\pi\omega} \sqrt{\omega^2 - 4m_q^2} [1 - 2n_F(\omega/2)]$

 $\times [\omega^2 (a_H^{(1)} - a_H^{(2)}) + 4m^2 (a_H^{(2)} - a_H^{(3)})]$

 $+2\pi\omega\delta(\omega)N_c[(a_H^{(1)}+a_H^{(2)})I_1+(a_H^{(2)}-a_H^{(3)})I_2]$

F. Karsch et al., PRD68, 014504 (2003). G. Aarts et al., NPB726, 93 (2005).

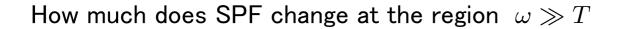
constant contribution remains in the continuum form & infinite volume

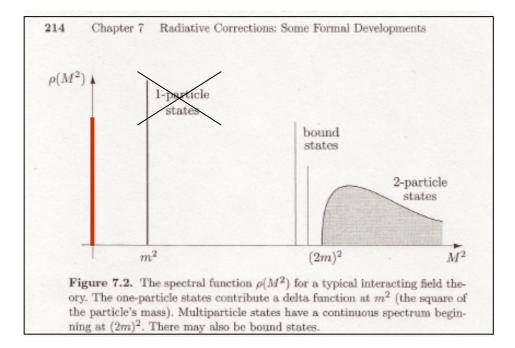
The constant term is related to some transport coefficients.

From Kubo-formula, for example, a derivative of the SPF in the V channel is related to the electrical conductivity σ .

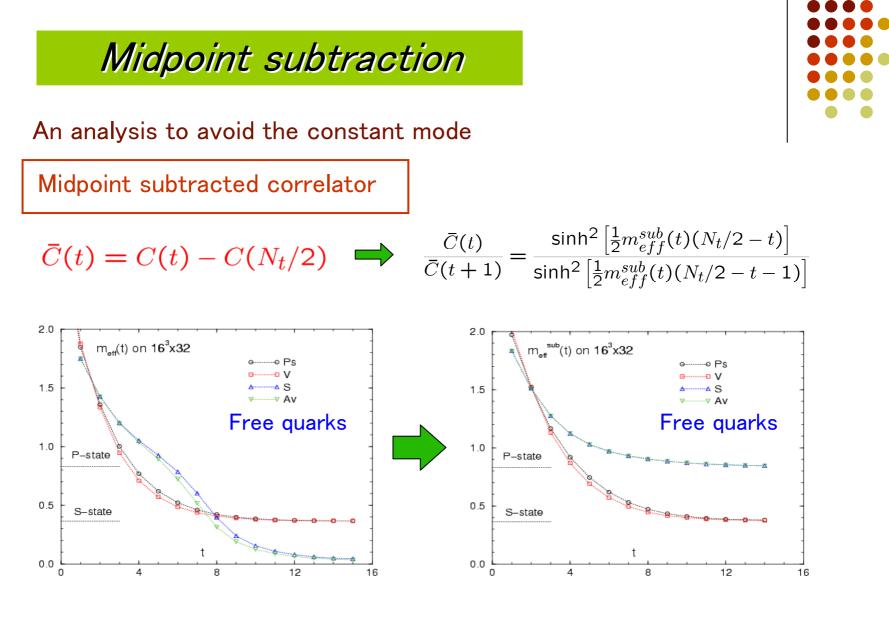
$$\sigma = \frac{1}{6} \frac{\partial}{\partial \omega} \rho_V(\omega) \Big|_{\omega = 0}$$

