A constant mode in charmonium correlators in finite temperature lattice QCD

Takashi Umeda

This talk is based on the hep-lat/0701005.

Tokyo Metropolitan University, Tokyo, JPS meeting, Mar. 28, 2007

Introduction

 ${\rm J}/\psi$ suppression is one of the most promising probe to find the QGP formation in HIC experiment.

Lattice QCD studies of charmonium spectral function suggest the survival of J/ ψ state above T_c (1.5T_c?)

Indirect (sequential) J/ ψ suppression

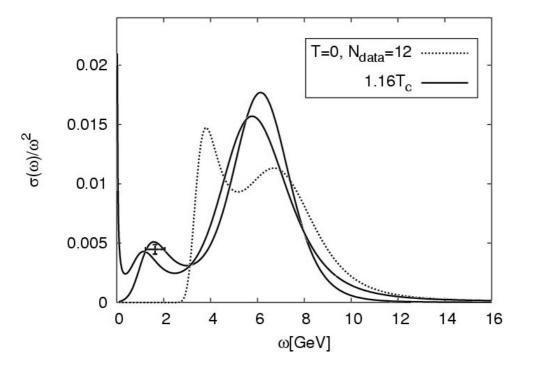
total yield of J/ ψ =

direct production of J/ ψ (60%)

+ decay from higher states, ψ ' & $\chi_{\rm c}$ (40%)

L. Antoniazzi et al. (E705 Collab.), PRL70, 383, (1993).

→ A part of the J/ ψ suppression may be observed at T_{dis.}(ψ ' or χ _c) when T_{dis.}(ψ ' or χ _c) < T_{dis.}(J/ ψ)



S. Datta et al., PRD69, 094507 (2004). A.Jakovac et al., PRD75, 014506 (2007).

FIG. 19: The scalar spectral function for $\beta = 6.1$ at $T = 1.16T_c$ and at zero temperature reconstructed using $N_{data} = 12$. At finite temperature two default models $m(\omega) = 0.01$ and $m(\omega) = 0.038\omega^2$ have been used.

Quenched QCD at T>0

Lattice setup

anisotropic lattices : $20^3 \times N_t$ 1/a_s = 2.03(1) GeV, a_s/a_t = 4 Clover quark action with tadpole imp. on anisotropic lattice

H. Matsufuru et al., PRD64, 114503 (2001). $r_s=1$ to reduce cutoff effects in higher energy states

F. Karsch et al., PRD68, 014504 (2003).

quark mass is tuned with $M_{J/\psi}$ (= 3097MeV)

N_{τ}	160	32	26	20
T/T_c	~ 0	0.88	1.08	1.4
# of conf.	60	300	300	300

equilib. is 20K sweeps each config. is separated by 500 sweeps

0.9 0.70 m_{₽ff}(t) 0-----0 Ps m___(t) Ps 0.8 0.65 •----• V -<u>^</u> S T=0.88T_ 0.7 T=1.08T 0.60 ♦ T=1.4T_ 0.6 0.55 0.5 0.50 $0.1a_t=800MeV$ 0.4 0.45 0.3 0.40 T=0 88T T=1.08T_ T=1.4T_ 0.2 0.35 8 12 8 12 8 16 8 12 0.70 S 0.65 ■ small change in S-wave states =0.88T 0.60 \rightarrow survival of J/ ψ & $\eta_{\rm c}$ at T>T_c 0.55 ■ drastic change in P-wave states 0.50 \rightarrow dissociation of χ_{c} just above Tc (?) 0.45 0.40 S. Datta et al.. 0.35 PRD69, 094507 (2004). etc... 0.30

v

12

12

Av

16

8

8

16

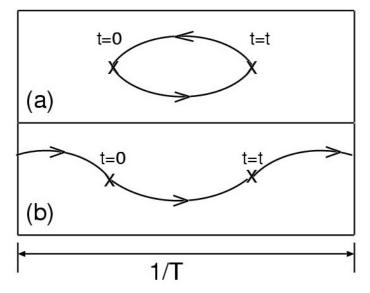
8

12

16

A constant mode

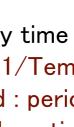
Now we consider the meson correlator with $p=0 \& m_{a1}=m_{a2}$



