Finite temperature lattice QCD with Nf=2+1 Wilson quark action

WHOT-QCD Collaboration

T.Umeda, S.Aoki, K.Kanaya (Tsukuba Univ.) N.Ishii, N.Ukita (CCS, Tsukuba Univ.) T.Hatsuda, Y.Maezawa (Tokyo Univ.) S.Ejiri (BNL)

JPS meeting, Hokkaido-Univ., Sapporo, 20 Sept. 2007

Takashi Umeda (Tsukuba Univ.)

(1) Introduction

Recent calculations for Finite temperature QCD (Tc calculations)

RBC-Bielefeld:	Nt=4,6,(8) Staggered (p4) quark $m_{pi}/m_{rho} \ge 0.2$, Nf=2+1
MILC:	Nt=4,6,8 Staggered (Asqtad) quark $m_{pi}/m_{rho} \ge 0.3$, Nf=2+1
Wuppertal:	Nt=4,6,8,10 Staggered (stout) quark m _{pi} /m _{rho} = 0.18, Nf=2+1
DIK:	Nt=8,10 Wilson (NPI Clover) quark m _{pi} /m _{rho} ≥ 0.77, Nf=2
WHOT-QCD:	Nt=4,6 Wilson (MFI Clover) quark $m_{pi}/m_{rho} \ge 0.65$, Nf=2

FT-QCD simulations based on CP-PACS/JLQCD/PACS-CS results

 → Temperature is controlled by varying Nt (fixed lattice spacing)

$$T = \frac{1}{N_t a}$$

CP-PACS/JLQCD configurations

beta	mpi/mrho	#m _{ud} xm _s	a[fm]	Ns³xNt	Nt@Tc
1.83	0.6 – 0.78	5 x 2	0.122	16 ³ x32	6 – 8
1.90	0.6 – 0.78	5 x 2	0.100	20 ³ x40	8 – 10
2.05	0.6 – 0.78	5 x 2	0.076	28 ³ x56	12 – 16

PACS-CS configurations

beta mpi/mrho $\#m_{ud}xm_s$ a[fm] Ns³xNt Nt@Tc 1.90 0.3? - 0.55 4 x 1 0.100 32³x64 10 - 12

(3) Good/Bad points of the fixed lattice spacing approach

- --- Good points ---
- no T=0 simulation is necessary

T=0 calculations are performed by CP-PACS/JLQCD high statistics and reliable results !!

- no parameter search
- nonperturbative improved Clover, Nf=2+1 QCD with physical ms
- small lattice artifacts : a=0.122,0.100,0.076fm Nt=6-14 (=1/Ta) near Tc
- Identification of Hot/Cold phase → lower/upper bound of Tc calculation of susceptibility by reweighting method
- --- Bad points ---
- Iow resolution in Temp. (= 1/aNt)
- odd number Nt simulation is difficult (?)
- only upper/lower bound for Tc (reweighting??)

(4) Temperatures with various Nt

PACS-CS simulations at beta=1.90 are searching around $m_{PS}r_0 \ge 0.5$!

(5) Temperature resolution with fixed lattice spacing

- The fixed lattice spacing approach is useful for other obserbables.
 - e.g. at beta=2.05 Nt=16,14,12,10,8,6 are correspond to (roughly) T/Tc=0.9,1.0,1.2,1.4,1.7,2.3
 - \rightarrow charmonium dissociation temperatures
 - → static quark free energy
 - \rightarrow finite chemical potential

(6) Numerical results (Transition temperature)

Simulation details

Nf=2+1, Wilson (NPI Clover) quark + Iwasaki gauge RHMC algorithm (based on CPS code) simulation performed on KEK systemB (BlueGene/L)

16³ x Nt, beta=1.83, (Ls=2fm)

- (1) $k_{ud} = 0.13800$, $k_s = 0.13710$, $m_{pi}/m_{rho} = 0.65$ Nt=8 T=177 MeV 5000traj.
- (2) $k_{ud} = 0.13800$, $k_s = 0.13710$, $m_{pi}/m_{rho} = 0.65$ Nt=6 T=236 MeV 5000traj.

(6) Numerical results (Transition temperature)

Simulation details

(7) Code check with CP-PACS/JLQCD results

(8) Time histories for T>0 simulations

plaquette time histories

Polyakov loop time histories

(9) Identification of confined/deconfined phase

beta reweighting method

 $\langle O \rangle_{\beta} = \frac{\langle Oe^{-(\beta - \beta_0)S_G} \rangle_{\beta_0}}{\langle e^{-(\beta - \beta_0)S_G} \rangle_{\beta_0}}$

beta direction \neq Line of Constant Physics

cp-pacs, PRD64(2001)074510

FIG. 7. Lines of constant physics and constant temperature. Solid lines are $m_{\rm PS}/m_{\rm V}$ constant lines, and dashed lines are T/T_{pc} constant lines for $N_t = 4$. The values of T/T_{pc} for the dashed lines are given on the right edge of the figure.

(10) Results of beta-reweighting method

Polyakov loop susceptivility Polyakov loop 2 2 2 0.2 0.2 0.2 κ=0.13800 Polyakov loop κ=0.13655 Polyakov loop **κ**=0.13655 Nt=6 susceptivility Nt=6 Nt=6 κ=0.13800 κ=0.13800 Nt=8 Nt=8 1.5 1.5 1.5 0.15 0.15 0.15 κ=0.13800 Nt=6 1 1 1 0.1 0.1 0.1 0.5 0.5 0.5 0.05 0.05 0.05 ß β β ß ß ß 0 0 0 0 0 0 1.8 1.83 1.86 1.8 1.83 1.86 1.8 1.83 1.86 1.8 1.83 1.86 1.8 1.83 1.86 1.8 1.83 1.86

(11) Temperatures with various Nt

PACS-CS simulations at beta=1.90 are searching around $m_{PS}r_0 \ge 0.5$!

(12) Summary

We consider the FT-QCD study based on CP-PACS/JLQCD/PACS-CS T=0 results

Temp. is controlled by Nt with fixed lattice spacings

Transition temperature Low resolution in Temperature

Studies of temperature dependence Charmonium dissociation temperatures Static quark free energy finite density ...