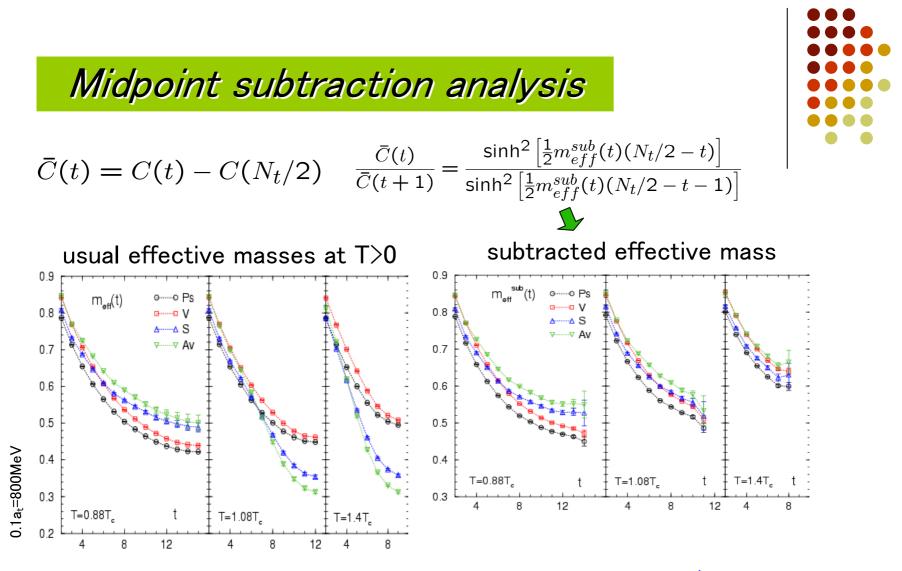
Without constant mode





from "An Introduction to Quantum Field Theory" Michael E. Peskin, Perseus books (1995)



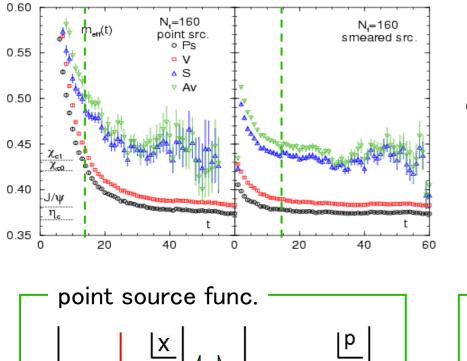


the drastic change in P-wave states disappears in $m_{eff}^{sub}(t)$

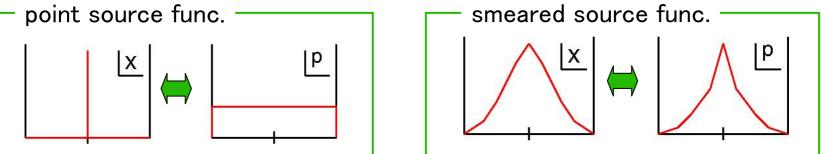
 \rightarrow the change is due to the constant mode

T.Umeda (Tsukuba)

Results with extended op.

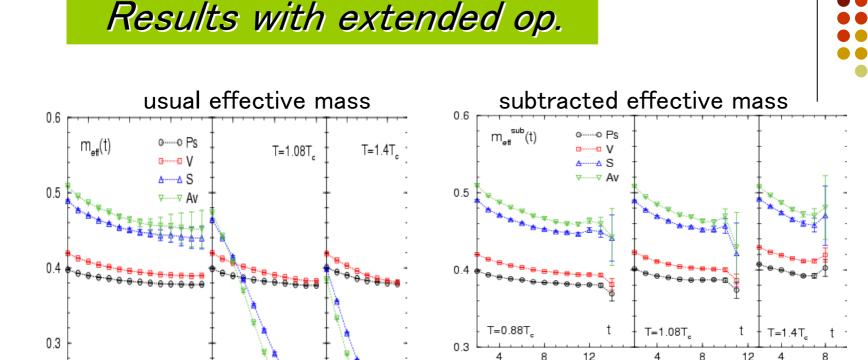


Spatially extended operators: $O_{\Gamma}(\vec{x},t) = \sum_{\vec{y}} \phi(\vec{y}) \bar{q}(\vec{x} - \vec{y},t) \Gamma q(\vec{x},t)$ with a smearing func. $\phi(\mathbf{x})$ in Coulomb gauge