Pentaquark (KN state): two pion state: \rightarrow Dirichlet b.c. c.f. T.T.Takahashi et al., PRD71, 114509 (2005). $exp(-m_{a}t) \times exp(-m_{a}t)$ $= \exp(-2m_a t)$ m_a is quark mass or single quark energy $exp(-m_at) \times exp(-m_a(L_t-t))$ $= \exp(-m_a L_t)$ L_{t} = temporal extent

in imaginary time formalism $L_{t} = 1/Temp.$ gauge field : periodic b.c. quark field : anti-periodic b.c. ■ in confined phase: m_q is infinite \rightarrow the effect appears

only in deconfined phase



Physical interpretation

Spectral function at high temp. limit

(2)

 $a_{H}^{(1)}$

0

2

2

Г

 γ_5

 γ_i

1

 $\gamma_i \gamma_5$

Ps

V

S

Aν

$$\rho_{\Gamma}(\omega) = \Theta(\omega^{2} - 4m_{q}^{2}) \frac{N_{c}}{8\pi\omega} \sqrt{\omega^{2} - 4m_{q}^{2}} [1 - 2n_{F}(\omega/2)] \\ \times [\omega^{2}(a_{H}^{(1)} - a_{H}^{(2)}) + 4m^{2}(a_{H}^{(2)} - a_{H}^{(3)})] \\ + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}]$$

(2)

F. Karsch et al., PRD68, 014504 (2003). G. Aarts et al., NPB726, 93 (2005).

$a_{H}^{(-)}$	$a_H^{(2)} - a_H^{(3)}$	
	0	constant mod
	2	in the continu
	-2	
	-4	

 $(\mathbf{2})$

constant mode remains in the continuum & infinite volume

The constant term is related to some transport coefficients. From Kubo-formula, for example, a derivative of the SPF in the V channel is related to the electrical conductivity σ .

$$\sigma = \frac{1}{6} \frac{\partial}{\partial \omega} \rho_V(\omega) \Big|_{\omega=0}$$

