Lattice QCD study of charmonium dissociation temperatures

Takashi Umeda (Univ. of Tsukuba)
Contents of this talk

Takashi Umeda,
“Constant contribution in meson correlators at finite temperature”
Phys. Rev. D75 094502 (2007) [hep-lat/0701005]

- Introduction
 -- Quark Gluon Plasma & J/\(\psi\) suppression
 -- Thermal J/\(\psi\) on a lattice
- Constant mode in Finite Temp. Field Theory
- Results
- Another approach on this problem
- Summary & future plan
Quark-Gluon Plasma search

- **SPS**: CERN (−2005)
 Super Proton Synchrotron
- **RHIC**: BNL (2000 −)
 Relativistic Heavy Ion Collider
- **LHC**: CERN (2009 −)
 Large Hadron Collider

from the Phenix group web-site
J/ψ suppression as a signal of QGP

Confined phase:
- linear raising potential
 → bound state of c - ̄c

De-confined phase:
- Debye screening
 → scattering state of c - ̄c

T.Hashimoto et al.(‘86), Matsui&Satz(‘86)

Lattice QCD calculations:
- Spectral function by MEM: T.Umeda et al.(’02), S.Datta et al.(’04), Asakawa&Hatsuda(’04), A.Jakovac et al.(’07), G.Aatz et al.(’06)
- Wave func.: T.Umeda et al.(’00)
- B. C. dep.: H.Iida et al. (’06)

→ all calculations suggest that J/ψ survives till 1.5Tc or higher
Sequential J/ψ suppression scenario

It is important to study dissociation temperatures for not only J/ψ but also $\psi(2S)$, χ_c's.

<table>
<thead>
<tr>
<th>Particle</th>
<th>J^{PC}</th>
<th>Mass (MeV)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/ψ (1S)</td>
<td>1^{-+}</td>
<td>3097</td>
<td>Vector</td>
</tr>
<tr>
<td>ψ (2S)</td>
<td>1^{-+}</td>
<td>3686</td>
<td>Vector</td>
</tr>
<tr>
<td>χ_c (0)</td>
<td>0^{++}</td>
<td>3415</td>
<td>Scalar</td>
</tr>
<tr>
<td>χ_c (1)</td>
<td>1^{++}</td>
<td>3511</td>
<td>Axial Vector</td>
</tr>
</tbody>
</table>

PDG('06)
Spectral function on a lattice

\[C_H(\tau, T) = \sum_{\vec{r}'} \langle J_H(\tau, \vec{r}') J_H^\dagger(\tau, \vec{0}) \rangle \]

Thermal Green func.: \(C_H(\tau, T) \)

\[C_H(\tau, T) = \int_0^\infty d\omega \ \sigma_H(\omega, T) \frac{\cosh(\omega(\tau - \frac{1}{2T}))}{\sinh(\frac{\omega}{2T})} \]

Spectral func.: \(\sigma_H(\omega, T) \)

brute force \(\chi^2 \) analysis fails (ill-posed problem)

→ Bayesian analysis (Maximal Entropy Method)

Output may be arbitrary when data quality is not sufficient
χ_c states dissociate just above T_c?

$$m_{\text{eff}}(t) = \log \left(\frac{C_H(t, T)}{C_H(t+1, T)} \right)$$

FIG. 19: The scalar spectral function for $\beta = 6.1$ at $T = 1.16T_c$ and at zero temperature reconstructed using $N_{\text{data}} = 12$. At finite temperature two default models $m(\omega) = 0.01$ and $m(\omega) = 0.038\omega^2$ have been used.

A.Jakovac et al. ('07).
(also S. Datta et al. ('04).)
Pentaquark (KN state):
 two pion state:
 \rightarrow Dirichlet b.c.

c.f. T.T.Takahashi et al.,

\begin{align*}
\exp(-m_q t) \times \exp(-m_q t) \\
= \exp(-2m_q t) \\
\text{where } m_q \text{ is quark mass} \\
\text{or single quark energy}
\end{align*}

\begin{align*}
\exp(-m_q t) \times \exp(-m_q(L_t-t)) \\
= \exp(-m_q L_t) \\
\text{where } L_t = \text{temporal extent}
\end{align*}

- in imaginary time formalism
 $L_t = 1/\text{Temp.}$

gauge field : periodic b.c.
 quark field : anti-periodic b.c.