The extended op. yields large overlap with lowest states

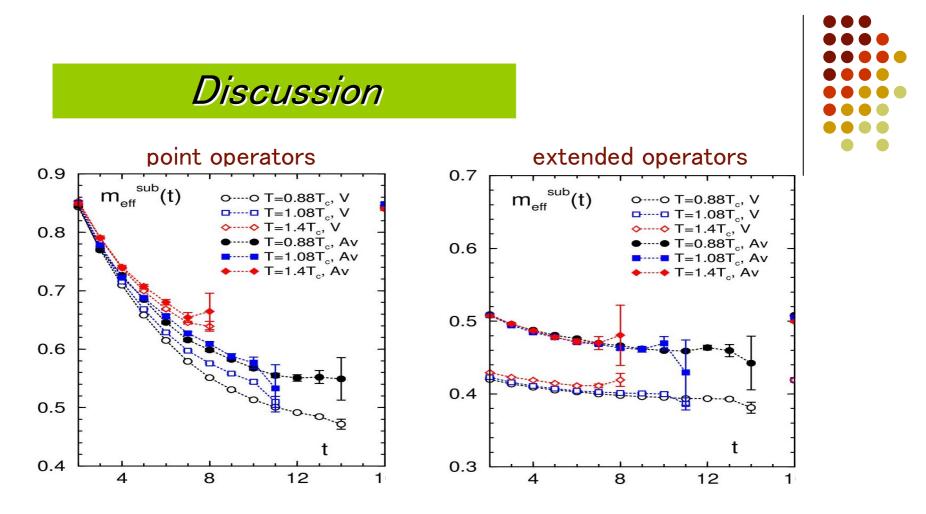
T.Umeda (Tsukuba)



extended op. enhances overlap with const. mode
 small constant effect is visible in V channel
 no large change above T_c in m_{eff}^{sub}(t)

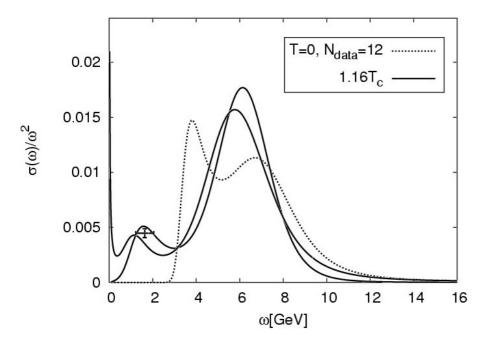
T=0.88T_

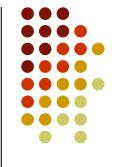
0.2



The drastic change of P-wave states is due to the const. contribution. \rightarrow There are small changes in SPFs (except for ω =0 peak).

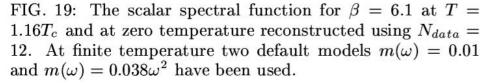
Why several MEM studies show the dissociation of $\chi_{\rm c}$ states ?





They concluded that

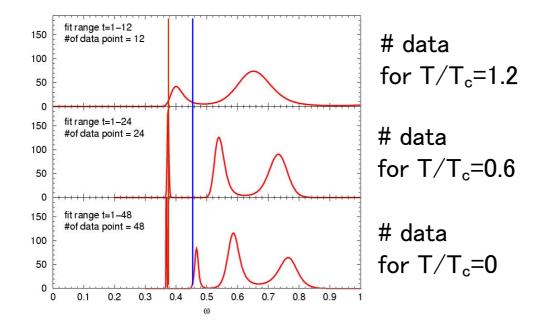
- the results of SPFs for P-states are not so reliable.
 - e.g. large default model dep.
- the drastic change just above Tc is reliable results.