Removing the constant mode

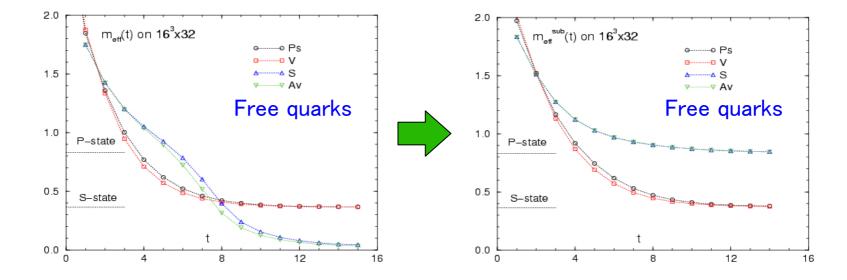
An analysis to avoid the constant mode

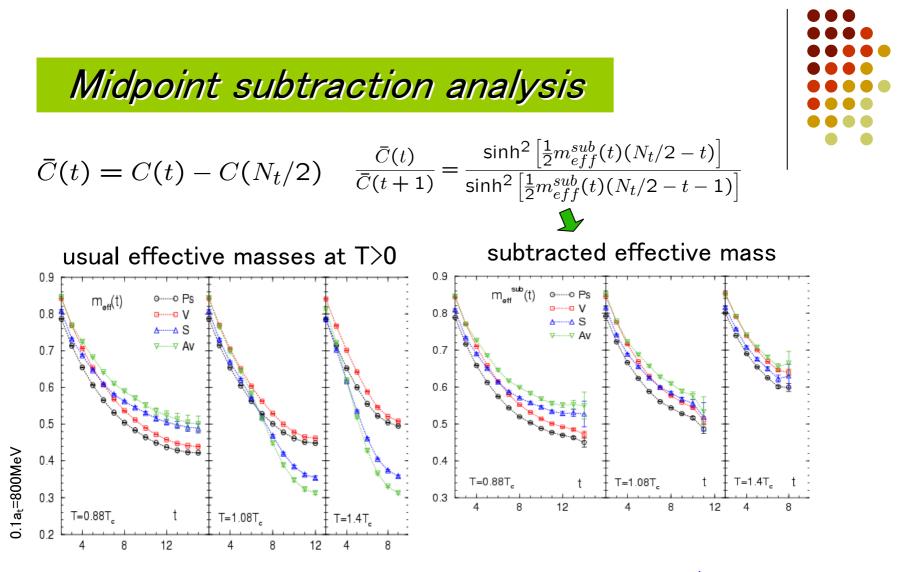
Midpoint subtracted correlator

$$\bar{C}(t) = C(t) - C(N_t/2)$$

$$\frac{\bar{C}(t)}{\bar{C}(t+1)} = \frac{\sinh^2 \left[\frac{1}{2}m_{eff}^{sub}(t)(N_t/2 - t)\right]}{\sinh^2 \left[\frac{1}{2}m_{eff}^{sub}(t)(N_t/2 - t - 1)\right]}$$

- -

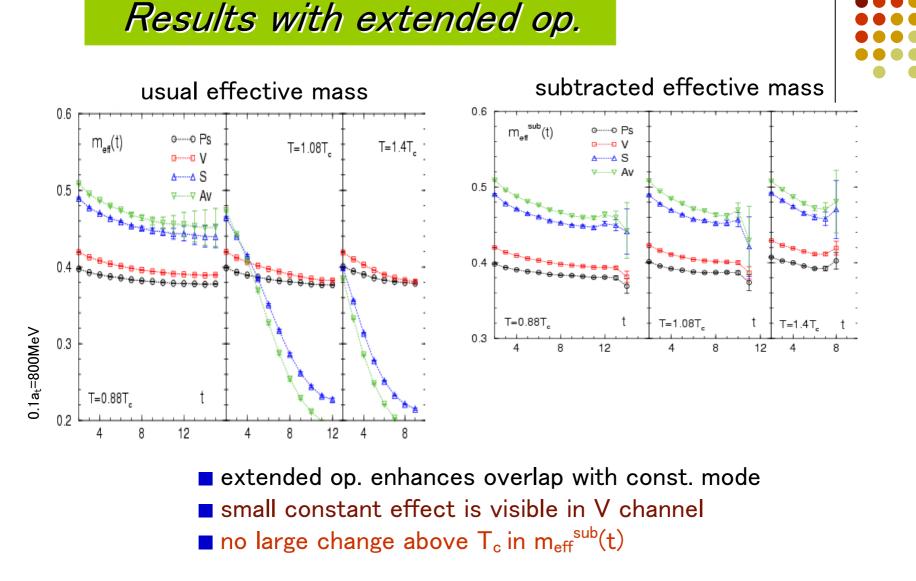




the drastic change in P-wave states disappears in $m_{eff}^{sub}(t)$

 \rightarrow the change is due to the constant mode

T.Umeda (Tsukuba)



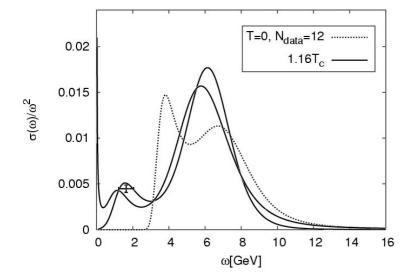


FIG. 19: The scalar spectral function for $\beta = 6.1$ at $T = 1.16T_c$ and at zero temperature reconstructed using $N_{data} = 12$. At finite temperature two default models $m(\omega) = 0.01$ and $m(\omega) = 0.038\omega^2$ have been used.

A.Jakovac et al., PRD75, 014506 (2007). (also S. Datta et al., PRD69, 094507 (2004).)

MEM test using T=0 data



MEM sometimes fails when (# or quality) of data point is not sufficient.

Conclusion

There is the constant mode in charmonium correlators above T_c

- The drastic change in $\chi_{\rm c}$ states is due to the constant mode
 - \rightarrow the survival of χ_c states above T_c, at least T=1.4T_c.

The result may affect the scenario of J/ψ suppression.

In the MEM analysis,

one has to check consistency of the results using, e.g., midpoint subtracted correlators.

 $\bar{C}(t) = C(t) - C(N_t/2)$

$$(t) = \int_0^\infty d\omega \rho_{\Gamma}(\omega) K^{sub}(\omega, t),$$
$$K^{sub}(\omega, t) = \frac{\sinh^2(\frac{\omega}{2}(N_t/2 - t))}{\sinh(\omega N_t/2)}$$