- in confined phase: m_q is infinite
 \rightarrow the effect appears
 \text{only in deconfined phase}
χ_c states dissociate just above T_c?

$$m_{\text{eff}}(t) = \log\left(\frac{C_H(t, T)}{C_H(t + 1, T)} \right)$$

FIG. 19: The scalar spectral function for $\beta = 6.1$ at $T = 1.16T_c$ and at zero temperature reconstructed using $N_{\text{data}} = 12$. At finite temperature two default models $m(\omega) = 0.01$ and $m(\omega) = 0.038\omega^2$ have been used.

A. Jakovac et al. ('07).
(also S. Datta et al. ('04.).)
Midpoint subtraction analysis

Midpoint subtracted correlators

$$C_{\text{H}}^{\text{sub}}(t,T) = C_{\text{H}}(t,T) - C_{\text{H}}(N_t/2,T)$$

→ cut off only constant mode

The drastic change of P-wave states is due to the const. contribution.

Small changes in SPFs (except for constant mode effects) for not only J/psi but also χ_c’s

Previous MEM analysis for χ_c states may be misleading
χ_c states may survive up to 1.4T_c (?)
Another approach to study charmonium at $T>0$

In a finite volume,
discrete spectra does not always indicate bound states!

In order to study a few lowest states,
the variational analysis is one of the most reliable approaches!

$N \times N$ correlation matrix: $C(t)$

\[C(t) \psi = \lambda(t, t_0) C(t_0) \psi \quad \lambda_i(t, t_0) = e^{-F_i(t-t_0)} \]
How to identify the states

We know three ways to identify the state in a finite volume:

1. **Volume dependence**
 - E: energy
 - V: volume
 - $\Phi(r)$: wave function
 - r: c - \bar{c} distance

2. **Wave function**

3. **Boundary Condition (B.C.) dep.**

H.Iida et al. (’06), N.Ishii et al. (’05)
Results of wave functions at $T>0$

Temp. dependence of “Wave function” (Bethe-Salpeter amplitude)

$$BS(\vec{r}, t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x} + \vec{r}, t) \Gamma q(\vec{x}, t) \bar{q}(\vec{0}, 0) \Gamma q(\vec{0}, 0) \rangle$$
$$\Phi(|\vec{r}|, t) = BS(\vec{r}, t) / BS(\vec{0}, t)$$

Lattice setup
- Quenched approximation (no dynamical quark effect)
- Anisotropic lattices
 - Lattice spacing: $a_s = 0.0970(5)$ fm
 - Anisotropy: $a_s/a_t = 4$
- Variational analysis with 6×6 correlation matrix
- $T = 0.9T_c - 2.3T_c$ ($N_t = 32 - 16$), $V = 16^3, 20^3, 32^3$
Charmonium wave functions at $T=2.3T_c$

- Wave functions are constructed by the variational analysis.
- Clear signals of bound states even at $T=2.3T_c$ ($!$)
- Large volume is necessary for P-wave states.

\rightarrow H. Ohno et al. 24aZC AM10:30
Summary and future plan

- There is the constant mode in charmonium correlators above T_c
- The drastic change in χ_c states is due to the constant mode

- Another approach to study charmonium at $T>0$
 with no Bayesian analysis
- No evidence for unbound charm quarks up to $T = 2.3 T_c$

The result may affect the scenario of J/ψ suppression.

Future plan
- Discussion on the experimental results of J/ψ suppression
- Full QCD calculations (Nf=2+1 Wilson is now in progress)
the drastic change in P-wave states disappears in $m_{\text{eff}}^{\text{sub}}(t)$

→ the change is due to the constant mode
Midpoint subtraction analysis

- extended op. enhances overlap with const. mode
- small constant effect is visible in V channel
- no large change above T_c in $m_{eff}^{\text{sub}}(t)$