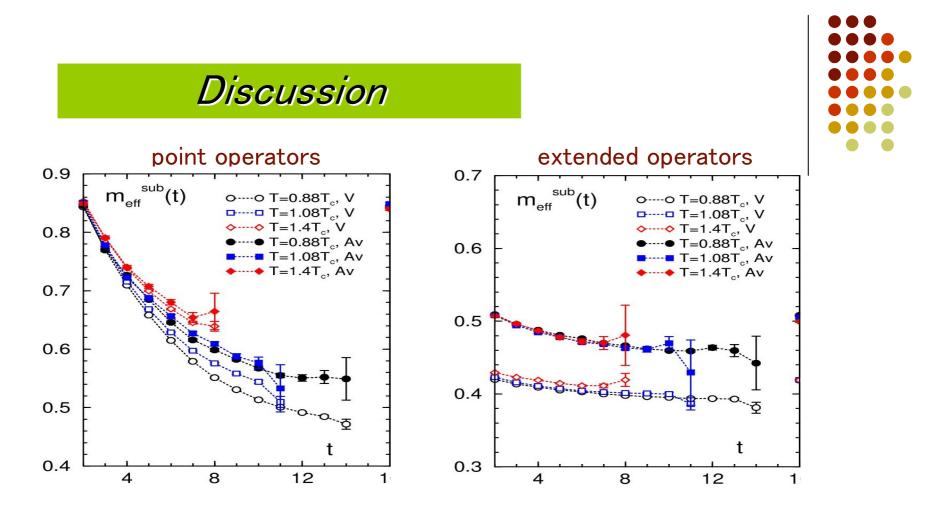
A.Jakovac et al., hep-lat/0611017.

Difficulties in MEM analysis

MEM test using T=0 data



MEM analysis sometimes fails if data quality is not sufficient Furthermore P-wave states have larger noise than that of S-wave states



The drastic change of P-wave states is due to the constant mode. \rightarrow There are small changes in SPFs (except for ω =0).

Why several MEM studies show the dissociation of $\chi_{\rm c}$ states ?

Conclusion

There is the constant mode in charmonium correlators above T_c

- The drastic change in $\chi_{\rm c}$ states is due to the constant mode
 - \rightarrow the survival of χ_c states above T_c, at least T=1.4T_c.

The result may affect the scenario of J/ψ suppression.

In the MEM analysis,

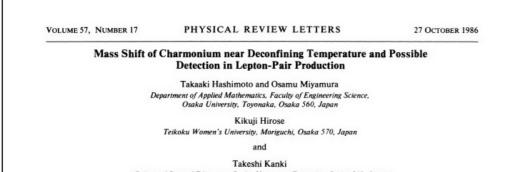
one has to check consistency of the results at $\omega \gg T$ using, e.g., midpoint subtracted correlators.

$$\bar{C}(t) = C(t) - C(N_t/2)$$

$$(t) = \int_0^\infty d\omega \rho_{\Gamma}(\omega) K^{sub}(\omega, t),$$
$$K^{sub}(\omega, t) = \frac{\sinh^2(\frac{\omega}{2}(N_t/2 - t))}{\sinh(\omega N_t/2)}$$

 \bar{C}

First paper on the J/ \$\$\$ suppression



College of General Education, Osaka University, Toyonaka, Osaka 560, Japan (Received 27 May 1986)

photo : Prof. Osamu Miyamura

VOLUME 57, NUMBER 17

PHYSICAL REVIEW LETTERS

27 OCTOBER 1986

in Monte Carlo analyses.^{7,8} A related question is whether charmoniumlike clusters may still exist in a quark-gluon plasma. We have made tentative calculations by screened Coulombic potential and found that possibility small. Thus, contribution to lepton pair in the J/ψ mass region from the deconfinement phase would be mainly thermal quark-antiquark annihilation.¹⁸ In connection with this point, we make a com-

lin, 1985), p. 1.

- ⁴R. D. Pisarski, Phys. Lett. 110B, 155 (1982).
- ⁵R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).
- ⁶L. McLerran and B. Svetitsky, Phys. Rev. D 24, 450 (1981).
- ⁷M. Fukugita, T. Kaneko, and A. Ukawa, Phys. Lett. 154B, 185 (1985).
 - SC Dorninger H Leeh and H Markum 7 Phys C 20

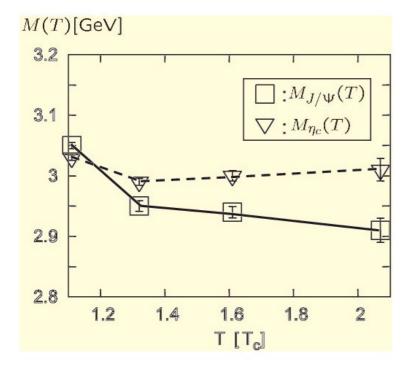


FIG. 8. Temperature dependence of the pole mass (on PBC) of J/Ψ and η_c for $(1.11-2.07)T_c$. The squares denote $M_{J/\Psi}(T)$ and the inverse triangles denote $M_{\eta_c}(T)$. There occurs the level inversion of J/Ψ and η_c above $1.3T_c$.

H. Iida et al., PRD74, 074502 (2006).

Several groups have presented

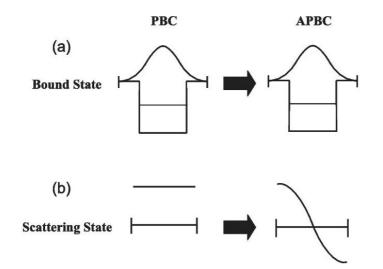
almost no change in Ps channel

small but visible change in V channel

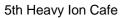
These results can be explained by the constant contribution.

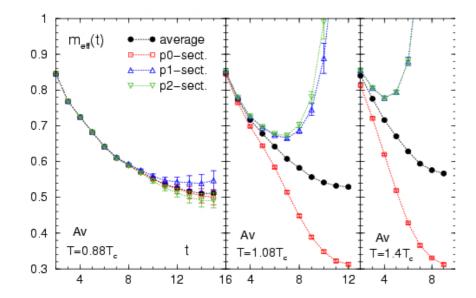
- no constant in Ps channel
- small constant in V channel (proportional to p_i²)
 in free quark case

H. Iida et al., PRD74, 074502 (2006).



S-wave states : PBC p=(0, 0, 0) < xAPBC p=(π/L , 0, 0) P-wave states : PBC p=($2\pi/L$, 0, 0) > xAPBC p=(π/L , 0, 0) P-const. : PBC p=(0, 0, 0) < xAPBC p=(π/L , 0, 0)





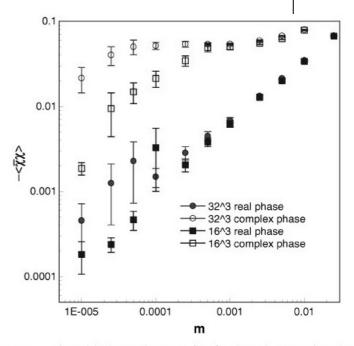


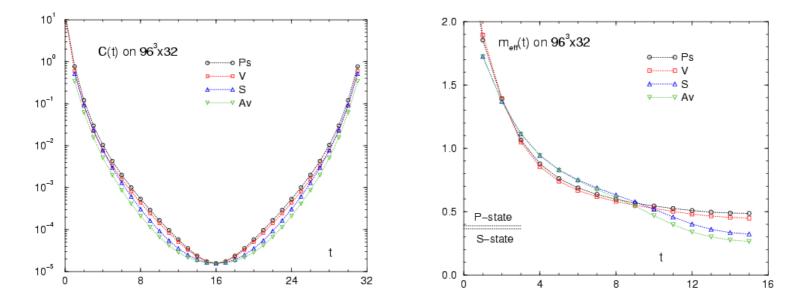
FIG. 1. The chiral condensate $\langle \bar{\chi} \chi \rangle$ plotted as a function of quark mass for a pure gauge calculation on $16^3 \times 4$ and $32^3 \times 4$ lattices. The real phase (closed points) is the most physical [det(D - m) is largest for this phase]. No evidence is seen for the expected anomalous behavior, $\langle \bar{\chi} \chi \rangle \sim m^{-1}$ as $m \to 0$.

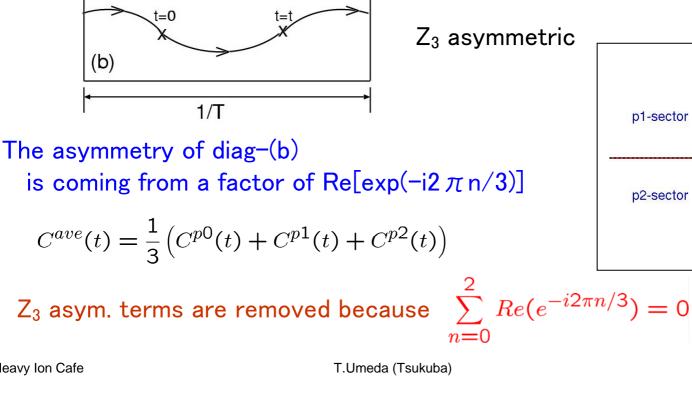
S. Chandrasekharan et al., PRL82, 2463, (1999).

Volume dependence

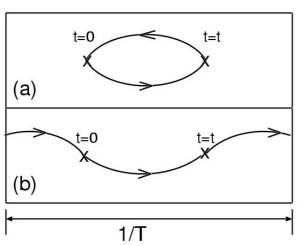
Size of the constant contribution depends on the volume N_s^3 The dependence is negligible at $N_s/N_t \gtrsim 2$

■ Results on 96³ x 32 ($N_s/N_t=3 \leftarrow$ similar to T>0 quench QCD calculation)



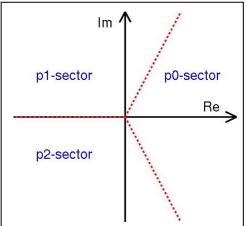


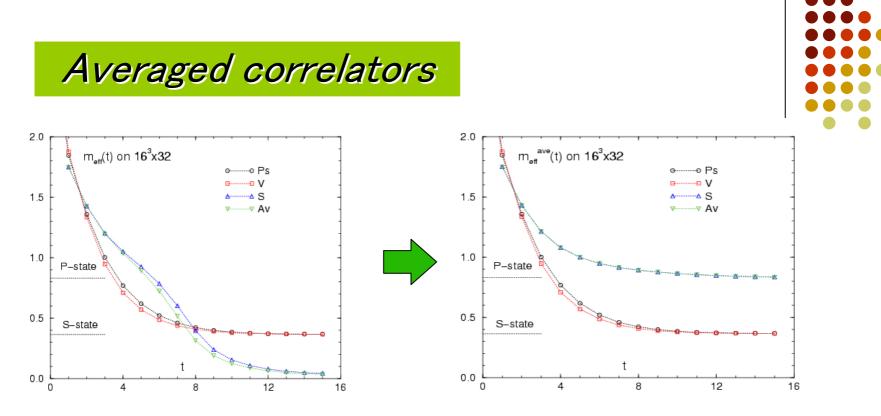
Here we consider the Z_3 transformation



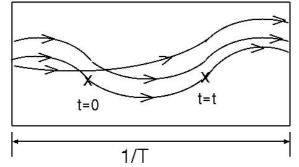
 Z_3 symmetrization

 Z_3 symmetric



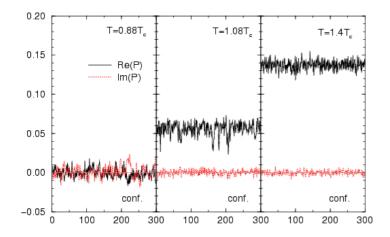


However, this is not an exact method to avoid the constant contribution.



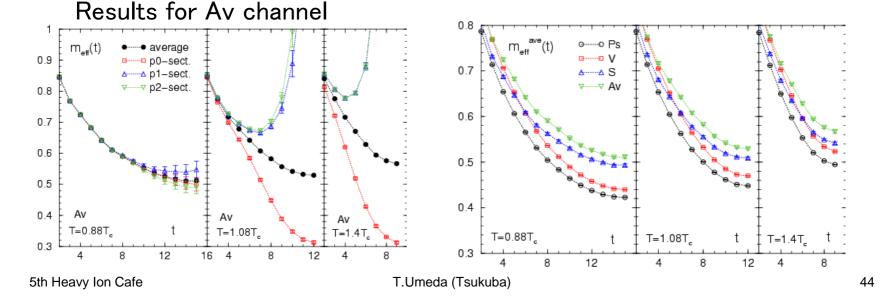
 The 3 times wrapping diagram is also Z₃ symmetric.
 → the contribution is not canceled.
 but, O(exp(-m_qN_t)) ≫ O(exp(-3m_qN_t))

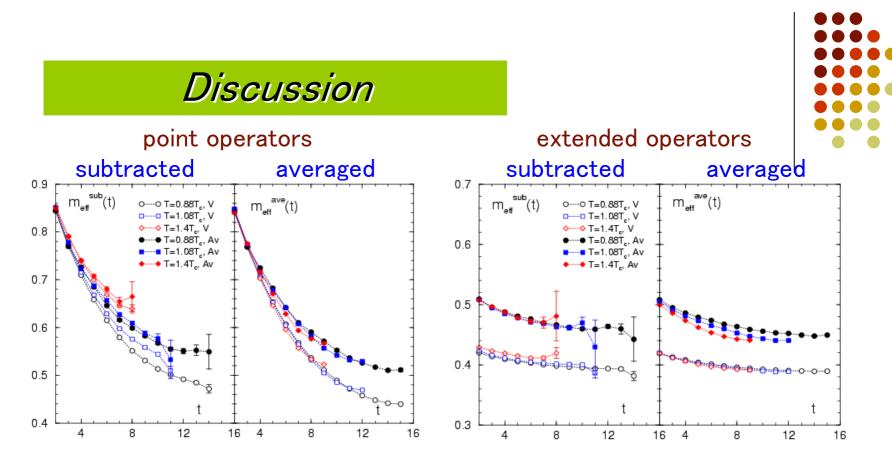
Polyakov loop sector dependence



■ after Z₃ transformation const. → Re(exp(-i2 π n/3))*const.

- even below T_c, small const. effect enhances the stat. fluctuation.
 - drastic change in P-states disappears.





The drastic change of P-wave states is due to the const. contribution. \rightarrow There are small changes in SPFs (except for $\omega=0$).

Why several MEM studies show the dissociation of $\chi_{\rm c}$ states ?

Spectral representation

Spectral function of the correlator

$$C(t) = \int_0^\infty d\omega \rho_{\Gamma}(\omega) K(\omega, t),$$

$$K(\omega, t) = \frac{\cosh(\omega(N_t/2 - t))}{\sinh(\omega N_t/2)}$$

F. Karsch et al., PRD68, 014504 (2003). G. Aarts et al., NPB726, 93 (2005).

$$\begin{split} \rho_{\Gamma}(\omega) &= \Theta(\omega^{2} - 4m_{q}^{2}) \frac{N_{c}}{8\pi\omega} \sqrt{\omega^{2} - 4m_{q}^{2}} [1 - 2n_{F}(\omega/2)] & I_{1} = -2\int_{\vec{k}} n_{F}'(\omega_{\vec{k}}) \\ &\times [\omega^{2}(a_{H}^{(1)} - a_{H}^{(2)}) + 4m^{2}(a_{H}^{(2)} - a_{H}^{(3)})] & \text{with} \\ &+ 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] & I_{2} = -2\int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \\ \hline \\ \hline \frac{\Gamma}{V} \frac{a_{H}^{(1)}}{\gamma_{i}} \frac{a_{H}^{(2)}}{3} \frac{a_{H}^{(1)}}{-1} \frac{a_{H}^{(2)}}{-1} \frac{a_{H}^{(2)}}{a_{H}^{(2)} - a_{H}^{(3)}} \frac{a_{H}^{(1)} - a_{H}^{(2)}}{a_{H}^{(2)} - a_{H}^{(3)}} \frac{a_{H}^{(1)} + a_{H}^{(2)}}{a_{H}^{(2)} - a_{H}^{(3)}} \\ \hline \\ \overline{\nabla} \frac{\gamma_{i}}{\gamma_{i}} \frac{\gamma_{i}}{3} \frac{1}{-1} \frac{-1}{-1} \frac{1}{2} \frac{2}{4} \frac{0}{2} \frac{0}{2} \frac{0}{-2} \\ \frac{1}{2} \frac{-2}{-2} \frac{0}{4} \frac{-2}{-2} \frac{-2}{-4} \\ \hline \\ \overline{E} \& O \overline{\mathcal{T}} - \overline{\mathcal{I}} \mathcal{U} \mathcal{V} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \\ \hline \\ \end{array}$$
 chiral symmetry in massless limit

T.Umeda (Tsukuba)